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Monitored quantum circuits (MRCs) exhibit a measurement-induced phase transition between
area-law and volume-law entanglement scaling. MRCs with a conserved charge additionally ex-
hibit two distinct volume-law entangled phases that cannot be characterized by equilibrium no-
tions of symmetry-breaking or topological order, but rather by the non-equilibrium dynamics and
steady-state distribution of charge fluctuations. These include a charge-fuzzy phase in which charge
information is rapidly scrambled leading to slowly decaying spatial fluctuations of charge in the
steady state, and a charge-sharp phase in which measurements collapse quantum fluctuations of
charge without destroying the volume-law entanglement of neutral degrees of freedom. By taking
a continuous-time, weak-measurement limit, we construct a controlled replica field theory descrip-
tion of these phases and their intervening charge-sharpening transition in one spatial dimension.
We find that the charge fuzzy phase is a critical phase with continuously evolving critical expo-
nents that terminates in a modified Kosterlitz-Thouless transition to the short-range correlated
charge-sharp phase. We numerically corroborate these scaling predictions also hold for discrete-
time projective-measurement circuit models using large-scale matrix-product state simulations, and
discuss generalizations to higher dimensions.

Introduction – Understanding the role of environmen-
tal dissipation and decoherence in large quantum circuits
is essential for understanding the fundamental capabili-
ties and limitations of noisy quantum computation rel-
evant for near-term devices. A key conjecture of quan-
tum complexity theory is that the output of individual
quantum circuits is quite generally exponentially-hard (in
qubit number) to predict classically. Examples where
a full microscopic descriptions are intractable abound
in physical systems: from tracking individual motion
of thermodynamically-many colliding gas particles, to
computing the complex level structure of chaotic nuclei.
Here, the successful philosophy of statistical mechanics
and random matrix theory has taught us that the sta-
tistical properties of ensembles of such complex systems
can be far simpler to describe than individual realiza-
tions, and in many cases exhibit beautifully universal,
model-independent properties.

This observation has motivated the search for an anal-
ogous statistical mechanics paradigm for ensembles of
random quantum circuits [1–8]. For circuits with ideal
(noiseless) gates, this has led to identification of universal
features of entanglement growth [8, 9], scrambling [8, 10–
12], and quantum chaos [13–18]. Further, exploring
monitored random circuits (MRCs), where decoherence
is modeled by random measurements of the system by
its environment, has revealed the possibility of sharp
measurement-induced phase transitions (MIPTs) [19, 20]
in the quantum trajectories (i.e. states produced by an
MRC for fixed measurement outcomes) between a scram-
bling regime dominated by unitary gate evolution, and
purifying dynamics dominated by measurement induced

collapse [19–62]. These raise the intriguing prospect of
using statistical mechanics tools [28, 29, 63, 64] to study
quantum communication channel capacity [25, 65], error-
correction thresholds [25, 27, 43, 45, 57], and computa-
tional complexity [66, 67]. Finite-size evidence for such
entanglement MIPT was even recently observed experi-
mentally in trapped-ion chains [68].

In physical systems, symmetries play a central role
in determining universal properties of phase transitions
and protecting stable and distinct phases of matter, and
may be naturally expected to play an important role
in measurement-induced phases and critical phenomena
in MRCs. Indeed, there is accumulating numerical evi-
dence that symmetries can give rise to multiple distinct
phases and critical phenomena in the highly-entangled
regime – which would support only classical, incoherent
orders in thermal equilibrium. To date, the study of such
measurement-stabilized orders has largely resorted to nu-
merical analyses on Clifford circuits [33–35, 52]. Here,
building on a statistical mechanics mapping developed in
Ref. [56], we construct a replica field-theory framework to
analytically study phases and critical phenomena in the
volume-entangled regime of MRCs. We focus on the ap-
plication of this technique to studying charge-sharpening
transitions in more generic 1d MRCs with a conserved
U(1) charge or spin, and show that this transition is
captured by a modified Kosterlitz-Thouless transition,
and validate this prediction against large-scale matrix-
product state (MPS) numerics.

Model of random circuits with symmetries – We
consider a model [11] consisting of a 1d lattice, with a
charged qubit with charge-basis states |q = ±1〉 and a



2

FIG. 1. Model and phase diagram – (a) Monitored
random circuit (MRC) with charged qubits (solid lines) and
neutral large-d qudits (dashed lines) interacting with Haar-
random gates (blue boxes) and randomly placed measure-
ments (red dots). (b) Statistical mechanics (stat-mech) model
for replicated MRC consists of replica permutation “spins”
(arrows) interacting with random-walking charge world-lines
(orange lines). (c) The phase diagram, with phases labeled
in the MRC (bottom) and stat-mech (top) language respec-
tively. In addition to the entanglement transition at pc, which
corresponds to a (dis)ordering transition of the permutation
“spins”, there is a charge-sharpening transition in the volume
law phase, corresponding to an inter-replica superfluid (IRSF)
to Mott-insulator (MI) transition in the statistical mechanics
language. In 1+1d, this charge sharpening transition has a
modified Kosterlitz-Thouless universality class, and the IRSF
is a critical/Goldstone phase with scaling exponents that vary
continuously with p.

neutral d-level qudit on each site, that evolves under a
“brick wall” circuit of nearest-neighbor gates that con-
serve the total charge of the qubit pair, but are other-
wise Haar-random in each block of fixed total charge.
We consider randomly-placed single-site projective mea-
surements with probability p. These measurements occur
in the charge basis of the qubits and an arbitrary basis
of the qudits. As shown in Ref. [56], this model supports
two types of phase transitions (separating three distinct
dynamical phases): an area-to-volume law entanglement
transition at p = pc (identical to that of asymmetric cir-
cuits), and a “charge-sharpening” transition at p = p#

occurring within the volume-law entangled phases. The
charge-sharpening transition distinguishes a charge-fuzzy
phase (p < p#) in which scrambling is able to “hide”
quantum superpositions of total charge from the mea-
surements for a time that diverges with the system size,
and a charge-sharp phase (p > p#) in which the measure-
ments collapse quantum superpositions of different total
charge at a finite-rate. Throughout both phases the neu-
tral qudit (and the charged qubit) degrees of freedom
remain volume-law entangled.

As shown in Ref. 56, the statistical properties of en-
tanglement and charge correlators for this MRC ensemble
can be captured, via a replica trick, by a classical statis-
tical mechanics model defined on the graph of the quan-
tum circuit (i.e. identifying gates with vertices and qubit

world-lines between gates with links), and consisting of
the following degrees of freedom: i) replica permutation
“spins” si ∈ SQ on each vertex i where Q is the num-
ber of replica copies, and ii) charge degrees of freedom
q`,a ∈ {±1} on each link ` and replica a = 1 . . . Q. As pre-
viously described in multiple works [28, 29, 63, 64] the en-
tanglement transition at pc appears as an order/disorder
transition of the permutation spins.

Here, we focus on the charge-sharpening transition
that occurs in the volume-law phase where the permu-
tation spins remain ordered, and can be traced out to
obtain a description purely in terms of the charge de-
grees of freedom. This can be done exactly in the limit
of large qudit dimension d. Further, since the permuta-
tion degrees of freedom are gapped for p = p# < pc, we
finite d corrections will only renormalize the parameters
of the effective field theory without altering the univer-
sal scaling properties. The resulting charge dynamics
are then described by a classical stochastic process in
which charge world-lines execute hardcore random walks
in each replica. Measurements force the charges to co-
incide across replicas at the measured link, creating a
space-time-disordered inter-replica interaction.

These charge dynamics are described by a stochas-
tic Markov process for the diagonal components of the
(replicated) density matrix in the charge basis (with off-
diagonal coherences strictly vanishing due to the qudit
“baths”). These form a 2LQ component vector: |ρQ〉,
which, if correctly normalized, satisfies 〈1|ρQ〉 = trρ̂Q =
1 where |1〉 is the vector with all unit entries. The
measurement- and gate- averaged evolution is described
by a transfer matrix:

|ρQ(t+ 1)〉 = T~m(t+1/2)TU,oT~m(t)TU,e|ρQ(t)〉, (1)

where TU,e/o =
∏
〈ij〉∈e/o

∏Q
a=1

1
4 (~σa,i · ~σa,j + 3) project

onto the spin-triplet sector for each bond and repre-
sent the evolution from random gates on even(e)/odd(o)
bonds, and ~σ are Pauli matrices with σza,i eigenvalue cor-
responding to the charge at link i ∈ {1 . . . L} in replica
a ∈ {1 . . . Q}. The measurement operators: T~m(t) =∏
i∈M(t)

∏Q
a=1 δσza,i,mi(t) simply force the charges in all

replicas to agree with the measurement outcomes ~m(t)
on measured links M(t) at time-slice t.

In the following, we will not work with explicitly nor-
malized states, and use the replica trick to properly com-
pute moments of local observables as:

E
[
〈Ô1〉〈Ô2〉

]
= E

[
〈1|O(d)

1 |ρ1〉〈1|O(d)
2 |ρ1〉

〈1|ρ1〉2
〈1|ρ1〉

]
= lim
Q→1
〈1|O(d)

1 ⊗O(d)
2 ⊗ 1 · · · ⊗ 1 |E [ρQ]〉 , (2)

where E[. . . ] denotes an average over trajectories, and
〈. . .〉 denotes the quantum average within a trajectory,

an we define the diagonal part of a quantum operator Ô
as O(d) =

∑
m〈m|Ô|m〉|m〉〈m| where |n〉 is a basis state

with definite σ̂za,i = ma,i. In the first line, the factors
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of 〈1|ρ〉 in the denominator serve to explicitly normalize
the state, and the extra factor of 〈1|ρ〉 in the numerator
weights each measurement outcome by its Born proba-
bility.

In Ref. [56], this transfer-matrix model was analyzed
explicitly using exact diagonalization (ED) methods.
Here, we benchmark the field-theory predictions repre-
senting |ρ〉 as a matrix product state (MPS) using time-
evolving block decimation (TEBD) analysis of Eq. 1 [69–
71]. We emphasize that in this statistical mechanics-
description, the volume law phases of the physical qubits
correspond to area-law (with log-violation for p < p#)
phases of the statistical mechanics “spins”, ~σ, enabling
us to obtain results on much larger systems than ED (up
to ≈ 60 sites 1).

Effective field theory – To gain an analytic handle
on the charge dynamics, define a continuous time ver-
sion of the stroboscopic/circuit evolution of Eq. 1, by re-
placing the spin-triplet projectors in the TU terms with
a ferromagnetic interaction 1

4 (~σi · ~σj + 3) → eJ~σi·~σjdt,
and replacing sharp projective measurements in T~m by
Gaussian-softened “weak” measurements: δσza,i,mi(t) →

exp
[
−γ2

∑
a

(
σza,i −mi(t)

)2]
, where J and γ are now

treated as adjustable parameters that respectively con-
trol the strength of unitary gate evolution and measure-
ments respectively. We note that a similar strategy was
used in [52] to study Z2-symmetric circuits with Q = 2
replicas. However working at specific replica number is
known to give (sometimes even qualitatively) wrong pre-
dictions of phases and critical properties. Here, we will
use the large-d qudits to take the proper replica limit and
recover exact scaling results. We further argue that the
universal results of this approach are actually exact for
finite d.

Averaging over measurement outcomes, the transfer
matrix for time t then takes the form of imaginary time
with respect to a lattice Hamiltonian: T (t) = e−tH with:

H = −J
∑
〈i,j〉;a

~σa,i · ~σa,j +
γ

2

∑
i;a,b

σza,iΠabσ
z
b,i, (3)

where Πab =
(
δab − 1

Q

)
is a projector onto replica-

asymmetric modes.
Without measurements (γ = 0), the random circuit dy-

namics simply takes the form of imaginary time evolution
with SU(2) invariant Heisenberg ferromagnet dynamics.
The long-time steady states (ground-states of H) are sim-
ply equal weight superpositions over all charge config-
urations with each fixed total charge. The elementary
excitations of Hγ=0 (corresponding to decaying pertur-
bations to the steady-state) are magnon excitations with

1 While much larger critical systems with 100’s or 1000’s of sites
can be simulated by MPS methods in clean 1d systems, here, the
disordered nature of the model adds significant sampling com-
plexity and limits the achievable system size.

dispersion (wave-vector dependent decay rate) εk ∼ Jk2.
These simply reflect the diffusive relaxation dynamics of
conserved charges. Measurements penalize differences in
σz between different replicas. After averaging over the
space-time quenched disorder due to measurement loca-
tions and outcomes, this introduces inter-replica inter-
actions and produces an easy-plane anisotropy for the
inter-replica modes (i.e. fluctuations that are different in
different replicas, and do not contribute to the average
over replicas, see below for precise definitions).

We next construct an effective field theory by writing
T (t) as a spin-coherent state path integral in terms of po-
lar angles θi,a and azimuthal angles φi,a for each spin [72].
For specificity, we work near zero charge density θ =
π/2 + δθ. Integrating out all (Q− 1) components of the
out-of-plane fluctuations in the inter-replica modes, Πθ,
which are massive for any γ > 0, and performing a fluc-
tuation and gradient expansion gives an effective action

〈1|T (t)|ρQ〉 = ZQ =
∫
D[θ, φ]e−

∫ t
0
dt

∫
dxLeff with:

Leff =
i

2
δθ̄∂tφ̄+

ρ̄

2

[(
∂xδθ̄

)2
+
(
∂xφ̄

)2]
+
ρs
2

(∂µΠφ)
2
,

(4)

where µ ∈ {t, x}, and repeated indices are implicitly

summed, ρ̄ ∼ J , ρs ∼
√
J/γ 2, and we have defined

the replica average modes: φ̄, θ̄ ≡ 1
Q

∑Q
a=1 φa, θa

3. To

compute correlators as in Eq. 2, this action should be
supplemented by boundary conditions corresponding to
the final state 〈1| which is an equal weight superposition
of all charge states, corresponding to a product state of
spins point along the x̂ direction: (θ, φ) = (π2 , 0) at the fi-
nal time, t. In particular, steady-state (t ∼ L→∞) cor-
relators are generated from the partition function on the
half- plane (t, x) ∈ (−∞, 0]×R with boundary conditions
φa(t = 0, x) = 0 and appropriate (charge-diagonal) oper-
ators inserted. As a consequence, steady-state properties
of MIPTs will correspond to boundary-critical properties
of the statistical mechanics problem.

The “replica-average” modes φ̄ determine simple linear
observable averages, Ō = E[〈Ô〉]. These are unaffected
by measurements and have a simple FM spin-wave action
and converge to tr Ô at late times independent of γ.
This accords with the well-known fact that MIPTs are
only visible in higher-moments and non-linear functions
of state.

The inter-replica fluctuations, Πφ, control discon-
nected moments of correlation functions such as
E [〈O(x)O(0)〉 − 〈O(x)〉〈O(0)〉]. When singular vortex

2 We note that this expression is approximate: this quantity is non-
universal and can be renormalized by irrelevant perturbations
neglected in our derivations.

3 More generally, ρs depends on the space-time local charge den-
sity. But this coupling is RG-irrelevant in 1+1d so we drop it
here, although it can become relevant in higher d, as we discuss
later.
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FIG. 2. TEBD data – (a) Charge fluctuations Cz(x) = E [〈σzxσz0〉 − 〈σzx〉〈σz0〉], scaling as Cz(x) ∼ x−α in the fuzzy phase.
Inset: charge variance of an interval of size x , Varq(x) =

∑
0<i,j<x E

[
〈σzi σzj 〉c

]
, predicted to scale as ∼ 8ρs

π
log x. (b) Dual

string disorder parameter CW (x) = E
[
〈W[0,x]〉2

]
with W[0,x] =

∏
0<i<x σ

z
i , showing power-law decay CW (x) ∼ x−2πρs in the

charge-fuzzy phase. (c) Continuously evolving superfluid density ρs as a function of p, extracted from the local charge variance
(blue) and the dual correlator CW (x) (orange). The dashed horizontal line indicates the critical threshold (ρs)# = π−1. For

p < p# ∼ 0.2, the charge correlator Cz(x) decays with an exponent α = 2 (green).

configurations in the phase-fields are irrelevant (0 < γ <
γ#) the inter-replica modes follow a superfluid action
with (Q − 1) decoupled relativistic Goldstone-mode ex-
citations which indicate that charge fluctuations with
wave-vector k decay at rate ∼ |k| (dynamical exponent
z = 1). This inter-replica-superfluid (IRSF) phase repre-
sents the charge-fuzzy phase (0 < p ≤ p# in the cir-
cuit model). Since the effective “superfluid stiffness”
ρs decreases monotonically with increasing measurement
strength, γ, it is natural to expect that the charge-
sharpening transition in 1+1d is a Kosterlitz-Thouless
(KT)-type transition where vortex-proliferation destroys
the IRSF QLRO for p > p#, i.e. γ > γ#, resulting in
a “Mott insulating” phase. This picture will turn out to
be qualitatively correct, albeit with important quantita-
tive changes to the usual KT transition due to the replica
structure.

Charge-sharpening in 1+1d – To obtain a controlled
theory of the transition, we introduce vortex defects into
Eq. 4 by standard duality methods [72] to obtain modi-
fied “sine-Gordon” model:

Ldual =
1

8π2ρ̄

[(
∂tϑ̄
)2

+D2
(
∂2
xϑ̄
)2]

+

+
1

8π2ρs
(Π∂µϑ)2 − λ

∑
a6=b

cos(ϑa − ϑb), (5)

where D ∼ J , e−iϑa inserts a (spacetime/instanton) vor-
tex, and ϑ are related to the original fields by ρs∂µφa ↔
εµν

2π ∂νϑa, λ ≈ e−
√
J/γ is the vortex fugacity, and we have

kept only the most relevant vortex terms. Note that the
minimal topological defects that can appear are actually
a bound states of a vortex and anti-vortex in different
replicas. Formally, this is because individual vortices,
which contribute vorticity to φ̄, are linearly confined
by the diffusive replica-average mode. Intuitively, this
simply reflects the absence of quantum fluctuations in
the Heisenberg ferromagnet ground-state that describes

replica-averages in the steady-state. An immediate con-
sequence of this vortex-“doubling” is that it halves the
critical superfluid stiffness compared to the ordinary KT
transition: (ρs)# = π−1 = 1

2 (ρs)KT. We further note,
that in an ordinary superfluid, vortex condensation re-
quires commensuration between particle density and the
lattice, otherwise vortex instantons acquire non-trivial
Berry phases and are suppressed. Here, the density
conjugate to the composite vortex operators are inter-
replica density fluctuations, which has vanishing average
independent of the physical (replica-average) charge den-
sity. Consequently, in 1+1d, there is a single universality
class for charge-sharpening, in contrast to the ordinary
superfluid-Mott transition which arises only at integer
densities and exhibits different scalings in the presence
or absence of particle-hole symmetry.

Observables and numerics – In 1+1d, the
fuzzy-phase/IRSF exhibits only quasi-long-range order
(QLRO), with algebraic decay of charge (σz ≈ 1

π∂xϑ)
correlators, Cz(x) = E [〈σz(x)σz(0)〉 − 〈σz(x)〉〈σz(0)〉],
which are negative at large distance in the steady state.
This changes to short-range correlations in the gapped
phase:

Cz(x) ∼ −

{
ρs(a/x)−2 p ≤ p#

e−x/ξ p > p#
+ . . . (6)

where a is a non-universal UV cutoff (lattice spacing), ξ
is a finite correlation length and (. . . ) denote asymptot-
ically subleading terms. This behavior is consistent in
TEBD results for the discrete-time model Eq. 1 showing
an algebraic decay of E[〈σz(x)σz(0)〉c] with power-law fit
that is constant over an extended range 0 < p < p# ≈ 0.2
(Fig. 2a,c).

A hallmark of KT-physics is that certain correla-
tors exhibit continuously evolving critical exponents in
the QLRO Goldstone-phase. Constraining ourselves
to charge-diagonal quantities that can be physically
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probed in the original qubit language, a convenient
observable that displays this behavior are the string

operators: W[0,x] = e−iπ
∑
i∈(0,x) σ

z
i /2 ≈ e−i

1
2

∫ x
0
dϑ =

e−iϑ(x)/2eiϑ(0)/2, which inserts a π-phase twist in the φ-
fields in the interval [0, x], and can be thought of as a dual
(boundary) order parameter for vortex condensation:

CW (x) = E
[
〈W[0,x]〉2

]
≈

{
|x|−2πρs p ≤ p#

constant p > p#
. (7)

The scaling dimension of W decreases monotonically
with measurement rate γ (as ∼ γ−1/2 for small γ), and
jumps (for L → ∞) discontinously to 0 in the charge-
sharp phase (γ > γ#), achieving a minimum non-zero
value of ∆W = 1 at the sharpening transition (γ = γ#).

The predicted power-law decay of charge- and string-
correlators are in excellent agreement with TEBD data
(Fig. 2) for 0 < p ≤ p# ≈ 0.2. We note that, as is typi-
cal for two-parameter scaling KT-transitions, incorrectly
applying a single-parameter scaling analysis with finite
correlation-length exponent, ν as in Ref. [56] dramat-
ically overestimates the critical measurement strength,
and misses the key physics of continuously evolving scal-
ing exponents in the charge-fuzzy phase.

Discussion – The agreement with unbiased numerics
gives strong support to the hypothesis that the contin-
uum field theory description captures the universality
class of charge sharpening in the discrete-time, strong-
measurement model. Importantly, the analytic replica
field theory approach can be applied in more complicated
scenarios where numerics becomes challenging. In the
supplemental material [72], we give a general argument
that the charge-sharpening transition occurs separately
from, and precedes the entanglement transition in any
spatial dimension D, and show that for U(1)-symmetry
is again described by (Q− 1) coupled XY-models for the
inter-replica modes. A new feature of D ≥ 2 U(1)-MRCs
is that, since circuit-evolution time plays the role of tem-
perature in the stat-mech model, for p < p#, the system
exhibits a finite-time transition at critical time tc, where
the long-range correlations appear, although the charge
remains “fuzzy” until a time ∼ LD. For D ≥ 2 this
finite-time transition has the same critical properties as
a superfluid transition at nonzero temperature in D di-
mensions. This critical time diverges as tc ∼ |p−p#|−z/ν
with z = 1 and ν = νD+1. Evidence and arguments for
related finite-time complexity [67] and entanglement [73]
transitions in MRCs have previously been discussed ab-
sent symmetries, however, in the present case, the field
theory approach gives a controlled calculation of crit-
ical properties in generic Haar-random circuit models.
A second twist that arises in D ≥ 2 is the emergence
of multiple classes of boundary-criticality governing the
steady-state behavior of MRCs: i) ordinary (bulk or-

ders before boundary), ii) extra-ordinary (boundary or-
ders before bulk), and iii) special (boundary transition
between ordinary and extraordinary), depending on the
relative bulk and boundary coupling strengths. Here,
the extra-ordinary to ordinary boundary transition can
be tuned by increasing the number of measurements in
the final few circuit layers compared to the bulk. The
properties of the extraordinary transition for the 2+1d
XY model were worked out only very recently [74], and
exhibits an unusual log-divergence of ρs upon approach-
ing the bulk phase transition with the QLRO surface. A
third new feature that arises in 2+1d and 3+1d when we
move away for mean charge density zero is a relevant cou-
pling between the charge diffusion and the inter-replica
dynamics via the dependence of ρs on the local charge
density, which moves the sharpening transition to a new
universality class with quenched disorder and, presum-
ably, z > 1.

It is straightforward to generalize the field theory ap-
proach to study charge-sharpening transitions with dis-
crete symmetries. The main difference compared to con-
tinuous symmetry is the absence of gapless Goldstone
modes in the discrete-charge-fuzzy phase, so that cor-
relators are either long-range or exponential decaying.
By way of standard duality transformations [56, 75],
the existence of discrete charge-sharpening implies the
existence of sharp symmetry-breaking and topological-
ordering/(de)confinement transitions within the volume
law entangled regime whereas only classical orders would
be allowed in thermal equilibrium. The prospect of a
quantum-ordered phases in volume-law entangled trajec-
tories was discussed in various Clifford models [52]. Our
field-theory technique not only places this discussion on
firmer ground for generic (Haar-random) MRC classes,
but also enables controlled calculation of symmetry-
breaking and topological MIPTs.

Finally, we expect that our approach can be readily
adapted to study a wide variety of measurement induced
phenomena arising in monitored random circuits such as
those with more complicated (e.g. non-Abelian) sym-
metries, competing types of non-commuting measure-
ments, and fracton-like kinetic constraints such as dipole-
and higher-multipole conservation or subsystem symme-
tries [76, 77].
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