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We study the energy spectrum of moiré systems under a uniform magnetic field. The superlattice
potential generally broadens Landau levels into Chern bands with finite bandwidth. However, we
find that these Chern bands become flat at a discrete set of magnetic fields which we dub “magic
zeros”. The flat band subspace is generally different from the Landau level subspace in the absence
of the moiré superlattice. By developing a semiclassical quantization method and taking account
of superlattice induced Bragg reflection, we prove that magic zeros arise from the simultaneous
quantization of two distinct k-space orbits. For instance, we show the chiral model of TBG has flat
bands at special fields for any twist angle in the nth Landau level for |n| > 1. The flat bands at
magic zeros provide a new setting for exploring crystalline fractional quantum Hall physics.

The advent of moiré materials has opened a new regime
for the study of Bloch electrons under a magnetic field
[1–5]. Moiré materials feature a superlattice period that
is much larger than the atomic spacing and can be com-
parable to the magnetic length at B = 1T (26nm). More-
over, the superlattice potential that creates mini-bands is
weak and slowly varying. As a result of both features, the
interplay between Landau quantization and superlattice
potential can give rise to a complex energy spectrum and
novel quantum phenomena not found in ordinary solids
[6–14].

In this work, we study the energy spectrum of two-
dimensional moiré materials under a magnetic field B.
Our work mainly focuses on the case of a superlattice
potential not too strong relative to bandwidth such that
the corresponding moiré bands can be treated by nearly
free electron approximation. The energy spectrum as a
function of magnetic field displays three distinct regimes.
At very small magnetic fields, a set of Landau levels (LLs)
arise from the standard semiclassical quantization [15] of
cylotron orbits that follow the constant energy contour
of moiré bands. In the opposite limit of very large fields,
a different set of LLs which come from “free” electrons
without moiré effects are recovered. In the wide range
of intermediate magnetic fields, the competition between
magnetic breakdown and superlattice induced Bragg re-
flection at the mini Brillouin zone boundary leads to a
new type of energy spectrum with remarkable universal
features, which is the main finding of this work.

We develop a general method to calculate the Landau
spectrum on the moiré superlattice. We show that at in-
termediate magnetic fields, the LLs of free electrons are
generally broadened by Bragg scattering off the moiré su-
perlattice, or in a complementary way, the LLs of Bloch
electrons are broadened by magnetic breakdown near the
mini Brillouin zone boundary. Remarkably, flat bands
are found at a discrete set of magnetic fields, which we
dub “magic zeros”. Plotted in the (B,µ) plane where µ is
the chemical potential, each zero occurs at the intersec-
tion of two fictitious LL fans, corresponding to the simul-
taneous quantization of two distinct k-space orbits. The
corresponding density of states divergence predicted by

our theory directly manifests as a peak in the compress-
ibility dn/dµ. Alternatively, LL widths can be measured
directly by STM [12] and inferred from inter-LL optical
transitions [16]. One application is chiral twisted bilayer
graphene (TBG), which we find has magic zeros in LLs
for |n| > 1 at all twist angles and not just the discrete
set of magic angles [17].

Importantly, we show the existence of these flat bands
is robust and not limited to the particular known case of
Schrödinger or Dirac LLs perturbed by a weak potential
V0 � ωc (with ωc the cyclotron frequency)[18]. In con-
trast, our theory of magic zeros is non-perturbative in
V0/ωc and applicable to generic energy dispersions. We
show the flat band at a magic zero spans a Hilbert space
that is generally distinct from the LL subspace of free
electrons. The physics of flat bands at magic zeros con-
trasts and complements the broadening and Hofstadter-
type splitting of LLs at generic B fields.

We consider a two-dimensional Bloch electron in a uni-
form magnetic field:

H = H0(p− eA) + V (r) (1)

where H0(p) denotes the energy dispersion in the absence
of moiré superlattice and A is the vector potential.

V (r) =
∑
q

V (q)eiq·r + c.c. (2)

denotes a periodic moiré potential (~ = 1). As the su-
perlattice potential in moiré materials is slowly varying,
V (r) is well approximated as a sum of a few lowest lead-
ing harmonics.

Depending on the form of H0 and V , H describes a
wide variety of moiré materials. In the case of semi-
conductor transition metal dichalcogenide (TMD) het-
erostructures such as WSe2/WS2, H0(p) = p2/2m where
m is the effective mass near the band edge of TMD mono-
layer, and the triangular symmetric potential V (r) is
composed of three Fourier components of equal magni-
tude at wavevectors related by symmetry [19]. In the
case of graphene on a one-dimensional patterned dielec-
tric superlattice, H0(p) = vp · σ is the Dirac Hamilto-
nian of graphene, and V (r) = V0 cos(qx) involves a single
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FIG. 1. DOS in a periodic potential and magnetic field for
Schrödinger (a,c) and Dirac (b,d) electrons. A few prominent
“magic zeros” are circled, robust features where the band-
width vanishes. (a,b) Exact diagonalization for a 1D periodic
potential. (c,d) Perturbative results for a 2D six-fold symmet-
ric potential. Parameters: (a) V0 = 15 meV, m∗ = 0.2me, (b)
V0 = 70 meV, v = 106 m/s, (c) V0 = 4 meV, m∗ = 0.2me, (d)
V0 = 25 meV, v = 106 m/s. Period a = 13 nm.

wavevector only [6]. In both cases, the periodic poten-
tial V (r) results in mini-bands, as manifested in resis-
tive peaks at commensurate densities. Under a magnetic
field, transport measurements observed complex patterns
in the LL spectra.

The first indication of magic zeros can be found in
the regime where the superlattice potential strength is
smaller than the cyclotron energy ωc of free electrons [18].
In this perturbative regime, V (r) lifts the infinite degen-
eracy within a LL. The projection of periodic potential
into the nth LL of Schrödinger electrons can then be
written [18, 20] (choosing symmetric gauge A = 1

2B×r)

V eff
n =

∑
q

V (q)e−q
2l2B/4Ln(q2l2B/2)eiq·(−π̃y,π̃x)l2B (3)

where lB = 1/
√
eB is the magnetic length, π̃ = p+ eA,

and Ln is the nth Laguerre polynomial. Note [π̃x, π̃y] =
−ieB. Notably, when all wavevectors are of equal mag-
nitude q, the LL projected potential in Eq. (3) vanishes
at n values of qlB due to the Laguerre polynomial zeros,
leading to a flat Chern band despite the presence of pe-
riodic potential. In the case of Dirac electrons, the nth
LL wavefunction is a two-component spinor and the pro-

|n| qlB (Schrödinger case) qlB (Dirac case)

1
√

2 2

2 1.08, 2.61 1.24, 3.24

3 0.91, 2.14, 3.55 0.99, 2.36, 4.18

4 0.80, 1.87, 3.01, 4.34 0.86, 2, 3.26, 4.96

5 0.73, 1.68, 2.68, 3.77, 5.03 0.76, 1.77, 2.84, 4.03, 5.65

TABLE I. Values of qlB for which the nth LL has zero band-
width for weak potential, where q is the potential wavevector
and lB the magnetic length, for Schrödinger and Dirac elec-
trons. The nth level exhibits |n| magic zeros.

jected potential is given by [21]: Ṽ eff
n = (V eff

|n| + V eff
|n|−1)/2

for n 6= 0. Zeros occur in this case as well. Magic zeros
for the first few LLs are listed in Table I, and the per-
turbative spectrum for a six-fold symmetric potential is
shown in Fig. 1c-d.

Remarkably, we find that the magic zeros persist be-
yond the perturbative regime, as indicated by the exact
diagonalization (ED) of the energy spectrum of Eq. (1)
in Fig. 1a-b for the case of a potential V0 cos(qx). At
the density of states (DOS) peaks shown, the bandwidth
is zero within numerical accuracy, even in the regime
V0/ωc ∼ 3. This result is truly all-orders in V0/ωc, as
indicated by the following: (i) magic zeros deviate from
the Laguerre polynomial zeros and (ii) the wavefunction
at the zeros differs from the LL wavefunction at V (r) = 0
(see SM).

In order to uncover the origin of these zeros, we de-
velop a semiclassical approach which places no restric-
tions on V0/ωc. Moreover, this approach does not rely
on a specific form of energy dispersion H0(p), and thus
is applicable to a wider range of systems, such as bilayer
graphene with trigonal warping. The starting point for
the semiclassics is to consider a Bloch wavepacket whose
position and momentum are governed by the equations

ṗ = −eṙ ×B, ṙ = ∇E(p), (4)

where E(p) is the energy dispersion including the effect
of the periodic potential.

When the potential V (r) is absent, electrons at an en-
ergy ε follow the original Fermi surface H0(p) = ε. When
the potential is strong, electrons follow the reconstructed
Fermi surface E(p) = ε where p lies in the mini Brillouin
zone. In both cases, semiclassical quantization predicts
infinitely degenerate LLs whenever the real-space orbits,
which are simply p-space orbits rotated by π/2 and scaled
by 1/B, enclose integer flux [15].

In between these two limits, magnetic breakdown [22–
24] broadens the LLs. Let us consider an intersection
of two original Fermi surfaces at the first Bragg plane
in the repeated-zone scheme. In a magnetic field, there
are two incoming and two outgoing electron wavepackets.
Thus we may treat the intersection as a two-level Landau-



3

a) b)

eiχ

eiξ1

1
ky

kx

lens orbit

eiξ2

eiχ2 q/2-q/2

0.08 0.15

0.7

1.2

B
E

E 
 (q

 / 
m

)
2

B (q  )2

FIG. 2. (a) Fermi surface in the repeated zone scheme in the
presence of a 1D potential V0 cos(qx). The network model
(dashed lines) involves scattering at intersections and phases
picked up on links. (b) Intersecting Landau fans due to the
original orbit (dashed lines) and lens orbit (blue), and semi-
classical DOS (density plot) with V0 = 0.4, q = 2,m = 1.

Zener system with a scattering matrix U . When B is
sufficiently small, electrons follow on the reconstructed
Fermi surface and occasionally break through, and U is
mainly diagonal. When B is large, electrons follow the
original Fermi surface and occasionally Bragg scatter, so
U is mainly off-diagonal.

In general, the scattering matrix takes the form

U =

(√
1− Pe−iϕ̃S −

√
P√

P
√

1− Peiϕ̃S

)
(5)

where the magnetic breakdown probability is

P = e−2π/δ, δ = 16eBv1v2 sinα/E2
gap, (6)

v1 and v2 are incoming electron velocities which differ
by an angle α, Egap = 2V0 is the band gap at the Bragg
plane, and ϕ̃S = ϕS−π/2 with ϕS = π/4− (ln δ+1)/δ+
arg Γ(1 − i/δ), the so-called Stokes phase [22, 25] (see
SM). We note e−iϕ̃S only depends weakly on δ, interpo-
lating between i and i1/2. Eqs. (5) and (6) are derived
using the nearly free electron approximation assuming
that the effect of the potential on the band structure is
only significant near Brillouin zone boundary. Note that
P goes to zero quickly at low fields and approaches 1 at
high fields.

In the case of parabolic bands, δ reduces to
8εωc sinα/V 2

0 . For bilayer TMDs with ε ∼ 20 to 40 meV,
q ∼ kF (kF is the Fermi wavevector), and ωc ∼ 2 meV
at 10 T, P ∼ 0.1 to 0.3. For graphene in a 1D potential
[6], taking V0a/vF ∼ 1 to 10, a ∼ 50 nm, q ∼ kF , and
B ∼ 10 T gives P ∼ 0.01 to 0.95. Evidently, realistic
values of P in moiré materials require that the effects of
magnetic breakdown are properly taken into account.

To properly account for magnetic breakdown, we con-
sider a network model comprised of the original Fermi
surfaces in the repeated zone scheme where wavepacket
motion away from the intersections is free electron-like

while scattering at the intersections is given by the
Landau-Zener unitary U . Let us first consider net-
works in which neighboring Fermi surface intersect at
two points as in Fig. 2a. This is similar in spirit to mod-
els considered by Pippard [26, 27]; we refer to [28–30]
for other examples of network model constructions. We
refer to the original Fermi surfaces defined by H0(p) = ε
as the “original orbit” and their intersection as the “lens
orbit”.

To understand the magic zero condition in the semi-
classical approach, it is instructive to consider the scat-
tering matrix across a lens orbit, which is given by

W =
1

(1− P )ei(ξ1+ξ2+2ϕ̃S) − 1

(
Peiξ1 κ

κ Peiξ2

)
(7a)

κ = e−iϕ̃S
√

1− P (ei(ξ1+ξ2+2ϕ̃S) − 1), (7b)

where ξ1, ξ2 are the phases acquired along the links of
the lens orbit. W describes scattering between incoming
and outgoing states across the lens orbit. When W is
diagonal, incoming states scatter into outgoing states in
the same zone.

We note that when ξ1 + ξ2 + 2ϕ̃S is an integer mul-
tiple of 2π, W is diagonal, indicating the decoupling of
neighboring orbits in the network. This is reminiscent of
constructive interference in a Fabry-Pérot optical cavity
[8, 31], where the lens orbit plays the role of the cav-
ity. The decoupled orbits are valid eigenstates when the
phase around the original orbit is an integer multiple of
2π. Under these conditions, the network model supports
an extensive set of states which are localized and disper-
sionless, i.e. a flat band.

In brief, the flat band conditions, in terms of the phases
shown in Fig. 2a, are

∑
ξi+2ϕ̃S ∈ 2πZ and

∑
(ξi+χi) ∈

2πZ. The phases satisfy:∑
orig.

ξi + χi = l2BS0 + 2πγ,
∑
lens

ξi = l2BS1 + 2πγ (8)

where S0, S1 are the p-space areas of the original and
lens orbits, respectively. We have added the topological
Maslov contribution γ = 1/2 − ϕBerry/2π which is cus-
tomary in semiclassical treatments for closed orbits de-
formable to a circle [32–35], with Schrödinger and Dirac
electrons having γ = 1/2 and 0 respectively. ϕBerry is the
Berry phase along the orbit.

Combining the above conditions, we find that band-
width zeros occur at the intersection of the two Landau
fans given by

l2BS0 = 2π(n+ γ) (9a)

l2BS1 = 2π(m+ γ − ϕ̃S/π) (9b)

for suitable integers m,n. These equations stipulate that
both the original and lens orbits enclose integer flux, up
to the Stokes phase and Maslov correction. The magic
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zero conditions, i.e. Eq. (9), can be roughly thought
of as Bohr-Sommerfeld quantization conditions for both
the original and lens orbits. In general, a sufficient con-
dition for magic zeros is a Fermi contour with only two
relevant independent semiclassical electron orbits (with
other orbit areas integer linear combinations of these).
For circular Fermi surfaces, these two areas are

S0 = πk2
F , S1 = 2k2

F (cos−1 x− x
√

1− x2), (10)

where x = q/2kF . For this case the intersecting Landau
fans are shown in Fig. 2b.

In the large n and weak potential limit, the semiclas-
sical and perturbative approaches are expected to agree.
Eq. (10) and Eq. (9a) give k2

F = 2(n+ γ)/l2B . Applying
this to Eqs. (9b) and (10) and noting ϕ̃S/π → −1/4 at
weak potential, the values of qlB at which the nth LL
has a magic zero are given by

qlB =
π(n−m− 1/4)√

2n
+O(n−1) (11)

for integers m,n. In the perturbative regime, Eq. (3)
implies that these are the zeros of Ln(q2l2B/2). Indeed,
by applying the large n formula [36]

e−
q2l2B

4 Ln(q2l2B/2) =
cos(
√

2nqlB − π
4 )√

πqlB
√
n/2

+O(n−
3
4 ), (12)

we see that these magic zero conditions derived indepen-
dently are identical. We remark that the phenomenon
of Weiss oscillations [8, 18, 37–40]—superlattice induced
magnetoresistance oscillations—is naturally captured by
the semiclassical approach in this regime (see SM).

So far we have only discussed magic zeros, but the
network model also allows us to calculate the band dis-
persion at generic fields using a transfer matrix approach.
For the network in Fig. 2 due to a 1D potential (we defer
discussion of the 2D case), the transfer matrix eigenval-
ues e±iθ satisfy the relation

cos θ =
sin(ξ + χ) + (1− P ) sin(ξ − χ+ 2ϕ̃S)

2
√

1− P sin(ξ + ϕ̃S)
(13)

where a gauge choice such that ξ1 = ξ2 = ξ and
χ1 = χ2 = χ has been made. The resulting semiclassical
spectrum is shown in Fig. 2b. We show the quantita-
tive agreement with ED in the SM. The LLs alternately
broaden and pinch off at magic zeros, and the correspond-
ing DOS divergences directly manifest as peaks in com-
pressibility dn/dµ (see e.g. Fig. 3b and the SM). Impor-
tantly, we have placed no restrictions on V0/ωc, so our
results are all-orders in conventional perturbation theory.
Moreover, our treatment did not depend on the precise
energy dispersion, and a different dispersion would only
alter geometric details such as Fermi surface areas and
link phases. The existence of magic zeros, which is our
main focus, is robust to all these details.

2 4 6 8
n (10   cm  )12 -2

a) b) dn/dμ

FIG. 3. (a) DOS for chiral limit TBG with V0 = 30 meV,
v = 106 m/s at θ = 1.1◦. Zeros exist at any twist angle. (b)
Noninteracting compressibility as a function of density and
B at T = 0.2 meV. Magic zeros are dark features of high
compressiblity occurring over a finite range of n.

So far we have assumed the Fermi surface intersects
only a single pair of Bragg planes at ±qx̂/2. In moiré
materials made of highly doped semiconductors or met-
als, however, V (r) may have a small wavevector com-
pared to the size of the Fermi surface, resulting in a net-
work many overlaps. An important simplification is that
the gaps at the intersections form a distinct hierarchy

with En
th

gap ∼ V n0 /(vF kF )n−1 at an nth order Bragg plane.
Therefore P has a double-exponential dependence on n
and only a few crossings are active, with the rest com-
pletely avoided (P = 0) or trivial (P = 1). The simplest
scenario is when only the intersections at the first-order
Bragg plane are active. From Eq. (6), for the parabolic
case this requires V 4

0 /(vF kF )3 � ωc sinα2, V
2
0 /vF kF 6�

ωc sinα1 where αj is the intersection angle at the jth
Bragg plane (and α1 ≈ α2 when intersections are close
together). In this “first-order regime” [41], the network
model maps exactly back onto the simplest case of a sin-
gle intersection, Fig. 2a. Therefore the DOS plot is the
same as before, albeit with a slightly restricted regime of
validity.

Let us discuss the extension to 2D potentials, such as
a triangular lattice potential. Strictly speaking, the net-
work model approach is only valid when ϕ, the number of
flux quanta per real-space unit cell, is a rational number
p/q; then the network unit cell is enlarged by a factor of p
and each LL contains p subbands (for coprime p, q) [27].
However, if the enlarged unit cell consists of only original
and lens orbits, they decouple when W becomes diago-
nal, and the flux at a magic zero can be approximated
arbitrarily well by a rational ϕ. Thus magic zeros arise
in this case with identical conditions. When the network
topology has overlapping lens orbits, we conjecture that
magic zeros still arise (see SM). For magic zeros to arise,
the lens orbits of the network model must have equal ar-
eas, which requires wavevectors of equal magnitude. This
is consistent with the perturbative result of Eq. (3).
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We underscore a few necessary conditions for magic
zeros which are frequently satisfied in moiré materials:
(1) a superlattice potential consisting of equal-magnitude
wavevectors must be present, (2) the Fermi surface must
be invariant under the rotational symmetry of the po-
tential, and (3) the potential is not so strong as to sig-
nificantly restructure the bandstructure. Perturbations
which would broaden magic zeros include higher order
harmonics, strain, or anisotropic dispersions.

A natural question is whether TBG [42, 43] exhibits
magic zeros. While our theory based on a scalar moiré
potential does not apply directly, we find magic zeros
exist in the chiral limit [17] at any twist angle; we plot
the noninteracting perturbative DOS and compressibility
in Fig. 3 and include details in the SM.

The flat Chern band at magic zeros provides an
ideal setting for realizing fractional quantum Hall (FQH)
states and other novel states at fractional fillings. For in-
stance, the increased bandwidth away from magic zeros
weakens the Laughlin state and may induce a transition
into metallic states or electron crystals. We leave these
directions to future work.
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