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The experimental realization of magnetic skyrmion crystals in centrosymmetric materials has been driven by
theoretical understanding of how a delicate balance of anisotropy and frustration can stabilize topological spin
structures in applied magnetic fields. Recently, the centrosymmetric material Gd2PdSi3 was shown to host a
field-induced skyrmion crystal, but the skyrmion stabilization mechanism remains unclear. Here, we employ
neutron-scattering measurements on an isotopically-enriched polycrystalline Gd2PdSi3 sample to quantify the
interactions that drive skyrmion formation. Our analysis reveals spatially-extended interactions in triangular
planes, and large ferromagnetic inter-planar magnetic interactions that are modulated by the Pd/Si superstruc-
ture. The skyrmion crystal emerges from a zero-field helical magnetic order with magnetic moments perpen-
dicular to the magnetic propagation vector, indicating that the magnetic dipolar interaction plays a significant
role. Our experimental results establish an interaction space that can promote skyrmion formation, facilitating
identification and design of centrosymmetric skyrmion materials.

Magnetic skyrmions are topologically-nontrivial spin tex-
tures with potentially transformative applications in quantum
computing and information storage [1–3]. Skyrmion crys-
tals usually occur in noncentrosymmetric magnets, in which
they can be stabilized by antisymmetric exchange interactions
[4, 5]. However, it was recently shown that skyrmion crys-
tals can be stabilized in centrosymmetric systems by frus-
trated (competing) interactions [6, 7], presenting the exciting
prospects of higher skyrmion densities and manipulation of
chiral degrees of freedom by external fields [8, 9]. While a
small number of candidate centrosymmetric skyrmion materi-
als have been identified [10–13], experimentally determining
the magnetic interactions driving this behavior remains a key
challenge. Addressing this challenge is a prerequisite for de-
signing and manipulating skyrmion-based devices.

The hexagonal material Gd2PdSi3 provides a rare example
of a skyrmion crystal in a centrosymmetric system [10]. In
Gd2PdSi3, triangular layers of magnetic Gd3+ ions are sep-
arated by honeycomb PdSi3 layers [Fig. 1(a)] [14]. A tran-
sition from the paramagnetic state occurs at TN = 21 K to
an incommensurate magnetic order with propagation vector
q = [q00]∗ with q≈ 0.14 [10]. The observed q may be stabi-
lized by competition between ferromagnetic nearest-neighbor
interactions and antiferromagnetic further-neighbor interac-
tions [Fig. 1(a,b)] [6, 7]. Application of a magnetic field below
TN yields a giant topological Hall effect, signifying a transi-
tion to a topologically-nontrivial skyrmion crystal, which is
a triple-q structure formed by superposing magnetic helices
with q = [q00]∗, [0q0]∗, and [q̄q0]∗ [10]. The bulk magnetic
susceptibility follows a Curie-Weiss law with spin S = 7/2,
g = 2, and a ferromagnetic Weiss temperature θ ≈ 30 K, sug-
gesting that Gd3+ ions possess spin-only local moments [15–
17]. However, coupled electronic and spin correlations de-
velop well above TN, as indicated by a minimum in the re-
sistivity at ∼2TN and a large negative magnetoresistance that
persists up to ∼3TN [16–18].

To explain spin textures in centrosymmetric systems such

Figure 1. (a) Parent crystal structure of Gd2PdSi3 (space group
P6/mmm; a ≈ 4.06 Å, c ≈ 4.09 Å [19]). (b) Magnetic interactions
within triangular Gd3+ layers. (c) Proposed low-symmetry Pd/Si
superstructure showing ...ABCDBADC... stacking of PdSi3 layers
(a′ = b′ = 2a, c′ = 8c). The highest-symmetry space group compat-
ible with the superlattice ordering is Fddd [19]. Black lines show
inter-layer bonds with two Pd and four Si neighbors, and striped or-
ange/green lines show inter-layer bonds with six Si neighbors.

as Gd2PdSi3, it is crucial to understand the system’s under-
lying magnetic interactions. The experimental observation of
Fermi surface nesting with a wavevector similar to q suggests
the relevance of long-ranged RKKY interactions [26], while
a theoretical study indicates that local exchange processes are
also important [27]. However, quantifying the interactions ex-
perimentally is a complex problem, for three main reasons.
First, the ordered magnetic structure in zero applied field is
not conclusively solved [10, 17, 28]. Second, although the
crystal structure may be approximately described with a sta-
tistical distribution of Pd and Si, these atoms actually form
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a superlattice that may affect exchange processes [Fig. 1(c)]
[14]. Third, the large neutron-absorption cross-section of
isotopically-natural Gd makes neutron-scattering experiments
on large single crystals challenging. So far, this has prevented
the use of neutron-scattering experiments to understand the
magnetic interactions of Gd2PdSi3.

Here, we employ neutron-scattering experiments on
160Gd2PdSi3 to obtain a model of its zero-field magnetic struc-
ture and interactions that explains multiple experimental ob-
servations. We obtain the following key results. First, mag-
netic interactions within triangular layers are spatially ex-
tended and of competing sign. Second, ferromagnetic inter-
actions between layers are dominant, and strongly modulated
by the Pd/Si superlattice. Third, below TN, a helix with the
spin plane perpendicular to q is the only structure consistent
with our neutron data and physical constraints, suggesting the
magnetic dipolar interaction plays a significant role below TN
[29]. Finally, we confirm that our interaction model explains
the skyrmion crystal at small applied magnetic fields below
TN [10, 30]. Our results provide a foundation for theoretical
modeling and experimental manipulation of spin textures in
Gd2PdSi3.

We prepared a polycrystalline sample of 160Gd2PdSi3
(mass ∼0.8 g) by arc melting. Arc-melted samples were
wrapped in Ta foil, sealed in a quartz tube under a vacuum,
and annealed at 800 C for one week. The sample quality
was confirmed by bulk magnetometry and by powder X-ray
diffraction, which reveals broad superlattice peaks consis-
tent with 126(6)Å domains of the superstructure shown in
Fig. 1(c) [19]. To minimize neutron absorption, the sample
was 98.1% enriched with 160Gd, and an annular sample ge-
ometry was used for neutron diffraction and spectroscopy ex-
periments, which were performed using the HB-2A and SE-
QUOIA instruments at ORNL, respectively.

Figure 2(a) shows magnetic diffuse-scattering data I(Q)
collected above TN using HB-2A (λ = 2.4067 Å). The data are
background-subtracted and placed in absolute intensity units
by normalization to the nuclear Bragg scattering. As the sam-
ple is cooled below 40 K, I(Q) increases at small wavevec-
tors, Q . 0.3 Å−1, indicating the development of predom-
inantly ferromagnetic short-range correlations. Figure 2(b)
shows that the bulk magnetic susceptibility χT exhibits a large
upturn over the same temperature range, as expected because
χT ∝ I(Q = 0) at high temperature [31]. For RKKY interac-
tions with Fermi wave-vector kF, theory predicts an increase
in I(Q . 2kF) as TN is approached from above, with a simul-
taneous upturn in the resistivity [32]. To test this prediction,
Fig. 2(c) compares I(Q→ 0)—obtained from χT and by av-
eraging I(Q) over 0.1 ≤ Q ≤ 0.3 Å−1—with published resis-
tivity measurements [16]. Both I(Q→ 0) and the resistivity
shown an upturn at the same temperature (∼40 K), in quali-
tative agreement with the RKKY prediction [32]. This result
suggests that RKKY interactions may play a significant role
in Gd2PdSi3.

We quantify the magnetic interactions by analyzing I(Q)

Figure 2. (a) Magnetic diffuse scattering above TN, showing experi-
mental data (black circles), model fits (red lines), and data – fit (blue
lines). Successive curves are shifted vertically by 50 bn sr−1 Gd−1.
Data collected and fitted at 35 K, 45 K, and 60 K follow the same
trends and are omitted for clarity. The dotted green line shows the
22 K fit with five intra-layer couplings and Jc = 0. (b) Bulk mag-
netic susceptibility data and fit (colors as above). (c) Comparison of
I(Q→ 0) from neutron data (green circles) and magnetic susceptibil-
ity data (solid green line) with published resistivity data from Ref. 16
(orange squares). (d) Dependence of goodness-of-fit metric Rwp for
neutron data (green circles) and susceptibility data (orange squares)
on the number of intra-layer neighbors, n. Solid symbols show re-
sults when inter-layer coupling Jc was fitted, and open symbols show
results for Jc = 0. (e) Dependence of J(Q) along high-symmetry
paths (Γ = (000); K = ( 1

3
1
3 0); M = ( 1

2 00)). Positions of global and
local maxima in J(Q) are shown by long black and short gray arrows,
respectively.

and χT data measured at T > TN within a Heisenberg model,

Hex =−
1
2 ∑

i, j
Ji jSi ·S j, (1)

where Si denotes a classical spin vector with position Ri
and length

√
S(S+1), and the interaction parameters Ji j ∈

{J1,J2,J3,J4,Jc} are shown in Fig. 1(a,b). We make two sim-
plifying assumptions in this high-temperature analysis. First,
we neglect non-Heisenberg terms such as the magnetic dipo-
lar interaction and single-ion anisotropy, which have negligi-
ble effect above TN because of their small energy scales [19].
Second, we assume the high-symmetry hexagonal structure,
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Jc (K) J1 (K) J2 (K) J3 (K) J4 (K)

1.97(46) 0.31(9) 0.19(15) 0.27(18) −0.21(5)

Table I. Fitted values of magnetic interaction parameters. Parameter
uncertainties indicate 3σ confidence intervals.

neglecting a possible variation in Ji j due to the Pd/Si super-
structure. To calculate I(Q) from the Ji j, we apply reaction-
field theory, a self-consistent mean-field theory that gives
good agreement with classical Monte Carlo simulations [33–
35]. Within reaction-field theory, the wavevector-dependent
susceptibility χ(Q) = χ0/{1−χ0[J(Q)−λ ]} [36], where
J(Q) = ∑ j Ji j exp(iQ ·R j), χ0 = S(S + 1)/3, λ is obtained
self-consistently by enforcing that

∫
BZ χ(Q)dQ = S(S + 1)

[36], and I(Q) is calculated by spherically averaging I(Q) =
cT [ f (Q)]2χ(Q), where c = 0.1937 bn [31] and f (Q) is the
Gd3+ magnetic form factor [37].

We first tested a two-dimensional model by setting Jc = 0
and refining the intra-layer couplings {J1, ...,Jn} to our I(Q)
and χT data shown in Fig. 2(a) and (b). This model does not
represent the data well. By contrast, also refining the inter-
layer coupling Jc substantially improves the refinement qual-
ity metric Rwp [Fig. 2(d)], demonstrating that the interactions
are three-dimensional. To estimate the spatial extent of the
interactions, Fig. 2(d) shows the dependence of Rwp on the
number of Jn fitted in addition to Jc. No significant improve-
ment is obtained for n > 4; hence, our minimal model con-
tains {J1,J2,J3,J4,Jc}. The optimal parameter values from
a global fit to I(Q) and χT data are given in Table I. In-
cluding dipolar interactions does not significantly affect the
refined Ji j [19]. Ferromagnetic Jc is dominant, while intra-
layer interactions compete between antiferromagnetic J4 and
shorter-range ferromagnetic couplings, resembling an RKKY
interaction [38, 39]. Figure 2(e) shows the corresponding
J(Q), which is maximal at the calculated propagation vector,
qcalc ≈ [0.12,0,0]∗. Notably, the energy scale S(S+1)J(qcalc)
is similar to first-principles results [27, 40]. While qcalc is
smaller than the measured low-temperature q ≈ [0.14,0,0]∗,
the difference is plausible because q decreases with increas-
ing temperature below TN [10]. Interestingly, a local J(Q)
maximum occurs along the [110]∗ direction with < 0.2% en-
ergy difference from J(qcalc). Fermi-surface measurements
of Gd2PdSi3 show a nesting wavevector ∼ [ 1

6
1
6 0]∗ [26], while

Tb2PdSi3 exhibits short-range magnetic ordering with this pe-
riodicity [41], suggesting quasi-degeneracy may be generic to
these materials. Finally, we considered an alternative five-
parameter model containing two inter-layer and three intra-
layer couplings. While this model yields a comparable refine-
ment of I(Q) and χT measurements, it does not agree well
with inelastic neutron-scattering data [19].

We now investigate the zero-field magnetic structure for
T < TN. Taking the hexagonal structure as the parent phase,
there are three magnetic irreducible representations (irreps)
that correspond, respectively, to sinusoidal modulations of the
Gd ordered magnetic moment µord along orthogonal direc-

(a)

(b)

(c) (d)

(e)

(f)

helix

sine

Figure 3. (a) Sinusoidal spin-density wave with spin axis perpen-
dicular to q. (b) “Proper screw” helix with spin plane perpendicular
to q. (c) Magnetic diffraction data at 1.5 K (black circles), model
fits (red lines), and data – fit (blue lines). (d) Magnetic diffraction
data, fits and data – fit (colors as above) on an expanded Q-axis scale
for models (vi) and (vii), showing broadening of peaks with l 6= 0
and improved fit for the elliptical helix (vii) compared to the circular
helix (vi). (e) Goodness-of-fit metric Rwp for each model. (f) Max-
imum refined value of the ordered magnetic moment µord per Gd3+

for each model. Parameter uncertainties represent 1σ confidence in-
tervals. For model (vii), µord ‖ b is shown as a gray bar.

tions a∗, b, and c [Fig. 3(a)] [42]. Alternatively, combining
pairs of irreps yields helices with µord in the ab, a∗c, or bc
plane [Fig. 3(b)]. Helical and sinusoidal models have been
proposed for the zero-field structure of Gd2PdSi3 [27, 28]. A
triple-q meron-antimeron structure was also proposed [10]. In
Fig. 3(c), we compare the Rietveld refinement for each model
with the magnetic diffraction pattern, obtained as the differ-
ence between the 1.5 K and 25 K data. All magnetic Bragg
peaks are explained by Gd magnetic ordering, indicating that
any Pd magnetic polarization is below the detection limit of
our data. For each model, Fig. 3(e) shows Rwp, and Fig. 3(f)
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Figure 4. (a) Inelastic neutron-scattering data measured at T = 5.8 K
with Ei = 11 meV. Data are corrected for detailed balance and dif-
fuse scattering is subtracted. (b) Linear spin-wave theory (LSWT)
calculation for the interaction parameters given in Table I. (c) LSWT
calculation with Jc split by ∆ = 0.8 (defined in the text) for Pd/Si su-
perlattice ordering with periodicity (2a,2a,c). (d) LSWT calculation
with Jc split by ∆ = 0.8 for Pd/Si superlattice ordering with periodic-
ity (2a,2a,8c). Each panel contains a color plot (left) of

√
I(Q,E),

and line cuts of intensity Iavg averaged over 0.5<Q< 0.7 Å−1 (black
circles) and 0.5 < Q < 2.0 Å−1 (blue squares).

shows the refined maximum value of µord. The a∗-sine model
(i), with spins S ‖ q, would give zero intensity for the strong
(q00) magnetic peak, and so is ruled out. Of the remaining
models, b-sine (ii), bc-helix (vi), and bc-ellipse (vii) struc-
tures yield similarly high-quality refinements. The meron-
antimeron structure has an identical diffraction pattern to its
single-q analog, the bc-helix, and is not shown separately.
The refined µord is a key discriminating factor, as any phys-
ical model must satisfy the constraint that max(µord)≤ 2SµB
(= 7.0µB for Gd3+) to ensure consistency with magnetic sus-
ceptibility and saturation magnetization measurements. This
constraint rules out the b-sine model with max(µord) = 8.7µB
[Fig. 3(f)]. It also disfavors the meron-antimeron structure, for
which max(µord) =

3
2 µhelix

ord , where µhelix
ord = 6.14(7)µB is the

refined ordered moment of the bc-helix. Thus, the key result
of our Rietveld analysis is that only “proper screw” helices
with S ⊥ q, models (vi) and (vii), yield good fits and reason-
able µord values. The best such refinement is for an elliptical
helix with µ‖c = 5.13(7)µB, and µ‖b fixed to 7.0 µB. Notably,
the ordered moment is not fully polarized as µhelix

ord < 2SµB
at 1.5 K. Magnetic peaks are also selectively broadened com-
pared to nuclear peaks [Fig. 3(d)]. Refinement of a quadratic-
in-l size-broadening term yields magnetic domain dimensions
of 332(8)Å in the ab-plane vs. 27(2)Å along c, which may
be a consequence of the disordered stacking of PdSi3 layers
indicated by our X-ray diffraction data [14, 19].

The magnetic excitation spectrum at T � TN provides a

sensitive test of our model. Our inelastic neutron-scattering
data (Ei = 11 meV) show spin-wave excitations at T = 5 K,
superimposed on a diffuse magnetic background that likely
occurs because µhelix

ord < 2SµB. In Fig. 4(a), we show I′5K =
I5K− [1− (µhelix

ord /2SµB)
2]I25K, which isolates the spin-wave

contribution. Our data show an overall bandwidth of approx-
imately 4 meV. For E < 4 meV, the spectrum has a broad en-
ergy dependence with intensity minima for 0 . E . 1 meV
and 2 . E . 3 meV that are most apparent at small Q .
0.7 Å−1. Figure 4(b) shows the calculated spectrum for the
interaction parameters given in Table I and a single-q helical
ground state, calculated within linear spin-wave theory [43]
using the SpinW program [44]. Including the dipolar inter-
action has only a small effect on the spectrum [19]. This
model reproduces the overall bandwidth, but fails to explain
the intensity minimum for 2 . E . 3 meV. Attempts to refine
{J1,J2,J3,J4,Jc} to the inelastic data also failed to reproduce
this feature. To explain our data, it was necessary to con-
sider the effect of the Pd/Si superstructure on Jc. All proposed
models of the Pd/Si superstructure involve doubling the unit
cell along a and b, such that 75% of Jc bonds (notated Jc+)
have four Si and two Pd neighbors, while the remaining Jc
bonds (notated Jc−) have six Si neighbors [Fig. 1(c)]. We as-
sume the superstructure splits Jc by an amount ∆Jc, such that
Jc+ = Jc(1+∆/4) and Jc− = Jc(1− 3∆/4), and neglect any
splitting of the weaker interactions. For the (2a,2a,8c) su-
perstructure shown in Fig. 1(c), the stacking of Jc± bonds is
...ABCDBADC... [14], whereas the (2a,2a,c) superstructure
considered in Ref. 27 has ...AAA... stacking. Taking ∆ = 0.8
with the (2a,2a,c) superstructure reproduces the intensity
minimum for 2 . E . 3 meV and yields good overall agree-
ment with our inelastic neutron-scattering data [Fig. 4(c)],
without degrading the agreement with I(Q) data above TN
[19]. Taking ∆ = 0.8 with the (2a,2a,8c) superstructure also
generates intensity minima, but yields worse agreement with
our data [Fig. 4(d)]. Our results show that the Pd/Si super-
structure strongly enhances Jc for bonds with Pd neighbors,
perhaps consistent with a superexchange contribution here.

We use extensive Monte Carlo simulations [45] to calculate
the phase diagram of our model as a function of temperature
T and applied magnetic field B ‖ c. The spin Hamiltonian is
given by

H = Hex +gµBB∑
i

Sz
i +D ∑

i> j

Si ·S j−3(Si · r̂i j)(S j · r̂i j)

(ri j/r1)
3 ,

(2)
where, to stabilize helical ordering with S ⊥ q, we include
the magnetic dipolar interaction with magnitude D = 0.037 K
at the nearest-neighbor distance r1 [29, 46]. To minimize
finite-size effects, we constrain the interactions to stabilize
qMC = [qMC00]∗ ≈ qcalc, with commensurate qMC = 1

8 or 1
9 .

The calculated magnetic susceptibility χcalc
zz (B,T ) is shown in

Fig. 5(a), and reveals both similarities and differences with
experiment [30, 47]. In agreement with experiment, we find
T calc

N ≈ 20 K, and below TN, a transition from a helical to a
skyrmion crystal at small B (calculated as 0.25 T; c.f. 0.38 T
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Figure 5. (a) Calculated magnetic susceptibility χcalc
zz and estimated

phase boundaries (green crosses) for our interaction model, obtained
using Monte Carlo simulations. Results are shown for qMC = 1

9 and
a 9×9×9 supercell of the hexagonal unit cell. (b) Calculated χcalc

zz
at T = 15 K for the distorted (2a,2a,c) supercell with ∆ = 0.8 and
qMC = 1

8 (green circles), and the undistorted structure with ∆ = 0
and qMC = 1

9 (orange squares). The calculated magnetic diffraction
patterns are for each phase are shown above, for B = 0.11, 0.40, and
0.79 T (left to right). The values of B are scaled by the quantum
correction factor

√
(S+1)/S≈ 1.134.

experimentally [30]). At larger B, a further transition occurs
to a topologically-trivial triple-q phase previously identified
using mean-field theory [29]. The single-q vs. triple-q nature
of each phase is revealed by its calculated magnetic diffrac-
tion pattern [insets in Fig. 5(b)]. The behavior is not qualita-
tively affected by the splitting of Jc, or by the precise value
of qMC [Fig. 5(b)]. Given the simplicity of our model, its
reasonable agreement with experiment at small B is satisfy-
ing; however, it does not explain the large increase in satura-
tion field on cooling the sample (Bsat ≈ 8 T at 2 K [30]) or the
presence of magnetic transitions for B > 1 T [47]. These dif-
ferences motivate further theoretical work to understand the
role of non-Heisenberg interactions.

Our neutron-scattering results provide an experimental un-
derstanding of the magnetic interactions in Gd2PdSi3 and clar-
ify its zero-field magnetic structure. This approach may pro-
vide insight into other centrosymmetric skyrmion materials,
such as Gd3Ru4Al12 and GdRu2Si2 [11, 13]. Notably, our
interaction model explains key aspects of the experimental
behavior without invoking biquadratic or multi-spin interac-
tions [48]. However, the spin dynamics can only be under-
stood by accounting for the Pd/Si superstructure, suggest-
ing it is important to include this in models. We anticipate
that this model of the skyrmion stabilization mechanism in
Gd2PdSi3 will facilitate design and identification of new cen-
trosymmetric skyrmion hosts, including in materials where
large single-crystal samples are unavailable or unsuitable for
neutron-scattering measurements.
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