
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Two-Dimensional Programmable Tweezer Arrays of
Fermions

Zoe Z. Yan, Benjamin M. Spar, Max L. Prichard, Sungjae Chi, Hao-Tian Wei, Eduardo
Ibarra-García-Padilla, Kaden R. A. Hazzard, and Waseem S. Bakr
Phys. Rev. Lett. 129, 123201 — Published 14 September 2022

DOI: 10.1103/PhysRevLett.129.123201

https://dx.doi.org/10.1103/PhysRevLett.129.123201


A two-dimensional programmable tweezer array of fermions

Zoe Z. Yan1,∗, Benjamin M. Spar1,∗, Max L. Prichard1, Sungjae Chi1, Hao-Tian
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We prepare high-filling two-component arrays of tens of fermionic 6Li atoms in optical tweezers,
with the atoms in the ground motional state of each tweezer. Using a stroboscopic technique,
we configure the arrays in various two-dimensional geometries with negligible Floquet heating. Full
spin- and density-resolved readout of individual sites allows us to post-select near-zero entropy initial
states for fermionic quantum simulation. We prepare a correlated state in a two-by-two tunnel-
coupled Hubbard plaquette, demonstrating all the building blocks for realizing a programmable
fermionic quantum simulator.

Ultracold atoms in optical tweezer arrays have become
a popular platform for quantum simulation, computa-
tion, and metrology [1]. The tweezer platform has re-
cently witnessed rapid breakthroughs, ranging from the
development of precise optical clocks [2, 3] to the demon-
stration of entangling operations [4–7]. The realization of
defect-free arbitrary geometries [8, 9], in particular in two
dimensions, has paved the way for studying rich quan-
tum many-body physics with localized Rydberg atoms,
including frustrated spin models on a triangular lat-
tice [10, 11], topological phases in a zig-zag chain [12],
and quantum spin liquids with atoms placed on the links
of a kagome lattice [13].

The versatility of tweezer arrays has also been ex-
tended to systems of itinerant atoms where quantum
statistics play a role [14–19]. In particular, tunnel-
coupled arrays have been realized for small systems of
bosonic [14] and fermionic [15–18] atoms in one dimen-
sional arrays. If these experiments can be scaled, they
would constitute a bottom-up approach toward quantum
simulation that complements optical lattice experiments
with quantum gas microscopes, which currently lie at the
forefront of studying one- and two-dimensional Hubbard
models [20–29]. The difficulty of reconfiguring micro-
scope experiments has led to an almost exclusive focus on
physics in square lattices (Ref. [30] is a recent exception).
Programmable Hubbard tweezer arrays would allow the
extension of site-resolved studies to arbitrary lattice ge-
ometries that bring additional ingredients into play, in-
cluding frustration, topology, and flat-band physics.

Hubbard tweezer arrays may also provide a route to
address another major challenge for optical lattice experi-
ments: the preparation of low-entropy phases of fermions.
In optical lattice experiments, the entropy of the gas is
limited by evaporative cooling, which is hindered by poor
efficiencies at low temperatures. Entropy redistribution
schemes relying on the flow of entropy away from gapped
phases have been proposed [31, 32] and experimentally
explored [33], but they have not resulted in significant
reduction of achieved temperatures for correlated phases.

Here we show that stroboscopic optical tweezer arrays
can be used to prepare fermionic systems with arbitrary
two-dimensional (2D) geometry and entropies compara-
ble to those achieved in optical lattices, with the addi-
tional advantage of being able to further reduce the en-
tropy through post-selection. This is possible due to sev-
eral features particular to this platform. First, in loading
a tweezer from a degenerate Fermi gas, the tweezer acts
as a “dimple trap,” wherein the local Fermi temperature
(TF) is significantly higher than in the bulk gas. Since
the fraction of atoms loaded into the tweezers is low, the
temperature of the system remains approximately fixed
to the bulk gas’s temperature, but the tweezers’ phase
space density is enhanced. Furthermore, the occupancy
of the lowest level of each tweezer (given by the Fermi-
Dirac distribution) is close to unity. This enables the
preparation of a state with two atoms in the ground mo-
tional state (one per spin state) on every tweezer with
high fidelity, as first demonstrated in Ref. [34]. Second,
the system can be evolved from the band insulator into
a correlated state via an adiabatic ramp-on of additional
sites, taking advantage of independent tunability of each
lattice site. We have previously shown that this technique
can be used to prepare a state with antiferromagnetic
correlations in an eight-site Fermi Hubbard chain [18].
We extend this approach to 2D and show that any pre-
ramp entropy in the system can be effectively eliminated
by post-selection on the atom number in each spin state.
Post-selection is enabled by spin- and density-resolved
readout [22, 35], which we implement in a bilayer imag-
ing scheme.

The experimental cycle, including tweezer loading, is
the same as detailed in Ref. [18]. Tweezers are loaded
from a bulk Fermi gas at T/TF≈ 0.2 that is a balanced
mixture of the lowest and third lowest hyperfine ground
states (|↑〉, |↓〉, respectively). Our scheme for generating
2D arrays uses two crossed acousto-optical modulators
[Fig. 1(a)]. The tweezers are produced using light with
a wavelength of 780 nm, and their waist at the atoms is
1000+180

−140 nm. Radiofrequency tones for both AOMs are
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FIG. 1. 2D stroboscopic tweezer technique and lifetimes. (a) Two crossed acousto-optic modulators spaced in a 4f configuration
generate the array. (b) Illustration of the principle of stroboscopic array generation of an 8-site ring. For a strobe frequency
fs, each column of the array is turned on for a quarter of the period 1/fs, generating a time-averaged potential shown in
(c). (d) Lifetime of an atom in the ground vibrational state of a tweezer versus strobe frequency, with the red point at
0 kHz indicating the non-strobed lifetime. The dashed line shows the theoretical prediction, and grey shading indicates the
systematic uncertainties on the tweezer waist. The inset shows an example of a decay curve of population in the ground state
for fs = 513 kHz with an exponential fit.

generated by a two-channel arbitrary waveform genera-
tor, with a tone separation of 8 MHz corresponding to a
tweezer spacing of 1350 nm in the atom plane. The aper-
ture size and bandwidth of the modulators currently limit
us to ∼ 9 tweezers in each direction. The beat frequency
of neighboring tweezers is > 100 times larger than typical
tweezer depths, leading to negligible parametric heating.

Homogenizing the tweezer depths is particularly chal-
lenging for 2D arrays generated using crossed AOMs. A

(a) (b) (c) (d)

10 μm

FIG. 2. Examples of band insulators of different geometries,
showing (a) rectangular 5× 5, (b) 21-site Lieb plaquette, (c)
4×5 triangular, and (d) octagonal ring arrays. Only |↑〉atoms
are imaged and the sites here are not tunnel-coupled. The top
row shows single shots with perfect filling of the |↑〉 state, and
the bottom row shows average images. Deviations of the atom
positions in the single-shot images are due to quantization
onto the lattice for imaging. Average fillings of |↑〉 are (93,
92, 91, 89)%, accounting for imaging fidelity of 98.5%, out of
(411, 254 , 275, 100) shots.

common approach used in Rydberg tweezer experiments
is to apply a static set of frequencies consisting of nx
and ny tones for the x- and y- directional AOMs, respec-
tively. This generates a rectangular array of nxny sites;
however, the nx +ny degrees of freedom from the signal
strength of each tone are insufficient to independently
tune the depth of each tweezer. Better homogeneity can
be achieved by tuning the relative phases of the tones,
but the typical resultant inhomogeneity still exceeds 1%.
Tunnel-coupled arrays have more stringent requirements
for homogeneity, since the energy offsets in tweezers of
typical depth ∼ h×50 kHz must be controlled to within
tunneling energies of ∼ h×250 Hz, or better than 0.5%.

To homogenize arrays to within this precision and pro-
duce arrays with nearly arbitrary geometry (limited by
the optical resolution of our objective), we introduce a
stroboscopic tweezer technique. We generate the array
one column at a time, with different y−directional tones
applied in every timestep [Fig. 1(b)]. Effectively, the
atoms experience a time-averaged potential of concate-
nated 1D arrays, as long as the strobe rate fs far exceeds
the tweezers’ harmonic trap frequencies. As the typical
axial (radial) trap frequencies are around 2.5 (15) kHz,
we need strobe rates over an order of magnitude higher
to avoid significant Floquet heating of the atoms.

We verify that the stroboscopic scheme is compatible
with long lifetimes in the tweezer ground vibrational state
with the following study. We measure the dependence of
the lifetime in the lowest vibrational state on fs in a
two-site strobed array, varying the strobe rate from 163-
1083 kHz [36]. Higher frequencies are inaccessible due to
limitations on the AOM response rate, set by the speed of
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sound and beam size in the crystal. We also compare the
lifetimes to that of a static (non-strobed) tweezer, which
is limited by background gas collisions and off-resonant
photon scattering due to the trapping light. Consistent
with expectations, the lowest strobe rates give the short-
est lifetimes in the ground state [Fig. 1(d)]. Measure-
ments and numerics using a discrete variable representa-
tion (DVR) method [36–38] both indicate that Floquet
heating decreases exponentially with increasing fs and is
negligible for fs & 250 kHz, although the numerics un-
derestimate the threshold frequency range below which
severe heating occurs by ∼ 18%.

We demonstrate loading the arrays with band insu-
lators of fermions with high fidelity using the strobo-
scopic method. These band insulators serve as low en-
tropy initial states for fermionic quantum simulation. As
proofs-of-principle, we implement a rectangular 5× 5 ar-
ray, 21-site Lieb plaquette, triangular 4 × 5 array, and
an 8-site octagonal ring (Fig. 2) [36]. The tweezers are
homogenized using a density balancing algorithm where
the number of required experimental shots is almost in-
dependent of the array size [18]. In these examples, the
sites are not tunnel-coupled due to the large separations.
Readout is accomplished by transferring the atoms into
a 2D lattice of 752 nm spacing, which oversamples the
tweezer array by a factor of two or more, and perform-
ing Raman sideband cooling on the |↑〉 atoms after re-
moval of the |↓〉 atoms [18, 23] with a detection fidelity of
98.5%. Throughout these different geometries, the load-
ing fidelity of a single spin averages to 92%/site, cor-
rected for imaging infidelity, indicating a low entropy of
loading in the array. As in previous work [18, 34], the
tweezer depths are chosen so the predominant type of
defect in each tweezer is a missing particle rather than
an extra one in a higher motional state. In these data, we
only measure one of the spin states in a given experimen-
tal shot, due to the problem of light-assisted collisions,
which necessitates the removal of the other spin state
before imaging [39].

To circumvent this problem and obtain full density-
and spin-resolution, we adopt a high-fidelity bilayer imag-
ing scheme [35, 40–42], which also allows the reduction of
entropy upon post-selection. Bilayer density- and spin-
readout was first accomplished in fermionic quantum gas
microscope experiments in a superlattice charge-pumping
scheme [35]. Our method is conceptually similar but in-
volves no superlattice (Fig. 3). Starting with tweezer-
trapped atoms, we adiabatically turn off the tweezer and
turn on a 2D lattice of 1064 nm to 60ER and a verti-
cal trap frequency of 1.2 kHz in 5 ms. The magnetic
field is brought to 572 G, where we perform a spin-flip
of |↑〉 to the second-lowest hyperfine state, |↑̃〉, with an
efficiency exceeding 99%, and then decrease the field to
near 0 G. Atoms in |↑̃〉 and |↓〉 have a greater differential
magnetic moment than those in |↑〉, enabling the Stern-
Gerlach separation of these populations to ∼ 9µm us-

ing a z-magnetic gradient of 168 G/cm in the 2D lat-
tice at a depth of 280ER. We turn on two lightsheet
potentials [23]–highly anisotropic beams, each with z-
directional trap frequencies of 26 kHz–and linearly ramp
their vertical separation to 25µm for imaging. We mea-
sure a combined transport and spin identification fidelity
of 98.7%. Finally, we image the atoms using Raman side-
band cooling simultaneously in both layers, with the 2D
lattice depth at 2500ER and the two lightsheet z-trap
frequencies at 70 kHz. Resulting fluorescence is collected
by a high numerical aperture objective with atoms in the
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FIG. 3. Bilayer imaging procedure and entropy reduc-
tion through post-selection. (a) Atoms in |↑〉 (yellow) and
|↓〉 (blue) are initially trapped in the tweezers, then adia-
batically loaded into (b) a 2D lattice with vertical waist of

75µm, where |↑〉 is transferred to |↑̃〉 (red). (c) A magnetic
field gradient is applied to separate the spins in the vertical
direction, after which (d) two lightsheet potentials turn on to
fix the z-positions. (e) The lightsheets are further separated
to 25µm separation. Raman sideband imaging commences,
producing simultaneous images of both spin states. (f) shows

a single shot image of |↓〉 and |↑̃〉 originally from a 3× 5 rect-
angular array. (g) Probability distribution versus number of
atoms in each spin state over 972 shots. Here, all images with
doublons (65 shots) were not used. (h) By post-selecting on
the maximum number of holes, effective entropy can be re-
duced by varying amounts.
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two planes focused onto two different active areas of a
CCD camera. Imaging fidelity is 98% (97%) for the layer
of |↑̃〉 (|↓〉) atoms.

Bilayer imaging enables reduction of the effective en-
tropy associated with the initial state of the tweezer ar-
ray (the band insulator) through post-selection. The ini-
tial entropy per particle of the tweezer ensemble, assum-
ing independent tweezers and single-band occupation, is
given by

S

〈N〉
= −kB

p

(
p log p+ (1− p) log(1− p)

)
. (1)

where p is the probability to load one spin on a site.
With a typical loading efficiency of p= 0.907(3), the array
starts with 0.34(1) kB per particle, with entropy entering
from microstates with undesired holes. By selecting only
images with the population per spin state equal to the
number of loading tweezers, we can effectively choose a
subsample with S= 0. Importantly, this post-selection
criterion eliminates the initial state entropy even after
changing the filling of the system (by introducing addi-
tional tweezers) to prepare a correlated state. The post-
selection criterion can be relaxed to use more images from
the experiment at the cost of introducing additional ini-
tial state entropy. This tradeoff is illustrated in Figs. 3(g-
h) for a 3 × 5 array in which |↑〉 and |↓〉 had average
p= 0.914(3) and 0.900(3), respectively (not accounting
for imaging fidelity). Out of 972 images, 12% had perfect
filling of 15 fermions of each species. However, even keep-
ing images with up to two holes, or over 50% of shots,
still results in a low entropy of 0.17(1) kB per particle,
which is favorable compared to state-of-the-art optical
lattice experiments that range from 0.25-0.5 kB per par-
ticle [25, 33, 43, 44].

While post-selection can be used to reduce the effective
entropy of the initial state to near zero, subsequent ramps
to correlated states will inevitably introduce additional
entropy. Numerical simulations of the dynamical ramps
in small systems indicate this extra entropy should be
low for defect-free initial configurations. For example,
for the ramp used in our previous work with an eight-site
chain [18], the ramp is expected to have introduced an
additional entropy of 0.04 kB per particle when starting
with a defect-free state, but the presence of even a single
localized hole would lead to a significant entropy increase
of 0.2-0.3 kB per particle depending on the position of the
hole. The entropy reported in Fig. 3(h) should therefore
be treated only as a lower bound for future experiments.

Post-selection on spin and density in this context
should be distinguished from the context of optical
lattice-based quantum gas microscopy measurements.
For example, in a recent study with a fermionic mi-
croscopes [44], spin- and density- readout enabled post-
selection of half-filled systems with zero total magneti-
zation, keeping ∼ 9% of data. However, post-selection
there did not eliminate the finite spin temperature in the

initial state. Furthermore, our post-selection approach
is difficult to implement in optical lattice systems where
it has proven challenging to engineer arrays with sharp
boundaries and a well-defined number of sites [33].

Equipped with the ability to load near-zero-entropy
band insulators after post-selection, we implement the
simplest building block of a two-dimensional Fermi-
Hubbard model: a tunnel-coupled 2 × 2 plaquette. The
single-band Hamiltonian is

Ĥ = −
∑
〈i,j〉x,σ

tx(ĉ†iσ ĉjσ+h.c.)−
∑
〈i,j〉y,σ

ty(ĉ†iσ ĉjσ+h.c.)

+
∑
i

Uin̂i↑n̂i↓+
∑
i,σ

∆in̂iσ, (2)

where ĉ†iσ is the fermionic creation operator of spin σ at
site i, n̂iσ is the number operator, tx(y) is the tunneling
matrix element in the x(y) direction, ∆ is the energy off-
set, and U is on-site interaction between opposite spin
states. We start by loading two diagonal sites in a rect-
angular array with vertical (horizontal) spacing of 1520
(1690) nm [Fig. 4 (a,b)]. The correlated state at half-
filling is prepared by adiabatically ramping on the two
opposing diagonal sites in 50 ms [18], with tunnelings
of tx [ty] = h×140(5)[220(5)] Hz in the final configura-
tion [36]. We also ramp U/t̄ from 0 to 3.4(2) in the same
time using the Feshbach resonance. Here, t̄= (tx+ ty)/2.

The resulting spin-spin correlations are shown in
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FIG. 4. Low entropy preparation of a 2 × 2 array. a) We
load two atoms per site on one diagonal of the array. b) We
create a correlated state by ramping on the additional lattice
sites and increasing the scattering length to introduce on-site
interactions. For the following data, we work with tx/h =
140(5) Hz, ty/h = 220(5) Hz and U/t̄ = 3.4(2). c) Measured
spin-spin correlations enabled by the bilayer imaging scheme.
d) Best fit (purple bars) and measured (black dots) microstate
populations for 671 post-selected experimental shots. The fit
gives an entropy in the range [0,0.09] kB per particle. Insets
are shown for the two most common states.
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Fig. 4(c), which depicts Cij =〈Sz,iSz,j〉−〈Sz,i〉〈Sz,j〉,
where Sz,i≡ 1

2 (n↑,i−n↓,i). Here, data were post-selected
to include only images that contained two |↑〉 and two
|↓〉 atoms, for a total of 673 experimental cycles. With
full spin- and density-readout, we are able reconstruct the
diagonals of the density matrix ρ= |Ψ〉〈Ψ| in the basis of

allowed number states (with Hilbert space size
(
4
2

)2
= 36),

and compare data with theory. In Fig. 4(d), we plot
the experimental population in each microstate together
with the populations expected theoretically for the pla-
quette ground state, which are consistent within error
bars. Here, we reduce our statistical errors by taking
advantage of the spin-symmetry of the Hubbard Hamil-
tonian to average the probabilities for spin-reversed mi-
crostates. Furthermore, we fit the temperature of the
canonical ensemble to best reproduce the distribution of
microstates. The fit gives an upper bound for the tem-
perature of kBT ∼ 0.3t̄ (with the fit losing sensitivity be-
low that temperature). This corresponds to an entropy
in the range [0,0.09] kB per particle, which is consistent
with the prediction from simulating the ramp dynamics
(entropy gain of 0.02 kB per particle).

In conclusion, we have realized a 2D tweezer array
of fermions with software-programmable geometry using
a novel stroboscopic technique that allows independent
control over all tweezer depths and positions. We have
realized the building blocks to implement programmable
2D Fermi-Hubbard models, and demonstrated these on a
small scale. Future work will focus on increasing the
system size of the tunnel-coupled arrays. A natural
target for future work will be few-leg ladder systems.
For example, two-leg triangular ladder systems can be
used to explore the J1 − J2 model, including the special
case of the Majumdar-Ghosh model and its valence-bond
solid ground states [45]. Furthermore, upon introduc-
ing spin-imbalance and hole-doping, a triangular two-leg
ladder is predicted to host magnon-hole binding at en-
ergy scales set by the tunneling, rather than the superex-
change [46]. Multi-leg triangular ladders may potentially
host other exotic states such as a chiral spin liquid at
half filling and intermediate U/t that evolves to a 120◦-
antiferromagnetic order at strong U/t [47]. Ultimately,
fully 2D tunnel-coupled arrays with arbitrary geometry
will be a rich playground for exploring novel phases of
correlated fermions.
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Brüggenjürgen, D. Greif, A. Bohrdt, F. Grusdt, E. Dem-
ler, M. Lebrat, and M. Greiner, Phys. Rev. X 11, 021022
(2021).

[28] J. Koepsell, J. Vijayan, P. Sompet, F. Grusdt, T. A.
Hilker, E. Demler, G. Salomon, I. Bloch, and C. Gross,
Nature (London) 572, 358 (2019).

[29] A. Bohrdt, L. Homeier, C. Reinmoser, E. Demler, and
F. Grusdt, Annals of Physics 435, 168651 (2021), special
issue on Philip W. Anderson.

[30] J. Yang, L. Liu, J. Mongkolkiattichai, and P. Schauss,
PRX Quantum 2, 020344 (2021).

[31] J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Ger-
bier, C. Salomon, and M. Köhl, Phys. Rev. A 79, 061601
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