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We analytically identify a new class of quantum scars protected by spatiotemporal translation symmetries,
dubbed Floquet-Bloch scars. They distinguish from previous (quasi-)static scars by a rigid spectral pairing only
possible in Floquet systems, where strong interaction and drivings equalize the quasienergy corrections to all
scars and maintain their spectral spacings against generic bilinear perturbations. Scars then enforce the spatial
localization and rigid discrete time crystal (DTC) oscillations as verified numerically in a trimerized kagome
lattice model relevant to recent cold atom experiments. Our analytical solutions offer a potential scheme to
understand the mechanisms for more generic translation-invariant DTCs.

Introduction — Systems far from equilibrium have become
a fertile ground cultivating unexpected phenomena recently.
Among them, discrete time crystals (DTC) [1–7] constitute
an intriguing example. As foundational concepts of ground
state and temperature fall apart in the absence of thermal
equilibrium, Landau’s theory of symmetry breaking [8] is re-
placed by new principles like spectral pairing and eigenstate
orders [1, 2] in handling time translation symmetries. That re-
sults in the DTC phenomena where Hamiltonians Ĥ(t + T ) =

Ĥ(t) give rise to observables O(t+NT ) = O(t) (1 < N ∈ Z) os-
cillating like a temporal charge/spin density wave. Crucially,
the periodicity NT demands no fine-tuning and withstands
generic perturbations.

The concept of DTCs has been considered in several physi-
cal realizations [9–15]. While the strongly disordered cases
are relatively well understood [1–3, 16], the possibility of
DTCs in translation-invariant ordered systems is less clear.
Empirical evidence for DTCs is accumulating in both physical
and numerical experiments [9, 10, 17–23]. However, analyti-
cal explanations based on many-body localization (MBL) [24]
or prethermalization [25] do not seem to apply to these
cases. Recently, it was indicated that quasi-conservation
laws [26, 27], which can be enhanced by single-particle terms,
may help protect phenomena pertinent to DTCs. Meanwhile,
the initial state dependence of clean DTCs [26, 28] has been
reexamined in terms of scar physics [29] in recent numer-
ics [30, 31]. Altogether, continued investigation on DTCs in
non-disordered systems, with the objectives of uncovering the
underlying mechanism that supports the DTC and the specific
role of many-body (vs. single-particle) effects, is warranted.

In this Letter, we gain insights on these two research ob-
jectives by studying a small cluster of soft-core bosons on
driven trimerized kagome lattices, relevant to recent experi-
ments [32] and feasible for numerical verifications. We find
analytically that it is a class of quantum scars protected by
spatiotemporal translation invariance, dubbed Floquet-Bloch
scars (FBS), that gives rise to DTC behaviors for sublattice
density oscillations. FBS’s identified here neither exploit a

static scar (i.e. “PXP” model [29, 33, 34]) nor end up with
engineered static Hamiltonians. Instead, these FBS’s exhibit
a unique DTC feature. Specifically, each scar quasienergy
may be shifted considerably under perturbation. However,
the interplay of strong interactions and drivings equalizes the
scar level shifts, which is proved to all orders in our perturba-
tive treatment. Then, the quasienergy difference ω0 between
FBSs remains invariant and enforces the persisting 2π/ω0-
periodic DTC. Rigid scar level spacing here resembles the
“spectral pairing rigidity” for all Floquet eigenstates in MBL
DTCs [1, 16]. Also, such a mechanism allows for rather
generic perturbations compared with preexisting scar models
typically relying on microscopic details to achieve configura-
tion separations [29, 33–44]. Thus, our analytical solutions
not only offer a more definitive understanding of clean DTC
mechanisms, but also point out a new way of constructing
scars showing peculiar spectral orders characteristic of Flo-
quet systems.
Model and phenomena — We consider bosons evolving under
a Hamiltonian Ĥ(t + T ) = Ĥ(t) that is toggled between two
settings repetitively within each period T :

Ĥ1T/2~ = φ1

∑
r,µ,ν

i fµν
[
ψ̂†rµψ̂rν + λψ̂†r+eµ,µψ̂r+eν,ν

]
, t ∈ [0,T/2)

Ĥ2T/2~ =
∑
r,µ

[
φ2n̂rµ(n̂rµ − 1) + θµn̂rµ

]
, t ∈ [T/2,T ). (1)

Here, Ĥ1 describes the hopping of non-interacting bosons
in a trimerized kagome lattice with complex hopping ampli-
tudes, as shown in Fig. 1(a), while Ĥ2 describes the combi-
nation of on-site single-particle and interaction energy shifts.
Dimensionless parameters (φ1, λ, φ2, θµ) characterize the Flo-

quet operator ÛF = Pte−(i/~)
∫ T

0 dtĤ(t) = e−iĤ2T/2~e−iĤ1T/2~.
ψ̂rµ and n̂rµ = ψ̂†rµψ̂rµ are annihilation and particle number
operators respectively, for L2 unit cells r = m1e1 + m2e2
(m1,2 = 0, 1, . . . , L − 1) and three sublattices µ, ν = 0, 1, 2.
Here e1,2 are Bravais vectors for kagome lattices and e0 ≡ 0.
i fµν = (1 + 2e2πi(µ−ν)/3)/

√
3 = ±i specifies the +i hopping



2

directions in Fig. 1 (a). Note that
∑
µ θµ = 0 can always be

achieved by subtracting (Nb/3)
∑
µ θµ from Ĥ2T/2~, where to-

tal bosons Nb =
∑

rµ n̂rµ.

(a) Lattice and phenomena

(c) Eigenstate correlations (b) Dynamics (m ∈ Z)

FIG. 1. (a) Trimerized kagome lattice and the schematic illustration
of DTC dynamics. Triangles with strong/weak bonds are denoted by
black/gray colors, with +i hopping directions indicated by arrows.
(b) Particle dynamics nµ(NT ) =

∑
r〈ψini|(Û

†

F)NnrµÛN
F |ψini〉, with the

initial state |ψini〉 at t/T = 1 that all particles locate at a single site
r = 0, µ = 0. To facilitate reading, data is grouped into 3 sets at t
mod 3T = 0, 1, 2 respectively. For comparison, the non-interacting
φ2 = 0, L = 3 case is plotted at all t in the upper panel as translu-
cent dots. (c) Temporal correlation functions indicating infinite-time
response frequencies (L = 3). Unless denoted otherwise, Nb = 5,
φ1 = 2π/3

√
3, λ = 0.1, φ2 = 1.1, θ1,2,3 = (0.1, 0.2,−0.3).

DTC dynamics obtained by exact diagonalization is briefly
shown in Fig. 1. When λ → 0, Ĥ1 enters the strongly trimer-
ized regime composed of disconnected triangles, where π/2-
fluxes equalize the spacing between single-particle flat bands
ωn = 0,±

√
3φ1 (ÛF |ωn〉 = eiωn |ωn〉). Then, φ1 = 2π/3

√
3

leads to 3T ballistic oscillations for particles Û†Fψ̂
†

r,µ=0,1,2ÛF =

ψ̂r,µ=1,2,0 breaking the Hamiltonian time translation symmetry
of T , as in Fig. 1 (a). Frequencies given by single-particle
physics are, of course, unstable against perturbations. It is
then the hallmark for DTC where strong interactions φ2 stabi-
lize the 3T periodicity without fine-tuning, see Fig. 1 (b). Late
time dynamics can be further confirmed by the temporal cor-
relation functions C(ω) =

∑∞
N=−∞

eiωN

2π
∑

n〈ωn|P̂(N)P̂(0)|ωn〉 =∑
mn δ(ω − ωmn)A(ωmn) for the sublattice density bias, i.e.

P̂(N) =
(
Û†F

)N
N−1

b
∑

r(n̂r0 − n̂r1)ÛN
F . Note that the summa-

tion N is over infinite time without truncation. The spectral
weight A(ωmn) = |〈ωm|P̂|ωn〉|

2, ωmn = ωm − ωn in Fig. 1 (c)
showing strong peaks at frequencies ω0 → ±2π/3 + O(1/D)
verifies long-time oscillation periods 2πT/|ω0| → 3T . The
small deviation O(1/D) suppressed by Hilbert space dimen-
sion D gives an envelop modulation in Fig. 1 (b) as noticed
previously for both MBL [2, 16] and clean [17] DTCs.

The above phenomena may be viewed from several angles.

Particularly, in the case of complete trimerization, λ = 0, the
two-dimensional lattice breaks up into isolated trimers. DTCs
observed in this case is then explained simply as that of a
microscopic three-site chiral system similar to Ref. [45]. If
we were to regard intertrimer coupling as simply opening up
each one-trimer DTC to an external bath composed of other
trimers, we might expect the overall DTC dynamics to be de-
stroyed over short time at λ , 0 [46]. Yet, such expectations
contradict results in Fig. 1 (b) (c). Below, we offer an expla-
nation that DTCs in the coupled-trimer regime is stabilized by
a special class of scar Floquet eigenstates each spanning over
the entire two-dimensional lattice.
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FIG. 2. (a) 〈r〉 shows generic ergodicity. (b) Subsystem for com-
puting EE. (c) – (d) Eigenstate EE in (c) proximate-integrable and
(d) DTC regimes, where low-entropy scars in (d) are highlighted by
larger dots. (e) Lowest EE approaching size-insensitive values at
small λ and volume law S ent ∼ (Nsub/3L2) ln(DL) at large λ. Here
DL is the total Hilbert space dimension and Nsub the subsystem site
number enclosed in (b). Inset shows ∆S ent = S (L=3)

ent − S (L=2)
ent near the

crossing λ0 ≈ 0.135. Unless specified otherwise, in all plots param-
eters are the same as in Fig. 1. Blue (or red) colors denote L = 2 (or
L = 3) respectively.

Identifying scars — Quantum scars are rare non-ergodic
eigenstates within an eigenstructure that is otherwise thermal-
izing [47]. Numerical calculations confirm the overall ther-
malizing, non-integrable nature of our model system. Specif-
ically, we point to two signatures of non-integrability: level-
spacing statistics and entanglement entropy.

Consider first the level spacing. Ordering quasi-energies
as ωn < ωn+1, following Ref. [48], we test for er-
godicity by calculating the level spacing ratios rn =

min(δn, δn+1)/max(δn, δn+1) for consecutive gaps δn = ωn+1 −

ωn. Clearly from Fig. 2 (a), except for a vanishingly small
region in proximity to single particle limit φ2 → 0, our
model is generically far from the integrable Poissonian case
〈r〉 → 0.39. We also note a crossover between two ergodic
Gaussian orthogonal/unitary ensembles (GOE/GUE) purely
by different drivings, an interesting feature previous seen in
spin models [49].

We next exploit the entanglement entropy (EE) to exam-
ine each Floquet eigenstate |ωn〉. Reduced density matrices
ρA = TrB(|ωn〉〈ωn|) for subsystem A (region enclosed by high-
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lighted paths in Fig. 2 (b)) can be formed by tracing out the
remaining part B in real space. The EE S ent = −Tr (ρA ln ρA)
then shows that in both proximate-integrable (Fig. 2 (c)) and
DTC (Fig. 2 (d)) regimes, majority eigenstates do exhibit the
typical arch shape for S ent whose values increase with Hilbert
space dimensions [50]. The narrow distribution of EE for
eigenstates of similar quasi-energy in the DTC regime con-
firms that majority arch eigenstates are ergodic [50], in con-
sistent with 〈r〉 results previously.

However, in the DTC regime, additional non-ergodic states
are observed. As exhibited in Fig. 2(d), we identify precisely
3L2 low S ent scar states (each scar dot in the figure is L2-fold
degenerate). Each set of scars separates from the others by
quasienergy |∆E| → 2π/3, corresponding to exactly the DTC
frequency in Fig. 1 (c). The scaling of lowest EE in Fig. 2 (e)
shows a system size L insensitive scar EE for λ → 0. With
increasing λ, a possible transition is observed around λ0 ≈

0.135 [51], after which all eigenstates approach the volume
law ergodic limit.

We have confirmed numerically that parameters in Fig. 2
(c) give rather short DTC lifetime, unlike the lifetime shown
in Fig. 1 (b) for parameters in Fig. 2 (d). It strongly indicates
that the DTC behaviors here are intimately associated with
scars rather than (approximate) overall integrability.
Analytical results for FBS — To characterize
these quantum scars further, we work in the
many-body momentum basis [52] |k, {nr,µ}〉 =

(1/L)
∑L−1

m1,m2=0 e(2πi/L)(k1m1+k2m2)
∣∣∣{nr+m1e1+m2e2,µ}

〉
constructed

from Fock basis |{nrµ}〉 =
∏

rµ

[(
ψ̂†rµ

)nrµ
/
√

nrµ!
]
|0〉. Here

{nrµ} specifies occupation numbers at different sites, and
k ∼ k1,2 = 0, 1, . . . , L − 1. Then, translation-invariant ÛF

are block-diagonalized 〈k, {nrµ}|UF |k′, {n′rµ}〉 ∼ δk,k′ . Each k
sector would be shown later to host 3 scar states, leading to
the 3 × L2-fold scars in Fig. 2 (d).

It is helpful to write down the solution UF |k, `, {nrµ}〉 =

eiE(`,{nrµ})|k, `, {nr}〉 to Eqs. (1) at the anchor point λ = 0,∣∣∣k, `, {nrµ}
〉

=
1
√

3

∑
m=0,1,2

e−i( 2πm
3 `−αm)|k, {nr,µ+m mod 3}〉, (2)

E
(
`, {nrµ}

)
=

2π
3
` + φ2

∑
rµ

nrµ(nrµ − 1), ` = 0,±1, (3)

where α0 = 0, α1 =
∑

rµ θµnrµ, and α2 = −
∑

rµ θµnr,µ+2 mod 3.
Each eigenstate populates 3 sublattices µ = 0, 1, 2 coher-
ently, and therefore an arbitrary Fock state |{nrµ}〉, usu-
ally taken as initial states, will simultaneously overlap with
all three branches ` = 0,±1 separating from each other
by quasi-energy |∆E| = 2π/3. Then, observables diago-
nal in the Fock basis, such as Ô = n̂rµ or Ô = P̂ =

N−1
b

∑
r(n̂r0 − n̂r1), will demonstrate an oscillation 〈Ô〉(t) ∼

c∗1c2〈k1, `1, {nrµ}|Ô|k2, `2, {nrµ}〉e−i∆Et/T + c.c. with periodicity
2πT/∆E = 3T .

Spectral pairing ∆E for majority eigenstates in Eqs. (2) (3)
is, as expected, unstable against perturbations. The crucial
difference here from the disordered case [1–3, 16] is the uni-
form interaction strength φ2 in Eq. (3), which results in an

enormous Floquet emergent degeneracy. Specifically, con-
sider the combination Qa = {(q(a)

j ,N
(a)
j )| j = 1, 2, . . . ,M}

for, i.e. q(a)
j copies of sites each hosting N(a)

j ≥ 0 particles.
In terms of the Hubbard interaction φ2

∑
rµ nrµ(nrµ − 1) =

φ2
∑

j q(a)
j N(a)

j (N(a)
j − 1), each Qa manifold contains degener-

ate levels of different {nrµ} as deg(Qa) = (3L2)!/
∏M

j=1 q(a)
j !.

The degeneracy, though partially lifted by 2π`/3 in Eq. (3),
leads to the instability that a small perturbation could gener-
ally trigger a reconstruction for extensive numbers of eigen-
states in Eq. (2) with different configurations {nrµ}, leading to
the ergodicity as indicated by Fig. 2. Correspondingly, a Fock
initial state would overlap with large numbers of eigenstates
with different quasienergies without rigid spectral pairings.

To identify FBS, we then seek for manifolds with low
degeneracy. Except for a homogeneous distribution nrµ =

Nb/3L2 (deg=1) without dynamical signatures, the lowest de-
generate {nrµ} deposit all Nb bosons into a single site nrµ =

δr,r0δµ,µ0 Nb. There are apparently 3L2 such {nrµ} with Nb

bosons allocated into different sites (r0, µ0). They compose
the FBS eigenstates

|k, `,Nb〉 =
1
√

3

∑
m=0,1,2

e−i( 2πm
3 `−αm)|k, {nrµ = δr,0δµ,mNb}〉, (4)

with quasienergy Escar(`) = 2π`/3 + φ2Nb(Nb − 1). The 3L2

FBSs equally partition into L2 conserved many-body momen-
tum k sectors, each hosting 3 scars with ` = 0,±1. Spa-
tial translation symmetry then forbids hybridizing eigenstates
of different k, and temporal translation symmetry protects
the conserved quasienergy separating different ` by |∆E| =

|Escar(` + 1) − Escar(`)| = 2π/3. Therefore, FBS’s experience
no degenerate-level perturbations.

It still remains to consider non-degenerate perturbations.
In particular, the periodicity 2π of Floquet quasienergy con-
strains Hubbard-interaction gap for different Qa to be of the
order unity. Then, one may expect each scar level to receive
an energy correction ∼ λ2 (of Fermi golden rule type), result-
ing in fast detuning within t ∼ T/λ2 ∼ 100T for λ = 0.1.
However, such estimations directly contradict Fig. 1 (b).

The resolution turns out to be that all three ` = 0,±1 scars
are shifted identically, such that their quasienergy difference,
dubbed spectral pairing gap |∆E| = 2π/3 [53], is unchanged.
In Supplemental Materials (SM) [54], we construct the strong-
drive perturbation theory. For conciseness, we illuminate the
essential physics below by elaborating results up to the second
order in the perturbation series, while higher orders cases are
left to SM [54].

Arrange a Floquet operator in the form UF = U0U′,
where U0 corresponds to Eq. (1) at λ = 0, and per-
turbations are factored into U′ ≡ eiλH′ . For our pur-
poses, it is more than enough to take H′ as a generic
hopping Hamiltonian H′ =

∑
Jrµ,r′µ′ ψ̂

†
rµψ̂r′µ′ . (See

SM [54] for factorization process). Scar quasienergy
corrections eiẼscar(`) = ei(Escar(`)+

∑∞
α=1 λ

αE(α)
`

) up to the sec-
ond order read E(1)

`
= 〈k, `,Nb|H′|k, `,Nb〉, E(2)

`
=
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− 1
2
∑′

(`′,{nrµ}) |〈k, `
′, {nrµ}|H′|k, `,Nb〉|

2 cot Escar(`)−E(`′,{nrµ})
2 ,

where summation
∑′ excludes the scar eigenstate in con-

sideration. Here, E(1)
`

= 0 is trivially identical for all
`. Importantly, Eqs. (2)–(4) show that each term for E(2)

`

depends only on the difference (`− `′). Due to 2π quasienergy
periodicity, quantum numbers ` in Eqs. (2) and (3) are
only defined modulo 3. That allows for shifting dummy
indices `′ in the summation E(2)

`1
≡

∑′
`′,{nrµ}

ε(`1 − `′) =∑′
`′,{nrµ}

ε(`2 − (`′ − `1 + `2)) =
∑′
`′′,{nrµ}

ε(`2 − `
′′) = E(2)

`2
,

proving the equality of energy corrections for all scars.
SM [54] also numerically verifies spectral pairing rigidity for
Eq. (1) and against more generic bilinear perturbations.

Importantly, it is exactly the Floquet spectrum periodicity
that allows for shifting all three `’s in Eq. (3) by the same
integer and end up with an identical set of levels, which is
crucial for the above proof. In SM [54], we prove that the
spectral pairing rigidity persists to all perturbation orders for
FBS’s. Therefore, O(L2) initial states overlapping with mul-
tiple FBS’s separating by a rigid ω0 = 2π/3T will exhibit
persisting 2π/ω0 = 3T DTC oscillations.

Analytical identification of FBS’s and proof for their spec-
tral pairing rigidity are the main results of our work. They
rely on three pivotal factors. First, strong interactions validate
the starting point from Eqs. (2) and (3) for kicked Fock states.
Second, strong Floquet drivings produce three identical ` =

0,±1 spectral plethora at λ = 0, and the 2π quasienergy pe-
riodicity intrinsic of Floquet nature enables the rigid spectral
pairing for FBS against perturbations. Third, spatiotemporal
translation symmetry prevents FBS from mutual hybridiza-
tion. Therefore, FBS’s describe genuine strongly interacting
Floquet matters in clean systems.
Numerical verification — Revisiting previous numerics can
now be illuminating. Spectral function peaks in Fig. 1
(c) derive from pairs of FBS’s in Eq. (4), A(ω0)|λ→0 =

|〈k, `1,Nb|P̂|k, `1 ± 1,Nb〉|
2 = 1/3, |ω0| = 2π/3. The spec-

tral pairing rigidity then stabilizes |ω0| against perturbation up
to finite size effects, resulting in DTC oscillations in Fig. 1
(b). Also, Eq. (4) prescribes an L-independent EE for FBS at
λ→ 0 (see SM [54] for analytical calculation) as in Fig. 2 (e).

Finally, we offer an efficient way to benchmark FBS by ex-
ploiting their peculiar k space localization. A natural mea-
sure is then the momentum space inverse participation ratio
IPR =

∑
{nr} |〈k, {nrµ}|ωn〉|

4, where scars would show excep-
tionally large IPR as in Fig. 3 (a). Due to the absence of de-
generate level hybridization, the original scar components in
Eq. (4) still dominate upon perturbation as in Fig. 3 (b) and
(c). The scaling of largest IPRs in Fig. 3 (d) reproduces the
reference transition λ0 ≈ 0.135 as in Fig. 2 (e).
Experimental relevance — Small clusters studied above can
be readily realized using the latest technology of quantum gas
microscopes [55–57], which allows for manipulation and de-
tection with single-site resolutions. We now further discuss
cases with finite filling fractions relevant to wider ranges of
experiments.

In principle, previous analytical results show that initial
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FIG. 3. Structure of Floquet eigenstates in k = 0 sector. Other
k sectors show essentially the same results. (a) Most eigenstates
involve extensive number of basis |k, {nrµ}〉 leading to vanishing IPR,
except for the 3 FBSs. (b) Expand for instance one FBS in the basis
|k, {nrµ}〉, we see it is dominated by 3 components depicted in (c),
exactly as given by Eq. (4). (d) Scaling of the maximal IPR, where
∆IPRmax = IPR(L=3)

max − IPR(L=2)
max in the inset. Parameters are the same

as in Fig. 1, and L = 3 for (a) (b).

states populating more than one unit cell will chiefly overlap
with non-scar ergodic eigenstates. Therefore, a finite filling
fraction among all unit cells will eventually lead to a thermal-
izing behavior without dynamical signatures. However, there
could exist a finite and predictable time window before decay
to observe the scar DTCs due to scar localization.

To show it, we first take a closer look at Fig. 1 (b). The
initial state of putting Nb bosons on one site overlaps with all
FBS’s (perturbed Eq. (4)) in different (k, `) sectors; they in-
terfere destructively everywhere except for the unit cell r = 0,
resulting in a real-space localization. As such, two scar DTCs
localized in different regions will take time to sense the pres-
ence of and affect each other φ2nol(nol − 1)t0 ∼ 1 by interac-
tions, giving rise to the characteristic time scale t0 to observe
DTC’s before decays. Here nol is the density overlap for two
scar DTCs hypothetically left alone in a lattice. Then, one can
predict that larger distance gives a smaller density overlap nol,
which prolongs the scar DTC lifetime. Such expectations are
verified numerically in SM [54] for two lattice settings rele-
vant to the Berkeley platform. It confirms the possibility of
observing DTC signatures with finite filling fractions over the
experimentally accessible time, and further point out theoret-
ically the controlling parameter for DTC lifetime therein: the
distance of initially populated cells.
Conclusion — We show a distinct DTC phenomenon en-
forced by the analytically discovered FBS’s. Its intrinsic Flo-
quet and many-body nature stabilizes spectral pairings against
translation-invariant bilinear perturbations. Moreover, the
new scheme of checking Floquet emergent degeneracy and
scar spectral pairing indicates a possible procedure to unveil
the long-sought universal mechanism behind clean DTCs in
arbitrary dimensions. It is also tantalizing to incorporate more
intricate crystalline spacegroup symmetries aside translations
into designing DTCs with unique structures and phenomena
in clean systems.
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