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While the squeezing of a propagating field can, in principle, be made arbitrarily strong, the cavity-
field squeezing is subject to the well-known 3 dB limit, and thus has limited applications. Here, we
propose the use of a fully quantum degenerate parametric amplifier (DPA) to beat this squeezing
limit. Specifically, we show that by simply applying a two-tone driving to the signal mode, the
pump mode can, counterintuitively, be driven by the photon loss of the signal mode into a squeezed
steady state with, in principle, an arbitrarily high degree of squeezing. Furthermore, we demonstrate
that this intracavity squeezing can increase the signal-to-noise ratio of longitudinal qubit readout
exponentially with the degree of squeezing. Correspondingly, an improvement of the measurement
error by many orders of magnitude can be achieved even for modest parameters. In stark contrast,
using intracavity squeezing of the semiclassical DPA cannot practically increase the signal-to-noise
ratio and thus improve the measurement error. Our results extend the range of applications of DPAs
and open up new opportunities for modern quantum technologies.

Introduction.—Squeezed states of light [1] form
a fundamental building block in modern quantum
technologies ranging from quantum metrology [2, 3] to
quantum information processing [4, 5]. In particular,
squeezing of a propagating field can in principle be
made arbitrarily strong, due to destructive interference
between the reflected input field and the transmitted
cavity field; e.g., the squeezing of up to 15 dB has been
experimentally achieved [6]. Such a propagating-field
squeezing has been widely used for, e.g., gravitational-
wave detection [7-9], mechanical cooling [10, 11],
nondemolition qubit readout [12-15], and even demon-
strating quantum supremacy [16, 17]. However, these
applications inherently suffer from transmission and
injection losses, which are a major obstacle to using
extremely fragile squeezed states. To address this
problem, exploiting intracavity squeezing (i.e., squeezing
of a cavity field) offers a promising route.

To date, intracavity squeezing has been applied, e.g.,
to cool mechanical resonators [18-20], enhance light-
matter interactions [21-28], improve high-precision mea-
surements [29-31], and generate nonclassical states [32—
36]. Despite such developments, the range and quality
of applications of intracavity squeezing are still largely
limited by the fact that quantum noise of a cavity field
cannot be reduced below one half of the zero-point
fluctuations in the steady state [37-39], i.e., the 3 dB
limit. However, how to beat this limit has so far remained
challenging, although for more complicated mechanical
oscillators, the steady-state squeezing beyond 3 dB has
been widely demonstrated both theoretically [40-42] and
experimentally [43, 44]. The reason for the 3 dB limit
of intracavity squeezing is the cavity photon loss, which

is always present, destroys the essence of squeezing,
i.e., two-photon correlations. In this manuscript, we
show that, if such a photon loss is exploited as a
resource, a strong steady-state intracavity squeezing can
be achieved.

In our approach, we consider a fully quantum DPA,
where both pump and signal modes are quantized. We
show that a strong photon loss of the signal mode can
steer the pump mode into a squeezed steady state,
with a noise level reduced far beyond 3 dB. In this
way, an arbitrarily strong steady-state squeezing of the
pump mode can in principle be achieved. Note that
optical experiments performed already in the 1990s
(see, e.g., [45, 46]) demonstrated bright squeezing of
the pump mode (i.e., the second-harmonic mode) by
driving the signal mode (i.e., the fundamental mode).
However, it was achieved for output squeezing only, not
for intracavity squeezing.

To beat the 3 dB limit of intracavity squeezing, a
theoretical approach, that requires a fast modulation of
the coupling between the cavity and its environment, has
been proposed [47]; and very recently, an experimental
demonstration with three microwave modes coupled via
a specific Josephson ring modulator was reported in
Ref. [48]. In contrast, our approach relies only on
common degenerate parametric amplification processes,
and therefore is more compatible with current quantum
technologies based on parametric amplification. More
remarkably, we show that only a two-tone driving, if
applied to the signal mode, can result in a strong
steady-state squeezing for the pump mode. This is
rather counterintuitive; indeed, common sense suggests
that, as mentioned above, the steady-state intracavity
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FIG. 1. (a) Schematic of our proposal with a fully quantum DPA. We use two cavities to represent the pump mode a, (frequency
wp, loss rate kp) and the signal mode as (frequency ws, loss rate ks). The single-photon parametric coupling between them
has a strength g. A driving tone at frequency wy is applied to the pump mode and, simultaneously, the signal mode is driven
by the other two tones at frequencies w$. (b) Time evolution of the squeezing parameter &7 for G /G_ = 0.5 and 0.7. We
assumed that Ay = 100g, Ap = 0.1A4, Q2pa = 0.05A,, ks = 100k, = 0.4g, and G_ = go. Curves are the effective predictions,
while symbols are the exact results. (c) Steady-state squeezing parameter ({g)ss versus the cooperativity C for ks = 100k,
and for G4+ /G- = 0.8, 0.9, and 0.99. In (b) and (c), the gray shaded areas refer to the regime below the 3 dB limit.

squeezing of a DPA is usually limited to 3 dB. We note
that quantum intracavity noise reduction can also be
realized via squeezing of photon-number fluctuations,
corresponding to the sub-Poissonian photon-number
statistics or photon antibunching (see, e.g., the early
predictions [49, 50] and very recent demonstrations of
3 dB squeezing like in [51]).

Fast and high-fidelity nondemolition qubit readout
is a prerequisite for quantum error correction [52, 53]
and fault-tolerant quantum computation [54, 55]. Using
squeezed light to improve such a readout is a long-
standing goal [12-14, 56].  However, the simplest
strategy, i.e., dispersive qubit readout [56, 57], induces
a qubit-state-dependent rotation of squeezing, such that
the amplified noise in the antisqueezed quadrature
is introduced into the signal quadrature, ultimately
limiting the improvement of the signal-to-noise ratio
(SNR). Thus, related experimental demonstrations in
this context have remained elusive. Until recently,
an improvement, enabled by injecting squeezed light
into a cavity, was realized [58] for longitudinal qubit
readout [14, 56, 59-61], which can enable much
shorter measurement times than the dispersive readout.
However, due to transmission and injection losses, more
than half of the amount of squeezing is lost, and
consequently the reported SNR is increased only by
~ 25%.

Here, we propose to apply our strong intracavity
squeezing to longitudinal qubit readout, thus avoiding
transmission and injection losses. = We demonstrate
that the SNR can be increased exponentially, and the
measurement error is improved by many orders of
magnitude for modest parameters. In sharp contrast,
intracavity squeezing of the semiclassical DPA cannot
significantly improve the SNR during a practically
feasible measurement time, even though squeezing of
the output field is very strong. Our main results are
summarized in Table T in [62].

Physical model.—A fully quantum DPA, as shown in
Fig. 1(a), consists of a pump mode &, and a signal mode
as, which are coupled through a single-photon parametric
coupling of strength g. We assume that the pump mode
is driven by a tone of frequency wy and amplitude &g,
and additionally the signal mode is subject to a two-
tone driving of frequencies wl and amplitudes €. The
corresponding Hamiltonian in a frame rotating at wy is
H= I;[() + ]ffgt(h with

Hy = Apala, + Asala,
+g(aZa) + He) + (€4a) +He), (1)

Howq = Qouq (1) al + Hee., (2)
where A, = wp — wg, Ay = ws — wa/2, Qoq () =

E_exp (—iw_t) + E4 exp (—iw4t). Here, wp, ws are the
resonance frequencies of the pump and signal modes, and
wer = wl —wg/2. We describe photon losses with the
Lindblad dissipator £ (0) p = 0p6" —  (616p + po'o), so
that the system dynamics is determined by the master
equation p = —i [ﬁ, [)} + kpL (Gp) p + ks L (Gs) p, where
kp and kg are the photon-loss rates. Upon introducing
the displacement transformation a, — a, + ag, where
af = &4/ (ikp/2 — Ap), the Hamiltonian Hy becomes
Hy = Ap&;&p + ﬁzpd +V. Here,

ffgpd = As&Ias + Qgpd (&? + H.C.) y (3)
V =g(ala) +He), (4)

where Qopg = gag can be viewed as the strength of a
two-photon driving of the mode as. We have assumed,
for simplicity, that ag is real.

Since the single-photon coupling ¢ is usually weak, the
most studied regime of the DPA is for ag > 1. It is then

standard to drop V, leaving only ﬁgpd. In this case, the
pump mode is treated as a classical field, and the DPA



is referred to as semiclassical. For such a semiclassical
DPA, the signal mode cannot be squeezed above 3 dB,
even with nonlinear corrections arising from the coupling
1% [38, 62, 63]. The reason for this moderate squeezing
is the photon loss of the signal mode. That is, the
leakage of single photons of some correlated photon pairs
injected by the two-photon driving a4 causes a partial
loss of two-photon correlations, and thus of intracavity
squeezing. However, as demonstrated below, the photon
loss of the signal mode, when turned from a noise source
nto a resource via TeServoir engineering, can steer a
quantized pump mode into a squeezed steady state. More
importantly, this photon loss can strongly suppress the
detrimental effect of the photon loss of the pump mode
on squeezing, ultimately leading to a strong steady-state
intracavity squeezing.

Squeezing far beyond 8 dB.—Recently, it has been
shown experimentally that the available single-photon
coupling g can range from tens of kHz to tens of MHz [64—
72].  These advances allow one to consider the effect
of the coupling V, e.g., two-photon loss [64—66, 73-76].
We here focus on the case of A; # 0, and introduce a
signal Bogoliubov mode, By = a5 cosh (rs) + al sinh (ry),
with tanh (2r,) = 2Qs,a/As. The Hamiltonian ngd
is then diagonalized, yielding f{gpd = Asﬁlﬁs, where

As = JAZ — 4Q§pd. Likewise, the coupling V and the

two-tone driving HQtd become
V = gOBZBs (&p + d;f)) + Rl + RJL (5)
Haeq = Qaa (t) cosh (1) BT + Ry + Hee., (6)

where Ry = g {cosh2 (rs) B2 + sinh? (r,) ﬁ”} a , Ry =
—Qaq () sinh (r,) Bs, and go = —gsinh (2r,). We further
assume the limit {g,Qgpd, Ap} < Ag, such that ry < 1,

and both R; and Ry can be dropped as high-frequency
components (see [62]), yielding

V =~ goB18, (ap +af) (7)
Houq ~ cosh (rs) Qata (1) BI +H.c. (8)

Equations (7, 8) are reminiscent of the two-
tone driven radiation-pressure interaction in cavity
optomechanics [77]. With such an interaction, the cavity
photon loss can stabilize a strong squeezing of mechanical
motion [40, 41, 44, 78-80]. Here, we harness a similar
mechanism, and assume that wy = Ay = A, so that
the mode BS is coupled to a pump Bogoliubov mode,
B, = a,cosh(r,) + af sinh (r,), through the effective
Hamiltonian [62],

Hop =G (8,81 + 315, (9)

Here, tanh(r,) = G+/G, and G =
v (

defined G+ = goaf, where o

— G%.. We have
given in [62]) are the

field amplitudes of the mode Bs induced by the two-tone
driving Qs¢q, and for simplicity both have been assumed
to be real.

Furthermore, we have £ (as)p ~ L (Bg) p for rg < 1,
and the system dynamics can thus be described with the
effective master equation

p= =i [uw p| + moL (@) p+ 1o LB)p. (1)

It is seen that for a large ks, the photon loss of the
mode ﬂg can cool the mode 5p into the ground state,
corresponding to the squeezed vacuum state of the mode
Gp, which can theoretically have an arbitrary degree of
squeezing. Such a squeezed steady state is unique, and
can be reached from any state of the mode a,. The
reason is that any state of the mode @, can be expressed
in terms of the ground and excited states of the mode
an but of these, all the excited states are depopulated
by the photon loss of the mode BS in the steady state.
This initial-state independence enables the detrimental
effect of the photon loss of the mode &, on squeezing to
be strongly suppressed as long as ks > K, (see [62] for
more details), consequently forming a strong steady-state
squeezing for the mode a,. During the formation of this
squeezing, any odd photon-number state of the mode a,
is reached by two different transitions, which are induced
by the two-tone driving Q25¢q. Achieving a desired steady-
state squeezing, i.e., a superposition of only even photon-
number states, requires destructive interference between
these two transitions to cancel out the population of all
the odd photon-number states.

To quantify the degree of squeezing, we use the
squeezing parameter [81],

& =1+ 2 ((ahap) — [(apap)|) - (11)

Its time evolution is plotted in Fig. 1(b). Specifically,
we compare the effective and exact results, and show
an excellent agreement between them. Therefore, the
effective master equation in Eq. (10) can be used to
predict some larger squeezing by deriving the steady-
state squeezing parameter,

(&) =

where C = G?/ (kskp) is the cooperativity of the DPA.
In Fig. 1(c), (fg)ss is plotted versus C. For realistic
parameters of ks = 100x,, we find that a modest ratio
G4 /G_ can keep (&), above 3 dB even for C ~ 0.4.
Moreover, (52)55 increases as C, and ultimately reaches
its maximum value,

1+ 4Cexp (—2rp)
1+4C 7

(12)

1-G4+/G_
2\ max _ 9 + 1
(gp)ss eXp( rp) 1 + G+/G7 ( 3)
For example, with G./G_ = 0.99, we predict a

maximum squeezing of (&)1 ~ 23 dB. Thus by
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FIG. 2. (a) SNR improvement, i.e., SNRf/SNR5', versus the degree 7, of intracavity squeezing for different values of the

DPA cooperativity: C = 5, 10, 30, and co. An exponential improvement can be obtained for C > exp (2rp) /4.

(b) SNR

and (c) measurement error versus the measurement time. The solid and dashed curves correspond to the longitudinal readout
using intracavity squeezing of the fully quantum (r, = 2, C = 5) and semiclassical (riy; = 2) DPAs, respectively, while the
dash-dotted curves are results of the standard longitudinal readout with no squeezing. The green shaded area represents the

experimentally most interesting regime. In (b) and (c), all the parameters are the same except that x. = x in (c).

(d) SNR

(left axis) and measurement error (right axis) versus C in the fully-quantum-DPA case for 7 = 1/k. Other parameters are the

same as in (c).

increasing the ratio G+ /G_ to < 1, we can in principle
make intracavity squeezing arbitrarily strong. This is a
counterintuitive result from the usually accepted point of
view: the steady-state intracavity squeezing of a DPA is
fundamentally limited to 3 dB.

Enhanced longitudinal qubit readout.—As an applica-
tion, we below show that our intracavity squeezing in a
fully quantum DPA can exponentially improve the SNR
of longitudinal qubit readout. In [62], we also analyze
the longitudinal readout using intracavity squeezing of
a semiclassical DPA. However, we demonstrate that this
semiclassical-DPA intracavity squeezing cannot enable a
practically useful increase in the SNR, even with a strong
squeezing of the output field.

To begin, we consider the Hamiltonian,

HY = Hog + x.6. (ape™" +ale'®),  (14)
where G, is the Pauli matrix of the qubit. The first
term is used to generate intracavity squeezing, while
the second term accounts for the longitudinal qubit-
field coupling of strength x, and phase ¢,. Possible
experlmental implementations of H fa are discussed

n [62]. Since the photon loss of the mode fq is strong,
we adiabatically eliminate the mode Bs to obtain the
following equation of motion for the mode G,

VA (t),

ép = —ie'®* .6, — fap (15)
where k = H;d + Kp is the overall photon loss rate. Here,

mgd = 4:Q2//<aS is the rate of the adiabatic photon loss.
Moreover, we have defined the overall input noise as

A (t) = [\/@ap in (t) + /Rplp in (t )] /V/k. It involves

two uncorrelated noise operators, 3%, (t) and apn (t).

The former represents the adiabatic noise arising from
the photon loss of the mode s, and is given by i zap o ()

Bs,in (t) cosh (rp) + Bs ., (t) sinh (r,,), where Bs,in (t) is the
noise operator of the mode ;. As seen in Eq. (10),
Bs in (t) can be considered as the vacuum noise, and
therefore 2%, (t) corresponds to the squeezed vacuum
noise of the mode a,. Moreover, the operator dp in (t)
represents the vacuum noise inducing the natural photon
loss of the mode a,. Note that a, in Eq. (15) is a field
operator displaced by an amount ag, but the side effect
of this displacement on the qubit readout is negligible as
a high-frequency effect [62].

The longitudinal coupling maps the qubit state onto
the output quadrature, Zout t) = Aout (t)e~i®n +
Al (t) e, which is measured by a homodyne setup
with a detection angle ¢p,. Here, Aoy (t) = Ap (t) +
Vkay (t) is the overall output field.  An essential
parameter quantifying the homodyne detection is the
SNR, which is evaluated using the operator M
VE fOT dt Zoue (t), with 7 the measurement time, and is

defined as
-y, | (¢t

where My = M — (M) characterizes the measurement
noise, and {f,]} refers to the qubit state. The SNR
of the readout using our fully-quantum-DPA intracavity
squeezing is then given by

NRfa =
SNR, \/1+4Cexp (—2rp)

where SNRS' 8x.7 [1 —2(1— e ""/?) /kr] /\/2KT
refers to the SNR of the standard longitudinal readout

L+ iz)) L o)

SNR = ‘(M} 2

1+4C

SNRS', (17)



with no squeezing. Equation (17) shows a distinct
improvement in the SNR, as in Fig. 2(a). Such an
improvement increases as the cooperativity C, which can,
in principle, be made arbitrarily large. Furthermore, as
long as C >> exp (2r,) /4, we have

SNR ~ exp (r,) SNREH, (18)

an exponential improvement in the SNR.

More importantly, the SNR, improvement in Eqs. (17,
18) holds for any measurement time. The reason is that
the degree of squeezing of the measurement noise equals
the degree of intracavity squeezing, i.e., <M§,>//<;T =
(5127)85, and is independent of the measurement time. This
is in stark contrast to the case of using the semiclassical-
DPA intracavity squeezing, where, as discussed in [62],
the degree of squeezing of the measurement noise
increases from the initial value zero, as the measurement
time increases, and consequently a large increase in
the SNR needs an extremely long measurement time.
Assuming realistic parameters of r, = 2 (~ 17 dB)
and C = b5, our approach gives an approximately
four-fold improvement for any measurement time, as
illustrated in Fig. 2(a). However, when using the
semiclassical-DPA intracavity squeezing, there is almost
no improvement for the short-time measurement of
most interest in experiments, even though the output-
field squeezing, characterized by the parameter r3%, =
In[(ks +4Q2pa)/ (ks — 4Qapa)], is strong [62].

In Figs. 2(b, ¢), we plot the SNR and the measurement
error, €, = 1 — F,,, for the longitudinal readout using
the fully-quantum- and semiclassical-DPA intracavity
squeezing, and also for the standard longitudinal readout
with no squeezing. Here, F,, = 3 [1 + erf (SNR/2)] is the
measurement fidelity. Choosing r, = 2, and x, = &k =
271 x 3 MHz for our approach, a short measurement time
of 7 = 1/k =~ 53 ns gives SNR! ~ 4.7 for C = 5. This
corresponds to a measurement error of €,, ~ 4.4 x 10™%.
When C increases, as in Fig. 2(d), SNRM can further
increase to a maximum of ~ 8.9, and the measurement
error rapidly decreases, reaching a minimum of ~ 1.5 X
10710, However, at the same measurement time, both the
standard longitudinal readout with no squeezing and the
case of using the semiclassical-DPA intracavity squeezing
enable a much lower SNR, i.e., SNRS' ~ SNRS® ~ 1.1,
and correspondingly a measurement error of ~ 0.22,
which is many orders of magnitude larger.

Conclusions.—We have introduced a method of how
to exploit a fully quantum DPA to beat the 3 dB limit
of intracavity squeezing. We have demonstrated that
an arbitrary steady-state squeezing can in principle be
achieved for the pump mode, by simply applying a two-
tone driving to the signal mode. This counterintuitive
intracavity squeezing can exponentially increase the
SNR of longitudinal qubit readout, and improve the
measurement error by many orders of magnitude. In

contrast, the semiclassical-DPA intracavity squeezing
cannot enable a useful increase in the SNR, due to
the impractical requirement of a long measurement
time. Our proposal is valid for both microwave and
optical cavities, but we believe that it is easier to
implement it with microwaves in quantum circuits.
The resulting intracavity squeezing is equivalent to an
externally generated and injected squeezing but without
transmission and injection losses. Thus, this intracavity
squeezing, as a powerful alternative to that external
squeezing, could find many quantum applications in
addition to the qubit readout, and further excite more
interest to exploit the potential of DPAs for modern
quantum technologies.
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