
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Computing Free Energies with Fluctuation Relations on
Quantum Computers

Lindsay Bassman Oftelie, Katherine Klymko, Diyi Liu, Norm M. Tubman, and Wibe A. de
Jong

Phys. Rev. Lett. 129, 130603 — Published 23 September 2022
DOI: 10.1103/PhysRevLett.129.130603

https://dx.doi.org/10.1103/PhysRevLett.129.130603


Computing Free Energies with Fluctuation Relations on Quantum Computers

Lindsay Bassman Oftelie,1 Katherine Klymko,1 Diyi Liu,2 Norm M. Tubman,3 and Wibe A. de Jong1

1Lawrence Berkeley National Lab, Berkeley, CA 94720
2Department of Mathematics, University of Minnesota, MN 55455

3NASA Ames Research Center, Mountain View, CA 94035

As a central thermodynamic property, free energy enables the calculation of virtually any equilib-
rium property of a physical system, allowing for the construction of phase diagrams and predictions
about transport, chemical reactions, and biological processes. Thus, methods for efficiently comput-
ing free energies, which in general is a difficult problem, are of great interest to broad areas of physics
and the natural sciences. The majority of techniques for computing free energies target classical
systems, leaving the computation of free energies in quantum systems less explored. Recently de-
veloped fluctuation relations enable the computation of free energy differences in quantum systems
from an ensemble of dynamic simulations. While performing such simulations is exponentially hard
on classical computers, quantum computers can efficiently simulate the dynamics of quantum sys-
tems. Here, we present an algorithm utilizing a fluctuation relation known as the Jarzynski equality
to approximate free energy differences of quantum systems on a quantum computer. We discuss
under which conditions our approximation becomes exact, and under which conditions it serves as a
strict upper bound. Furthermore, we successfully demonstrate a proof-of-concept of our algorithm
using the transverse field Ising model on a real quantum processor. As quantum hardware continues
to improve, we anticipate that our algorithm will enable computation of free energy differences for
a wide range of quantum systems useful across the natural sciences.

Introduction.–Free energy is a central thermodynamic
property used to compute virtually all equilibrium prop-
erties of a physical system [1]. Broadly useful across
the natural sciences, free energy differences are employed
in the construction of phase diagrams [2–5], the predic-
tion of transport properties and reaction constants [6],
and the calculation of protein-ligand binding affinities re-
quired for computer-aided drug design [7–11]. In general,
computing free energy differences is a difficult problem
due to the challenges in adequately sampling the impor-
tant configurations of a system [1]. As such, a great deal
of research has focused on developing techniques for cal-
culating free energy differences [1, 12–16]. The majority
of techniques have been developed for classical systems;
less well-studied are methods for computing free energy
differences in quantum systems [6, 17–19] (see Section
I in the Supplemental Information (SI), which includes
Refs. [20–23]).

In general, extending thermodynamics to the quantum
realm is non-trivial, as its theoretical constructs tend
to focus on bulk properties of macroscopic-size systems
derived from averages over a very large number of con-
stituent particles. An implicit assumption here is that in-
dividual deviations from the average become practically
insignificant, allowing thermodynamics to make predic-
tions about systems without detailed knowledge of the
microscopic constituents. However, as the size of the sys-
tem begins to shrink, these deviations, originating from
thermal motion (and possibly quantum effects), become
more appreciable. Rather surprisingly, these deviations,
or fluctuations, satisfy some profound equalities, gener-
ally referred to as fluctuation relations (FRs) [24, 25].
FRs relate fluctuations in non-equilibrium processes to
equilibrium properties like free energy differences.

Arguably the most celebrated FR is the Jarzynski
equality [26, 27], in which the free energy difference be-
tween two equilibrium states is derived from an expo-
nential average over an ensemble of measurements of the
work required to drive the system from one state to the
other. While the Jarzynski equality has proven impor-
tant theoretically, providing one of the few strong state-
ments that can be made about non-equilibrium systems,
its utility for computing free energies of quantum sys-
tems has thus far been limited. This is because simulat-
ing the exact trajectories of quantum systems on classi-
cal computers requires resources that scale exponentially
with system size. Therefore, computing even a single
trajectory of a quantum system with tens of particles
can quickly become intractable on classical computers,
let alone an ensemble of trajectories.

One potential path forward for computing this en-
semble of trajectories is to employ quantum computers,
which were proven capable of efficiently simulating the
dynamics of quantum systems over two decades ago [28–
31]. A plethora of recent work has successfully demon-
strated dynamic simulations of the Hubbard model [32],
the Schwinger model [33], and various spin models [34–
39] on currently available quantum hardware, while fur-
ther work has shown how such dynamic simulations can
be used to compute various static properties such as
cross-sections in inelastic neutron scattering [40], magnon
spectra [41], and transport properties [42].

Here, we present an algorithm to approximate free en-
ergy differences using the Jarzynski equality based on
dynamic simulations performed on a quantum computer.
We discuss under which conditions the approximation
becomes exact and under which conditions the approxi-
mation gives a strict upper bound, which is tighter than
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the usual upper bound given by the reversible work the-
orem. We provide a proof-of-concept demonstration for
our algorithm by computing free energy differences in
a transverse field Ising model (TFIM) on a real quan-
tum processor. Further improvements in quantum circuit
generation [43–46], error mitigation techniques [47, 48],
and quantum hardware [49] will enable our algorithm to
compute free energy differences for scientifically relevant
systems on quantum computers in the near-future (see
Section II of the SI, which includes Refs. [50–56]). Our
algorithm demonstrates how quantum computers, with
their ability to efficiently perform dynamic simulations
of quantum systems, provide an unprecedented platform
for computing free energy differences.

Theoretical Background and Framework.– Initially de-
rived and experimentally verified for classical systems
[57–62], the Jarzynski equality has since been extended
to both closed [24, 25, 63–67] and open [68–76] quan-
tum systems, theoretically. Experimental verification of
the Jarzynski equality in closed quantum systems was
proposed [77] and later demonstrated with a liquid-state
nuclear magnetic resonance platform [78] and with cold
trapped-ions [79]. To use the Jarzynski equality in prac-
tice, we define a parameter-dependent Hamiltonian for
the system of interest H(λ), where λ is an externally
controlled parameter that can be adjusted according to
a fixed protocol. The Jarzynski equality uses work mea-
surements from an ensemble of trajectories as λ is varied
to compute the free energy difference between the initial
and final equilibrium states. The equality is given by

e−β∆F = 〈e−βW 〉, (1)

where β = 1
kBT

is the inverse temperature T of the sys-
tem (kB is Boltzmann’s constant) in its initial equilib-
rium state, ∆F is the free energy difference between the
initial and final equilibrium states, W is the work mea-
sured for a single trajectory, and 〈...〉 represents taking
an average over the ensemble of trajectories. Without
loss of generality, we assume the initial Hamiltonian of
the system Hi = H(λ = 0), and the final Hamiltonian
Hf = H(λ = 1). As shown in Figure 1a, the protocol for
varying λ, denoted λ(t), occurs over a time τ , which can
be defined to be as fast or slow as desired. In general, the
faster the protocol, the more trajectories will be required
to compute a more accurate estimate of the free energy
[80] (see Section III in the SI).

The main challenge in implementing such a procedure
is preparing the initial thermal state on the quantum
computer. This is a non-trivial problem for which only a
handful of algorithms have been proposed, most of which
generate circuits that are not feasible (i.e., too large) to
run on near-term quantum devices or struggle to scale
to large or complex systems [81–85]. A method that is
particularly promising for near-term quantum comput-
ers produces a Markov chain of sampled pseudo-thermal
states, known as minimally entangled typical thermal

FIG. 1. (a) Schematic diagram depicting how the parameter-
dependent Hamiltonian H(λ) can be varied over different to-
tal times τ . (b) Schematic diagram for the METTS protocol.
The protocol requires as input the Hamiltonian and the in-
verse temperature β of the equilibrium system. The protocol
generates a Markov chain of pseudo-thermal states φi, which
can be time-evolved under a separate Hamiltonian, measured,
and averaged over to produce the thermal average for some
time-dependent observable A(t) at inverse temperature β.

states (METTS) [86, 87]. Averages of observables over
the ensemble of METTS will converge to the true ther-
mal average of the observable with increasing sample size.
While initially presented as an method to obtain thermal
averages of static observables, METTS can also be used
to calculate thermal averages of time-dependent quan-
tities by evolving the METTS in real-time before mea-
surement [88]. Recently, Motta et al. showed how to con-
struct METTS on a quantum computer using the quan-
tum imaginary time evolution (QITE) algorithm [89].
This approach was used to successfully measure ther-
mal averages of both static [89] and dynamic observ-
ables [90] on current quantum hardware. Figure 1b shows
schematically how measurements of a time-dependent ob-
servable A(t) can be averaged over an ensemble of time-
evolved METTS for a system with Hamiltonian Hi at
inverse temperature β to give the thermal expectation
value 〈A(t)〉β . See Section IV in the SI for more details.

Given an ensemble of pseudo-thermal states generated
with the METTS protocol, the initial thermal energy
〈Ei〉 of the system at inverse temperature β can be mea-
sured by averaging over energy measurements of the in-
dividual states in the ensemble. Similarly, the final ther-
mal energy 〈Ef 〉 of the system after the λ(t) protocol
has been implemented can be computed by time-evolving
each pseudo-thermal state in the ensemble under the λ(t)
protocol and averaging over energy measurements of the
individual time-evolved states. Now, for closed quantum
systems, the work performed in a process is given by
the difference in energy of the system before and after
the process; therefore, the average thermal energies com-
puted with the METTS ensemble can be used to com-
pute the average work performed over the λ(t) protocol,
as 〈W 〉 = 〈Ef 〉 - 〈Ei〉. Note that 〈W 〉 is always an upper
bound on the free energy difference due to the reversible
work theorem. However, we endeavor to obtain a better
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approximation to the free energy difference by consid-
ering the distribution of individual pseudo-work values
derived from the METTS ensemble.

In this framework, we let each METTS in the ensem-
ble correspond to a trajectory. For each trajectory, we
compute a pseudo-work value by taking the difference
of the measured initial and final energies of the sampled
pseudo-thermal state before and after evolving it under
the λ(t) protocol. While the average over this ensemble of
pseudo-work values will converge to the correct value for
average work 〈W 〉, the individual values in the ensemble
are not necessarily physical work values. This is because
the METTS protocol only guarantees accurate averages
over the ensemble of METTS. Nevertheless, we show that
this distribution can be used in the Jarzynski equality to
compute an approximate free energy difference ∆F̃ as

e−β∆F̃ = 〈e−βW̃ 〉, (2)

where W̃ are the individual pseudo-work values com-
puted with the METTS ensemble. In the limit of β → 0,
this approximation to the free energy difference becomes
exact. In the limit of β → ∞, ∆F̃ is exact for λ(t) pro-

tocols that are adiabatic. For arbitrary β, ∆F̃ upper
bounds the true ∆F for adiabatic λ(t) protocols, and is
a better approximation to the free energy difference than
〈W 〉 due to Jensen’s inequality. See Sections V and VI of
the SI for proofs of these statements. For non-adiabatic
λ(t) protocols, we empirically find that ∆F ≤ ∆F̃ ≤ 〈W 〉
for a range of β’s and spin-model Hamiltonians, see Sec-
tion VII of SI. Plugging the pseudo-work distribution into
the Jarzynski equality, therefore provides a very good ap-
proximation to the free energy difference for closed quan-
tum systems under certain conditions, and provides a
tighter upper bound to the free energy difference than
the average work in a broad range of cases. We empha-
size that while our algorithm only approximates the free
energy difference, it is one of the very few algorithms
that can feasibly be performed on near-term quantum
computers [19]; and in many instances, this approxima-
tion can provide a strict, and even tight, upper bound on
the free energy difference.

Algorithm.– We now describe our algorithm, which
provides a procedure for obtaining a pseudo-work dis-
tribution from non-equilibrium dynamic simulations of a
closed quantum system on a quantum computer, which
in turn can be used to approximate free energy differ-
ences. Pseudocode is shown in Algorithm 1. The algo-
rithm takes as input the parameter-dependent Hamilto-
nianH(λ), the inverse temperature β of the initial system
at equilibrium, the protocol λ(t) to evolve the parame-
ter from 0 to 1, and the total number of trajectories M .
The algorithm generates a pseudo-work distribution by
looping over the M trajectories.

For each trajectory, a sub-circuit is generated which
prepares the sampled pseudo-thermal state at inverse

Algorithm 1: Pseudocode for approximation of
free energy differences using METTS with the

Jarzynski equality on quantum computers.

Input: H(λ), β, λ(t), M
Output: Free energy difference

1 work distribution = [ ]
2 IPS = random product state()

/* Loop over M trajectories */

3 for m=[0,M] do
/* make thermal state preparation circuit */

4 circ TS = make TS circ(β, H(λ = 0), IPS)
/* get initial state for next trajectory */

5 circ M = make M circ(circ TS, m)
6 IPS = collapse(circ M)

/* measure inital energy */

7 circ Ei = make Ei circ(circ TS, H(λ = 0))
8 Ei = measure(circ Ei)

/* make Hamiltonian evolution circuit */

9 circ hamEvol = hamEvol circuit(λ(t), H(λ))
/* measure final energy */

10 circ Ef = make Ef circ(circ TS, circ hamEvol,
H(λ(t)))

11 Ef = measure(circ Ef )
12 work = Ef - Ei

13 work distribution.append(work)

14 return compute free energy(work distribution, β)

temperature β (circ TS), depicted by the red circuit in
Figure 2a. According to the METTS protocol, this is ac-
complished by initializing the qubits into an initial prod-
uct state (IPS) and evolving it for an imaginary-time
β/2 under the initial Hamiltonian. In this work, we use
the QITE algorithm to implement the imaginary-time
evolution, though alternative methods [46, 91] could be
substituted. For the first trajectory, IPS is a random
product state, while for all subsequent trajectories the
new IPS is determined by a projective measurement of
the METTS from the previous trajectory.
circ TS is then embedded into three separate circuits.

The first circuit (circ M) is used to determine IPS for
the next trajectory, depicted by the green circuit in Fig-
ure 2a. This circuit collapses the thermal state into a
basis which depends on the parity of trajectory m. In
order to ensure ergodicity and reduce auto-correlation
times, it is helpful to switch between measurement bases
throughout sampling [87]. Following the method pro-
posed in Ref. [87] for spin- 1

2 systems, we measure (i.e.,
collapse) along the z−axis for odd trajectories, while for
even trajectories we measure along the x−axis.

The second circuit (circ Ei), measures the expecta-
tion value of the initial Hamiltonian H(λ = 0) in the
pseudo-thermal state to give the initial energy. Finally,
the third circuit (circ Ef ) measures the final energy. To
generate this circuit, a sub-circuit (circ hamEvol) is first
created to evolve the system under the time-dependent
Hamiltonian according to the λ(t) protocol. In this work,
we use a recently proposed method for implementing the
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real-time evolution with short, constant-depth circuits,
which works for a special subset of one-dimensional sys-
tems [43]. However, more general methods, such as stan-
dard Trotterization or variational techniques [92, 93], can
be substituted. This sub-circuit is appended to (circ TS)
to generate the time-evolved pseudo-thermal state. The
final energy is obtained by measuring the expectation
value of the final Hamiltonian H(λ = 1) in this state.
The circuits for measuring initial and final energies are
depicted by the blue circuits in Figure 2a. The differ-
ence between these energies gives the pseudo-work for
the given trajectory. The free energy difference can then
be approximated by plugging the pseudo-work ensemble
into Eq. (2).

FIG. 2. Circuits generated and workflow diagram for the al-
gorithm. (a) Quantum circuit diagrams for the thermal state
preparation sub-circuit (red), which is used in three separate
circuits for measuring the initial and final energies (blue) as
well as measuring the initial product state for the subsequent
trajectory (green). (b) Workflow diagram depicting how the
circuits above are integrated to produce a pseudo-work dis-
tribution.

Figure 2b shows how a pseudo-work value is derived
from the three main circuits for each trajectory and how
measurement of the M circuit from the previous trajec-
tory provides input to the TS sub-circuit for the next
trajectory. Note that the first few trajectories should be
discarded as “warm-up” values [86].

Results.– We demonstrate our algorithm on real quan-
tum hardware with a 2- and 3-qubit TFIM as a proof-of-

FIG. 3. Approximate free energy differences (∆F̃ ) for 2- and
3-qubit systems initialized at various inverse temperatures β
performed on an IBM quantum processing unit (QPU). The
solid black line give the analytically computed values (∆F )
for reference. The blue dashed lines show raw results from
the QPU, while the red dotted lines show these results after
error mitigation has been performed.

concept. The Hamiltonian is defined as

H(λ) = Jz

N−1∑
i=1

σzi σ
z
i+1 + (1 +

λ(t)

2
)hx

N∑
i=1

σxi , (3)

where N is the number of spins in the system, Jz is
the strength of the exchange interaction between pairs
of nearest neighbor spins, hx is the strength of the trans-
verse magnetic field, and σαi is the α-Pauli operator act-
ing on spin i. The system starts in thermal equilibrium
at an inverse temperature β with an initial Hamiltonian
Hi = H(λ = 0) = Jz

∑
i σ

z
i σ

z
i+1 + hx

∑
i σ

x
i . The param-

eter λ is then linearly increased from 0 to 1 over a total
time τ , resulting in a system with a final Hamiltonian
Hf = H(λ = 1) = Jz

∑
i σ

z
i σ

z
i+1 + 1.5hx

∑
i σ

x
i . We set

Jz = 1, hx = 1, τ = 10, and set the number of trajec-
tories M = 100 for the 2-qubit system and M = 300 for
the 3-qubit system.

Figure 3 shows the approximate free energy differences
at various inverse temperatures β computed using our
algorithm on the IBM quantum processing unit (QPU)
“ibmq toronto” for a 2-qubit system (a) and a 3-qubit
system (b). The black solid lines show the analytically
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computed free energy differences, which are possible to
compute due to the small size of our systems. The blue
dashed lines show raw results from the QPU. The quan-
tum circuits for the 3-qubit simulations are significantly
larger than those for the 2-qubit simulations, and thus
accumulate more error due to hardware noise. This ex-
plains why the QPU results for the 2-qubit system are
significantly closer to the ground truth than those for the
3-qubit system. To ameliorate this systematic noise, we
implement two error mitigation techniques. The first is
known as zero-noise extrapolation (ZNE) [94, 95], which
combats noise arising from two-qubit entangling gates,
which are currently one of the largest sources of error on
near-term quantum devices. We pair ZNE with a sec-
ond error mitigation technique to combat readout error,
which is error derived from the measurement operation.
See Section VIII of the SI for more details on error miti-
gation. The QPU results after error mitigation are shown
in the red dotted lines. The error mitigated results are
in excellent agreement with the analytic results for both
system sizes, demonstrating the ability of the two error
mitigation techniques to combat major contributions to
noise on the quantum computer.

In addition to the systematic errors derived from noisy
near-term quantum devices, another source of error stems
from the using the QITE algorithm to approximate
the imaginary time evolution required to generate the
METTS. The size of this error depends on the step-size
∆β used to construct the QITE circuits for thermal state
preparation at inverse temperature β. This error can
systematically be made smaller by decreasing ∆β at the
expense of complexity in building the quantum circuit.
In general, Trotter error will be another source of error,
which arises from the most commonly used approach to
generate the real-time evolution operator used to evolve
the system as λ is varied from 0 to 1. However, we were
able to make this negligible using techniques developed
in [43], which apply to real-time evolution of TFIMs. See
Section IX of the SI for more details.

Conclusion.–We have introduced an algorithm for
computing free energy differences of quantum systems
on quantum computers using fluctuation relations. We
demonstrated our algorithm on IBM’s quantum proces-
sor for the TFIM, resulting in free energy differences in
excellent agreement with the ground truth after applying
two simple error mitigation techniques. The main bot-
tleneck to using our algorithm for larger systems is the
limit on the size of quantum circuits that is feasible to
execute on currently available quantum hardware. The
imaginary- and real-time evolution components of our al-
gorithm are the largest contributors to circuit depths.
Thus, targeting more relevant systems with our algo-
rithm can be addressed by developing new, shorter-depth
implementations for imaginary- and real-time evolution.
Due to the modularity of our algorithm, such imple-
mentations can easily be substituted in as they become

available. Simultaneously, new methods for quantum er-
ror mitigation, as well as continued improvements made
to quantum processors will further extend the depths of
circuits that are feasible to execute. Due to significant
progress in these areas over the last few years [43–49] we
anticipate that our algorithm will become increasingly
important as a means to compute free energy differences
in scientifically relevant systems as quantum computers
become more powerful.
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