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Approximation based on perturbation theory is the foundation for most of the quantitative pre-
dictions of quantum mechanics, whether in quantum many-body physics, chemistry, quantum field
theory or other domains. Quantum computing provides an alternative to the perturbation paradigm,
yet state-of-the-art quantum processors with tens of noisy qubits are of limited practical utility.
Here, we introduce perturbative quantum simulation, which combines the complementary strengths
of the two approaches, enabling the solution of large practical quantum problems using limited noisy
intermediate-scale quantum hardware. The use of a quantum processor eliminates the need to iden-
tify a solvable unperturbed Hamiltonian, while the introduction of perturbative coupling permits
the quantum processor to simulate systems larger than the available number of physical qubits. We
present an explicit perturbative expansion that mimics the Dyson series expansion and involves only
local unitary operations, and show its optimality over other expansions under certain conditions. We
numerically benchmark the method for interacting bosons, fermions, and quantum spins in different
topologies, and study different physical phenomena, such as information propagation, charge-spin
separation, and magnetism, on systems of up to 48 qubits only using an 8 + 1 qubit quantum hard-
ware. We experimentally demonstrate our scheme on the IBM quantum cloud, verifying its noise
robustness and illustrating its potential for benchmarking large quantum processors with smaller

ones.

A universal quantum computer can naturally simu-
late the real-time dynamics of any closed finite dimen-
sional quantum system [1], a challenging task for classical
computers. While there has been tremendous progress
in quantum computing hardware development, includ-
ing the landmark quantum supremacy /advantage exper-
iments with superconducting and optical systems [2-5],
state-of-the-art quantum hardware can still only control
tens of noisy qubits [2, 5-7]. That is insufficient for
the implementation of fault-tolerant universal quantum
computing, which requires 10% or more physical qubits
per logical qubit to suppress the physical error [8]. It
is more pragmatic in the near term to focus on the
noisy intermediate-scale quantum (NISQ) regime and
utilise hybrid methods, which run a shallow circuit with-
out implementing full error correction [9]. Nevertheless,
most quantum simulation algorithms, whether targeting
NISQ or universal quantum computers, generally entails
a number of physical or logical qubits no smaller than
the problem size [10-12]. Given that large-scale fault-
tolerant quantum computers do not yet exist and there
will be significant size constraints even on NISQ devices
for the foreseeable future, a pressing question is how to
solve large practical problems with limited quantum de-
vices [13, 14].

One possibility is to leverage the classical methods that
have been developed to solve quantum many-body prob-
lems, wherein the most successful one is perturbation the-
ory. This method divides the Hamiltonian into a major

but easily solved component and a weak but potentially
complicated counterpart, in which case the full dynamics
can be expressed as a series expansion [15-20]. However,
the ability to solve the major component and compute
the higher-order expansions limits the use of perturba-
tion theory in classical simulation of general many-body
problems.

Here, we propose perturbative quantum simulation
(PQS), which directly simulates the major component
on a quantum computer while perturbatively approxi-
mate the weak interaction component. Since there is
no assumption on the size or interaction of the major
component, PQS potentially goes beyond the conven-
tional perturbative approach, and it could simulate clas-
sically challenging systems, such as large systems with
weak inter-subsystem interactions or intermediate sys-
tems with general interactions. Compared to universal
quantum computing, PQS has limited power for arbitrary
problems; yet, the perturbative treatment of the weak
component greatly reduces quantum resources compared
with conventional quantum simulation. Notably, PQS
runs a shallower circuit with fewer qubits, making it more
noise-robust and thus useful in benchmarking large quan-
tum devices with smaller ones. Our experiments on the
IBM quantum devices demonstrate a significant improve-
ment of the simulation accuracy over direct simulation.

For eigenstate problems, there are considerable hybrid
schemes that combines different classical methods, such
as density matrix embedding theory [21-24], dynamical



mean field theory [25-27], density functional theory em-
bedding [28], quantum defect embedding theory [29, 30],
tensor networks [31, 32], entanglement forging [33, 34],
virtual orbital approximation [35], quantum Monte
Carlo [36-41], etc. Our work instead focuses on the
different but meaningful dynamics problem, which is
based on perturbation theory and fundamentally from
existing ones with different assumptions, limitations, or
applications [42].

Background. —We consider to simulate the dynamics
of a quantum many-body system. Suppose the whole
system is divided into L subsystems according to topo-
logical structures or degrees of freedom, like the clustered
molecules [43], the Hamiltonian is H = H'°°+ V" where
H'°¢ = Y~ Hj is the local strong interaction with each
H,; acting on the Ith subsystem, and Vit = > AVt
is the weak perturbative interaction between the subsys-
tems. Here Vjint are different types of interactions with
real amplitudes A;.

To simulate the dynamics of U(t) = , & represen-
tative perturbation treatment is via Dyson series expan-
sion as

e*th

t
Ut) =1 fi/ dt, et (ti—to)y/int o —iH'**(ti—to) 4
to
(1)

Then U(t) becomes a linear combination of trajectories
consisting of different sequential unitary operators.
When the local Hamiltonians {H;} are solvable, one
can further represent the expansion graphically, such
as via Feynman diagrams, and compute expectation
values of the time evolved state with different graphs
corresponding to different expansion terms. A major
limitation of perturbation theory is the assumption of
the simple hence solvable local Hamiltonians, which fails
when {H;} become strongly correlated, as that happens
in realistic systems. Indeed, even if no interaction
under certain partitioning strategy with V"* = 0, no
classical methods exist that can efficiently simulate
the dynamics of general Hamiltonian H'°® = > Hi,
otherwise the computational class of bounded-error
quantum polynomial time collapses. In the following,
we introduce the framework of PQS, based on which we
propose an explicit algorithm mimicking Dyson series
expansion and show its optimality over more general
theories.

Framework.—Here, we focus on general ways that
realise the joint time evolution channel U(p,T) =
U(T)pU(T) by applying only local operations on each
subsystem separately. To do so, we first introduce the
concept of local generalised quantum operations

®(p) =Trp [U(p®0) (0]) VT]. (2)

Here we denote ancillary states [0) (0|, = [0) (0|5, ®---®

0) (0] 5, and unitary operators U = Uig, ® --- ® Urg,
and V=Vig, ®@---®Vyg,, where Ujg, and V;g, repre-
sents the operators acting only on the subsystem j and
the jth ancilla. While the operation ®(p) is nonphysi-
cal in general, it can be realised effectively using local
operations and postprocessing (see [44]). Note that ®(p)
reduces to local quantum channels when U = V. The key
idea of PQS theories is to decompose the joint evolution
into a set of generalised quantum operations, which sep-
arately act on each subsystem. By choosing a spanning
set of {®y} properly, an infinitesimal evolution governed
by the interaction V(&t)[p] = VI (5t)pV"*(6¢)T can be
decomposed as

V()] = Z(p) + 6ty arPr(p) 3)
k

where Vint(§t) = e~1V"""% represents the interacting uni-
tary operations within duration ¢, and Z is the identity
operation.

Next, we consider a Trotterised joint evolution as
U(T) = [V(3t) o @, U(5t)]7/%. Using the decomposi-
tion in Eq. (3), we can then expand U(T) as a series
of different trajectories. Here, each trajectory is defined
by which operations act at each time, including the lo-
cal time evolution U;(dt) of each subsystem and one of
the generalised quantum operation ®(p) that on average
emulates the nonlocal effect of V", The whole evolution
U(T) is now decomposed as a linear combination of local
operations that act separately on each subsystem, which
can be effectively realised in parallel. The expectation
value of an arbitrary state can be obtained from local
measurement results (see Sec. IB in [44] for the deriva-
tion and implementation).

The above discretised scheme assumes a small discrete
timestep and requires to apply the operations at each
time step 0t, which is unnecessary since the effect of the
weak interacting operation V(dt) in a short time is close
to the identity. We address this problem by stochasti-
cally applying the operation ®; depending on the am-
plitude of its associated coefficient |ay|. Taking a short
time limit §t — 0, we generate each trajectory according
to the decomposition in Eq. (3) and stochastically realise
the joint time evolution with operations separately acting
on each subsystem. The average of different trajectories
reproduces the joint dynamics under U (7). Note that
the number of generalised quantum operations required
to realise the joint evolution scales proportionally to the
interaction strength as O(3, |o|T), and on average the
stochastic implementation scheme is proven to be equiv-
alent to the discretised scheme (See Sec. IC in [44]).

By applying our algorithm, the whole simulation
process is now decomposed into the average of different
ones, each of which only involves operations on the
subsystems. Thus, we can effectively simulate nL qubits
with operations on subsystems with only O(n) qubits,
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FIG. 1. Dynamics simulation of interacting (a) bosons, (b) fermions, and (c¢) quantum spin systems with different topologies.
Gray dashed lines in site-edge diagrams manifest subsystem partitioning for PQS. We group 8 qubits as a subsystem to
simulate N = 16-qubit quantum systems using most 5 x 10° samples. Solid lines represent exact results from direct simulation.
(a) Quantum walk (QW) of spinless bosons on a 1D array in the large onsite repulsion limit (see Sec. VI in [44] for the
Hamiltonian). Two identical bosons are initially excited at the centre. (al) Density spreading (f;) = (E;B]) with bosonic
operators b under time evolution. (a2) The density distribution at site 9 - 13 (labelling from left to right). The nearest-
neighbour Lieb-Robinson bounds (dashed) capture the density spreading [6, 45, 46]. The inset shows the errors for the average
density and the average density-density correlator p;; = <IA)IZA);IA)ZIA)J) with respect to the exact results. (a3) Boson spatial
antibunching in QW. The normalised correlator pi;/p;;™ at different ¢ [47, 48]. (b) Separation of charge and spin density

(CSD) in a 1D Fermi-Hubbard model H = —J 3, | (é;oéj.u,g + h.c.) + Uty + 225, Riofye (6o, 6;701 fermionic
operators with spin o, U = J = 0.5) [48]. Left: two partitioning strategies for small and large on-site potential U. The initial
state is the ground state of a non-interacting Hamiltonian with quarter filling (Ny = Ny = 2), in which the CSD are generated
in the middle of the chain at ¢ = 0 [49-51]. (bl) The separation of charge (blue square) and spin (red diamond) densities. We
. . . N . ~ ~ .
characterise the separation speed from the middle as k+ = > 77", [7 — (N +1)/2| ((Ry,+) £ (f;,4)) for charge (+) and spin (—)
degrees of freedom with (n;) = (éj@) (N = 8). The inset shows the errors under evolution. (b2) The difference of CSD under
evolution. The relative separation is initially set as 0. (c) Information propagation of correlated Ising spin clusters with power
law decay interactions H}°° = > Jig6liol; +h32, 605 (Jij = li— 417" in the subsystems and interaction V'™ = 67 y63 ; on
the boundary. The initial state is prepared as |¢o) = 6§ \0>®N. (cl) The signal of quasiparticle excitations at different sites,
where the propagation is faster than the nearest-neighbour Lieb-Robinson velocity (dashed) [45, 52, 53]. (¢2) The dynamics
of the correlation function Cq = (6563, 4) — (63)(65,4). The inset shows the errors for the averaged quasiparticle excitations
density and correlation functions.

and this also offers noise robustness of our method (see involve difficult-to-implement operations in experiments.

Sec. VII in [44]). Note that local dynamics U (t) could be =~ Here, we address this problem by developing an explicit

implemented with any Hamiltonian simulation methods, decomposition with only local unitary operations. Specif-

such as product formulae [54, 55] or quantum signal ically, we consider a natural expansion of V(dt) as

processing [56, 57], and our algorithm is compatible with . int int

both near-term and fault-tolerant quantum computers. V(3t)[p] = Z(p) —idt Z Aj (V] p =V ); (4)
J

Eaxplicit protocol.—While the decomposition of Eq. (3) ~ where all Vjint are tensor products of unitaries, and hence
holds in general for a (over)complete set of {®y}, it may each term Z(p), Vjint p, or iji“t corresponds to a specific



generalised quantum operation. We emphasise that the
expansion only involves unitary operations, and avoids
the computational cost in diagrammatic perturbation
theory, which greatly simplifies the implementation. We
further prove in Theorem 3 in [44] that the explicit de-
composition corresponds to the infinite-order Dyson se-
ries expansion [58].

Implementing the interaction V perturbatively using
generalised quantum operations introduces a sampling
overhead C'. Specifically, when measuring the output
state of the perturbatively simulated state, the measure-
ment accuracy is ¢ = O(Co/y/Ny) given N, samples
in contrast to ¢ = O(1/v/N;) in direct simulation.
Here, o is the standard deviation introduced from the
expansion, normally less than 1. Assuming the general
decomposition of Eq. (3), the overhead is C' = eXox lo#IT,
Different decomposition of Eq. (3) would lead to different
coefficients and hence different overhead. We further
prove that the explicit decomposition in Eq. (4) has
the minimal simulation cost, provided that the Pauli
operators of each V; satisfy a certain mild condition
(see Theorem 2 in [44] for the proof of optimality and
illustrative examples here in [59]). Since the overhead
increases exponentially with A\p = >, | AT, PQS cannot
simulate arbitrary systems with strong V" or long
time T'. Yet, the overhead is independent of the initial
state, size and interaction strengths of the subsystems.
With a constant Ap, PQS can be applied to study
intricate quantum many-body systems with strong
subsystem interactions. As shown shortly, PQS can be
used to probe interesting physical phenomena directly,
benchmark NISQ processors, simulate large quantum
circuits, etc.

Numerical and experimental results.—We apply PQS
to study many-body physical phenomena in different sys-
tems with different topological structures. As shown in
Fig. 1, we investigate (a) the quantum walk of bosons on a
one-dimensional lattice, (b) the separation of charge and
spin excitations of fermions with two-dimensional topol-
ogy, and (c) the correlation propagation of quantum spin
systems of two clusters. We design appropriate partition-
ing strategies, in which the whole system consists of two
subsystems and each subsystem consists of 8 qubits. In
each example, we present the corresponding task-specific
partitioning strategy of the quantum systems. Using the
explicit decomposition strategy, we exploit 8 + 1 qubits
to simulate each subsystem and classically emulate the
quantum system with numerical results shown in Fig. 1.
All unique features are detected just as we directly sim-
ulate the whole system. Indeed, the numerical results
align with those of the exact simulation, thus verifying
the reliability of the theory. We refer to Sec. VI in [44]
for other physical systems, including the long-range spin
chains, and simulation details.

These numerical tests are restricted to 16 qubits since
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FIG. 2. Dynamics simulation of 1D 48-site spin chains.

The subsystem and interaction Hamiltonians are H°¢ =
> 616 i1 + 5,67, and V™ = fi67 N67\1 1, Tespectively,
and the interactions on the boundary are randomly gener-
ated from [0, J/2]. (a) The average magnetisation (in blue)
~ >, (67) and nearest-neighbour correlation function (in red)
ﬁ >, (676%1), compared with TEBD method as a bench-
mark. The inset illustrates the geometry of the spin sys-
tems and the partitioning strategy where we group 8 adjacent
qubits as subsystems. (b) The errors for the average mag-
netisation and correlation using 5 x 10° samples.

the exact simulation of larger quantum systems becomes
exponentially costly. To benchmark PQS for larger
systems, we investigated a 1D 48-site spin chain with
nearest-neighbour correlations, using the time-evolving
block decimation (TEBD) method with matrix product
states as the reference. Asshown in Fig. 2, our simulation
results coincide with those of TEBD, which again verifies
the reliability of PQS for simulating multiple subsystems.
Intriguingly, PQS only needs to manipulate 8 + 1 qubits
to recover the joint dynamics of the 48-qubits system.

We only consider the time evolution of small and clas-
sically simulable quantum systems for benchmarking our
method. However, for all the examples considered here,
since the simulation cost is independent of the interac-
tion and initial states of the subsystems, PQS also works
when tackling a much larger subsystem with more com-
plicated subsystem interactions. In practice, when we
increase the subsystem size to around n = 50 qubits and
consider general strong interactions, PQS could outstrip
the capabilities of classical simulation and reliably probe
properties of quantum systems with a small-size quantum
processor.

In contrast to direct simulation, PQS could also be
more robust to noise attributed to the reduction of quan-
tum sources [61]. To verify such an advantage, we ex-
perimentally study the dynamical phase transition of an
8-qubit Ising model with nearest-neighbour correlations
on IBMQ hardware. By dividing the system into two
subsystems, we use a 4 4+ 1-qubit processor to implement
our PQS algorithm and compare the results with con-
ventional direct simulation with 8 qubits, as shown in
Fig. 3. For a total evolution time 7' = 1, a first-order
Trotterisation is used, which has four steps and a negli-
gible Trotter error. Fig. 3(d1,d2) show the magnetisation
and Loschmidt amplitude in ferromagnetic phases. The
experimental results clearly demonstrates PQS achieves
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FIG. 3. Implementation and experimental results of the
dynamical phase transition of 8 interacting spins. The ini-
tial state |10) = |0)®® is evolved under 8-site Ising Hamilto-
nian H = 37,6765, +0.53 0,657 with T'= 1. (a) Quantum
circuit for 8-qubit simulation based on first-order Trotterisa-
tion with four steps to = 1/4. (b) The circuit block for a
single-step evolution for time ¢ with parallelisation. (¢) An
example for the implementation of PQS to simulate 8-qubit
system with operations on 4 + 1-qubit. The circuit blocks
are similar as that in (b) with 4 qubits. When a gener-
alised operation is inserted into a Trotter step, we divide
the step into two evolution and insert the operation between
that. (d) The magnetisation and Loschmidt amplitude in fer-
romagnetic and paramagnetic phases. Here, the Loschmidt
amplitude G(t) = |<¢o|e_th|¢o>|2 characterises the dynami-
cal echo back to the initial state [60], as an indicator of dy-
namical phase transition when it decreases to 0. We compare
the results of exact simulation (dashed line), PQS (numer-
ics, circle), PQS using IBMQ (5 qubits in (c), upper triangle)
and the direct simulation using IBMQ (8 qubits in (a), lower
triangle). We also show the results using measurement error
mitigation for PQS (solid square) and direct simulation (solid
diamond).

higher simulation accuracy than direct simulation. It is
also found that with measurement error mitigation, PQS
approaches the exact result [62], and outperforms direct
simulation consistently. More experimental results and
detailed discussions on the implementation and noise ro-
bustness of PQS can be found in Sec. VII in [44].

Conclusion and discussion.—OQur theoretical, numer-

ical, and experimental results indicate that quantum
simulation and perturbation theory are not only compat-
ible but complementary. The PQS algorithm leverages
quantum computers to simulate the major component of
the Hamiltonian, alleviating the constraint of a classical
perturbation method, and uses classical perturbation
to approximate the interaction, circumventing limited
quantum resources in near-term or early-stage fault-
tolerant quantum computers. Since PQS is a hybrid
method that combines quantum computing and classical
perturbation theory, it inherits their advantages as well
as their limitations, such as high-dimensional systems
with strong correlations V" and long time 7. Yet,
PQS is applicable to intermediate-size systems, such
as a square lattice with tens to hundreds of qubits,
and it is particularly useful for large systems with
weak inter-subsystem interactions, such as (quasi)
one-dimensional systems and clustered subsystems.
Our numerical and experimental results demonstrate
wide applicability of PQS methods for studying new
physical phenomena, and its potential application in
benchmarking large quantum processors with small ones,
an emerging demand in the NISQ era. Meanwhile, we
could integrate other classical perturbation treatments
of the interaction with quantum computing, such as the
one that expands according to the interaction strength.
We might also consider other hybrid approaches, such as
tensor networks, to effectively solve complex many-body
systems while alleviating the simulation cost. One may
also apply the idea of PQS to more efficiently emulate
large quantum circuits using smaller ones [32, 63—67].
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