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Recent theoretical and experimental works have explored universal dynamics related to surface
growth physics in isolated quantum systems. In this Letter, we theoretically elucidate that dis-
sipation drastically alters universal particle-number-fluctuation dynamics associated with surface-
roughness growth in one-dimensional free fermions and bosons. In a system under dephasing that
causes loss of spatial coherence, we numerically find that a universality class of surface-roughness
dynamics changes from the ballistic class to a class with the Edwards-Wilkinson scaling exponents
and an unconventional scaling function. We provide the analytical derivation of the diffusion equa-
tion from the dephasing Lindblad equation via a renormalization-group technique and succeed in
explaining the drastic change. Furthermore, we numerically find the same change of the universality
class under a more nontrivial dissipation, i.e., symmetric incoherent hopping.

Introduction. Universal dynamics has been explored
for long years in classical statistical mechanics, and sur-
face growth [1, 2] has been one of the most fundamen-
tal subjects for deepening our understanding of universal
aspects behind the non-equilibrium phenomena. Mini-
mal theoretical models for the classical surface growth
are the Kardar-Parisi-Zhang (KPZ) [3] and Edwards-
Wilkinson (EW) [4] equations, which exhibit universal
dynamical scaling in the surface-height distribution [5, 6].
Recent works found a signature of KPZ universality even
in isolated quantum many-body systems by investigat-
ing two-point spatio-temporal correlation functions nu-
merically [7–14] and experimentally [15, 16]. Instead of
computing the correlation function, a surface-height op-
erator and quantum surface roughness were introduced in
Refs. [17–19] by using the particle-number and spin fluc-
tuations. Considering the particle-number fluctuations of
isolated fermionic and bosonic lattice models, our previ-
ous works [17, 19] found emergence of the Family-Vicsek
(FV) scaling [20, 21], the dynamical scaling of the surface
roughness originally developed in classical surface growth
[1]. As illustrated in Fig. 1(a), this scaling is character-
ized by three exponents α, β, and z, which determine
universality classes of the dynamics [1].

In this Letter, we theoretically tackle a fundamental
and intriguing question: “How does dissipation affect
the universal fluctuation dynamics related to the surface-
growth physics in quantum systems?” We consider open
quantum systems with dissipation obeying the Lind-
blad equation (see Fig. 1(b)). To investigate large-scale
long-time dynamics, we use an exact numerical method
with correlation matrices [22–24] and a renormalization-
group-based analytical technique [25–27]. First, study-
ing free fermions and bosons on a one-dimensional (1D)
lattice under dephasing, we numerically find that the
FV scaling emerges even in the open quantum system
and that the dissipation changes the universality class
from the ballistic class to a class with the EW scaling
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Model α β z
  Edwards-Wilkinson model (EW class) 0.5 0.25 2
  free fermions or bosons (Ballistic class) 0.5 0.5 1
  free fermions + dephasing 0.490 0.245 2.00
  free bosons + dephasing 0.498 0.264 1.91
  free fermions + symmetric incoherent hopping 0.492 0.237 2.07

  free bosons + symmetric incoherent hopping 0.508 0.263 1.94
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FIG. 1. (a) Schematic illustration for the Family-Vicsek
(FV) scaling with the scaling exponents α, β, and z. The
abscissa is time t, and the ordinate is the surface roughness
w(L, t), which is a function of a system size L and time t.
The curves with the same color are the surface roughness
with different system sizes. The roughness grows with tβ for
t � t∗, where the saturation time t∗ scales as Lz. The satu-
rated surface roughness is proportional to Lα. (b) Schematic
illustrations for (i) an isolated system and (ii) an open system
considered in our work. (c) Table for the scaling exponents of
the FV scaling. The first two rows are the previously known
exponents, while the remaining four rows are the main results
in this Letter. We here show the exponents for a staggered
initial state.

exponents (see Fig. 1(c)) and an unconventional scal-
ing function. Second, we analytically explain the change
of the exponents by deriving diffusion equations via the
renormalization-group method. To the best of our knowl-
edge, this is the first analytical derivation of the diffu-
sion equations from the dephasing Lindblad equation.
Third, we use symmetric incoherent hopping as a non-
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trivial dissipation, numerically finding the same change
of the FV scaling exponents and the same unconventional
scaling function. This strengthens the argument that the
diffusive-type FV scaling is universal in open quantum
systems under particle-number conservation. Figure 1(c)
summarizes our results. Finally, we comment on ab-
sence of the FV scaling in Lindblad equations without
the particle-number conservation and discuss experimen-
tal possibilities for observing our theoretical predictions.

Setup. We consider free fermions or bosons on a
1D lattice Λ = {1, 2, · · · , L} with an even number L

of the lattice points. Let âj and â†j be the annihila-
tion and creation operators at a site j ∈ Λ. When
the particles are fermions (bosons), the operators sat-

isfy [âj , â
†
k]+ = δjk ([âj , â

†
k]− = δjk), where we introduce

the (anti)commutator [Â, B̂]± = ÂB̂ ± B̂Â for operators

Â and B̂. We assume that a quantum state at time t,
specified by a density matrix ρ̂(t), obeys the Lindblad
equation [28]:

d

dt
ρ̂(t) = −i[Ĥ, ρ̂(t)]− +D[ρ̂(t)], (1)

where Ĥ and D[ρ̂(t)] are respectively a Hamilto-

nian and a dissipator. The Hamiltonian Ĥ =

−∑L−1
j=1

(
â†j+1âj + â†j âj+1

)
describes coherent dynamics

for the non-interacting particles. In this work, we con-
sider two kinds of dissipators conserving the total particle
number. One is the dephasing dissipator defined by

DDEP[ρ̂(t)] = γ

L∑
j=1

(
n̂j ρ̂(t)n̂j −

1

2
[n̂2
j , ρ̂(t)]+

)
(2)

with a particle-number operator n̂j = â†j âj and a
strength γ of the dephasing. The other is the dissipa-
tor for the symmetric incoherent hopping [23]:

DSIH[ρ̂(t)] =γ′
L∑
j=1

(
R̂j ρ̂(t)R̂†j −

1

2
[R̂†jR̂j , ρ̂(t)]+

)

+γ′
L∑
j=1

(
L̂j ρ̂(t)L̂†j −

1

2
[L̂†jL̂j , ρ̂(t)]+

)
(3)

with the operators R̂j = L̂†j = â†j+1âj and the param-

eter γ′. The first and second terms on the right hand
side are responsible for the incoherent hopping from j to
j + 1 and vice versa, respectively. In this case, we use

Ĥ = −∑L
j=1

(
â†j+1âj + â†j âj+1

)
under a periodic bound-

ary condition.

The physical quantity of interest is surface rough-
ness defined by a variance of a surface-height opera-

tor ĥj =
∑j
k=1 (n̂k − ν) with an initial filling factor ν

[17–19]. This operator was introduced on the basis of
a mathematical correspondence between a classical sur-
face height h(x, t) in the KPZ equation and a sound

mode δn(x, t) in the fluctuating hydrodynamics in 1D
systems. Since correlation functions for ∂xh(x, t) and
δn(x, t) have the same scaling function in the station-
ary processes, one can define an effective surface height
by heff(x, t) =

∫ x
0
δn(y, t)dy in the fluctuating hydro-

dynamics. The surface-height operator ĥj is quantum
extension of heff(x, t). Using this surface-height opera-
tor, we define the surface roughness at a site j ∈ Λ by

wj(t) =
√
〈(ĥj − 〈ĥj〉t)2〉

t
with the quantum statistical

average 〈· · ·〉t = Tr[ρ̂(t) · · · ]. In what follows, we focus on
j = L/2 because the surface roughness grows for longer
time for this choice than the other j and introduce the
notation w(L, t) = wL/2(t) for brevity (see Sec. I of Sup-
plemental Material (SM) [30]).

When the fluctuation of the surface height is scale-
invariant, the surface roughness shows the FV scaling
[1, 20, 21] defined by

w(L, t) = s−αw(sL, szt) ∝
{
tβ (t� t∗)
Lα (t∗ � t).

(4)

Here, the scaling exponents α, β, and z satisfying the
scaling relation z = α/β classify a universality class,
and t∗ is saturation time. Two well-known universal-
ity classes originally found in classical systems are the
KPZ [3] and EW classes [4] characterized by (α, β, z) =
(1/2, 1/3, 3/2) and (1/2, 1/4, 2), which show superdif-
fusive (1 < z < 2) and diffusive (z = 2) transport,
respectively. In quantum systems, free fermions have
(α, β, z) ' (1/2, 1/2, 1) [17, 19], which we call a ballis-
tic class since the dynamical exponent z is unity.

Numerical method. Instead of directly solving the
Lindblad equation, we solve the equations of motion for
two- and four-point correlation matrices [22–24] defined
by Dmn = 〈â†mân〉t and Fmnpq = 〈â†mâ†nâpâq〉t, respec-
tively. As shown in Sec. II of SM [30], we exactly derive
the closed equations of motion, which enable us to access
the long-time universal dynamics in the open quantum
systems. Note that a third quantization and a superop-
erator method are other well-known efficient techniques
to solve the Lindblad equation [31–38], but they are in-
convenient in the dephasing case since this dissipation
generates quartic terms in the thermofield representation.

Solving the equations for the correlation matrices, we
can calculate the surface roughness using the following
formula:

w(L, t)2 =±
L/2∑
m=1

L/2∑
n=1

Fmnmn(t) + (1− νL)

L/2∑
m=1

Dmm(t)

+
ν2L2

4
−

 L/2∑
m=1

Dmm(t)− νL

2

2

. (5)

Here, −(+) sign is for fermions (bosons).

FV scaling under the dephasing. We study how the
dephasing (2) affects the surface-roughness dynamics. In
this model, the dynamics occurs in a sector with a fixed
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FIG. 2. Time evolution of the surface roughness for (a) fermions with γ = 1, (b) bosons with γ = 2, and (c) fermions and
bosons with γ = 0. In the main panel, we show the surface roughness with the ordinate and abscissa normalized by (L/Lref)

α

and (L/Lref)
z with the reference system size Lref = 32 [29]. The estimated exponents (α, β, z) are (a) (0.490, 0.245, 2.00), (b)

(0.498, 0.264, 1.91), and (c) (0.488, 0.500, 0.976) for the fermion and (0.534, 0.503, 1.06) for the boson.

total particle number, and hence, we expect that the sur-
face roughness comprised of the local particle number
exhibits dynamics whose time scale increases with the
system size L. The initial states used here are a stag-

gered state (SS) |SS〉 =
∏L/2
j=1 â

†
2j |0〉, a domain-wall state

(DWS) |DWS〉 =
∏L/2
j=1 â

†
j |0〉, and a uniform state (US)

|US〉 =
∏L
j=1 â

†
j |0〉 with the vacuum |0〉.

Figure 2 shows time evolution of the surface roughness
for (a) fermions with γ = 1, (b) bosons with γ = 2,
and (c) fermions and bosons with γ = 0. The initial
state is SS. From Figs. 2(a) and (b), one can see that the
FV scaling is well satisfied for both fermions and bosons
with the dephasing, and the scaling exponents are almost
the same as those for the EW class. Interestingly, we
find that the scaling function has an unconventional form
being different from the EW equation as discussed in
Sec. III of SM [30] (see also Fig. 4(b)). On the other hand,
the isolated fermions and bosons show the FV scaling
with the ballistic class [17, 19] as shown in Fig. 2(c).
Our numerical results clearly show that the dephasing
alters the universality class from the ballistic class to the
one with the EW-type exponents characterized by the
diffusive dynamics with z = 2.

Next, we investigate dependence of the dynamics on
γ. Figure 3(a) shows the time evolution of w(L, t) for
fermions with γ = 1, 2−1, and 2−2. We find that the sur-
face roughness obeys t0.25 in the late dynamics (t & 1/γ),
which corresponds to the EW exponent. This fact is
clearly seen in the inset of Fig. 3(a). From this result,
we argue that the change of the universality class oc-
curs for infinitesimal dissipation strength γ, which indi-
cates the strong impact of dissipation. To strengthen
our argument, we also study whether the diffusive trans-
port emerges in the dynamics starting from the DWS.
As discussed in Ref. [16], the particle transfer from the
left to right region is used to study the transport prop-
erty. Here, we numerically compute Ptra(t) = (NR(t) −
NR(0))− (NL(t)−NL(0)) with NL(t) =

∑L/2
m=1 〈â†mâm〉t

and NR(t) =
∑L
m=L/2+1 〈â†mâm〉t. If the transport is dif-

fusive, we have Ptra(t) ∝ t0.5. Figure 3(b) shows the time
evolution of Ptra(t) for the fermions with γ = 1, 2−2, 2−4,
and 2−6 in the large system size L = 4096 [39]. This
result demonstrates that, for γ & 2−6, the ballistic be-
havior appears in the early dynamics (1/γ & t & 1) but
the transport eventually becomes diffusive for sufficiently
long time (t & 1/γ). This numerical finding strongly sup-
ports our argument.

We numerically investigate the dependence of the FV
scaling exponents on the initial states. The detailed time-
evolution of the surface roughness is given in Sec. IV of
SM [30]. The obtained exponents are summarized in Ta-
ble I, which shows that the exponents are almost indepen-
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FIG. 3. Dependence of the fermionic dynamics on γ. (a) Time
evolution of w(128, t) for γ = 1, 2−1, and 2−2. The initial state
is SS. In the inset, we normalize the time and the roughness
by 1/γ and 1/γ0.47. This clearly exhibits that β = 0.25, the
signature of the EW class (diffusive dynamics), emerges in
t & 1/γ. (b) Time evolution of Ptra(t) for γ = 1, 2−2, 2−4,
and 2−6. The initial state is DWS, and the system size is
4096. In the inset, we normalize the time and the roughness
by 1/γ. Similar to (a), the diffusive behavior (Ptra(t) ∝ t0.5)
emerges for t & 1/γ.
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dent of the initial states if the initial surface roughness
is small.

Renormalization-group analysis. To understand the
change of the universality class analytically, we use a per-
turbative renormalization-group method [25–27, 42] and
derive effective equations for Dmm and Fmnmn, which de-
termine the surface roughness (5). As derived in Sec. V
of SM [30], when the dephasing strength γ is strong, the
effective equations for the fermions and the bosons be-
come

d

dt
Dmm '

2

γ
(D(m+1)(m+1) +D(m−1)(m−1) − 2Dmm), (6)

d

dt
Fmnmn '

2

γ
(F(m+1)n(m+1)n + F(m−1)n(m−1)n

+ Fm(n+1)m(n+1) + Fm(n−1)m(n−1) − 4Fmnmn)

(7)

for |m − n| > 2. Taking the continuum limit for these
equations, we obtain the one- and two-dimensional dif-
fusion equations, which are responsible for the diffusive
transport. As far as we know, this is the first analytical
derivation of the diffusion equations from the dephasing
Lindblad equation. As discussed in Sec. V of SM [30],
the effective equations show the similar dynamics to the
exact numerical results. Our renormalization-group anal-
ysis can be applied to other Lindblad equations, offering
an interesting method to study the Lindblad dynamics.

Our renormalization-group analysis explains the emer-
gence of the EW exponents. The dynamical expo-
nent z in the FV scaling is related to the correlation
length ξ(t) ∝ t1/z for the surface-height correlation [1].
Since the surface-height operator consists of the particle-
number operator n̂j and the effective equations support
the diffusive particle transport, we expect z = 2. As dis-
cussed in Refs. [17, 19], we have α = 0.5 in typical sys-
tems. Then, the scaling relation leads to β = α/z = 0.25.

While the above method is only for strong γ, in Sec. VI
of SM [30], making several assumptions based on the ex-
ponential decay of the off-diagonal elements of the corre-
lation matrices and focusing on the late stage of the dy-

TABLE I. FV scaling exponents for the dephasing model of
fermions (γ = 1) and bosons (γ = 2) [40]. The obtained
FV scaling exponents are close to the exponents of the EW
class. The fitting error are 3σ error evaluated in the method
of Ref. [41].

Initial state α β z

[fermion]

SS 0.490 ± 0.035 0.245 ± 0.005 2.00 ± 0.15

DWS 0.483 ± 0.061 0.249 ± 0.006 1.96 ± 0.26

[boson]

SS 0.498 ± 0.067 0.264 ± 0.007 1.91 ± 0.29

DWS 0.503 ± 0.036 0.260 ± 0.005 1.95 ± 0.16

US 0.499 ± 0.052 0.262 ± 0.006 1.92 ± 0.23
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FIG. 4. Time evolution of the surface roughness under the
symmetric incoherent hopping. Panel (a) displays the surface
roughness for fermions (γ′ = 2) and bosons (γ′ = 4) obtained
by the Lindblad equation with the symmetric incoherent hop-
ping. The ordinate and abscissa are normalized by (L/Lref)

α

and (L/Lref)
z with Lref = 32, and the estimated values of

the FV scaling exponents are (α, β, z) = (0.492, 0.237, 2.07)
for the fermions and (0.508, 0.263, 1.94) for the bosons. Panel
(b) shows the surface roughness for the four different Lind-
blad equations and the EW equation. The detail of the EW
equation is given in Sec. III of SM [30]. The values of A and
B for the Lindblad equations are determined such that all
the curves in the late stages are collapsed to a single curve
by eye. The result for the EW equation does not match the
other curves for any values of A and B.

namics (t & 1/γ), we derive the same effective equations
without assuming the strong dephasing. This supports
the emergence of the EW scaling exponents for infinites-
imally small dephasing.

FV scaling under the symmetric incoherent hopping.
We next show the emergence of the FV scaling in the
Lindblad equation for the symmetric incoherent hop-
ping (3). The numerical method is similar to that for
the dephasing case, and we use the SS state as an initial
state.

Figure 4(a) displays w(L, t) for the fermions and the
bosons. The FV scaling clearly appears even under the
symmetric incoherent hopping. The estimated scaling
exponents are very close to the EW class. Surprisingly,
as shown in Fig. 4(b), the scaling functions are almost
the same as those of the dephasing Lindblad equations
irrespective of the particle statistics, and the form of the
functions is different from the EW scaling function. Our
findings strengthen the argument that the open quan-
tum systems with the particle-number conservation uni-
versally exhibit the FV scaling with the EW scaling ex-
ponents but with the non-EW scaling functions.

Discussion. We have so far addressed the dissipation
conserving the total particle number, but in general in-
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teractions with environments lead to gain and loss of the
particles. As shown in Sec. VII of SM [30], we numer-
ically solve the Lindblad equation with the in and out-
flow of the particles at all the sites, finding absence of
the FV scaling. We conjecture that the particle-number
conservation can be essential for the emergence of the
FV scaling because it ensures that the time scale of the
surface roughness becomes larger as the system size in-
creases. Another interesting case is a boundary-driven
system, where the particles are injected (removed) at the
left (right) edge, and thus the particles in the bulk are
locally conserved. We will leave exploration of the FV
scaling for this interesting setup.

We discuss experimental possibilities for observing our
theoretical predictions. An experiment under photon
scattering [43] is considered to be well described by the
Lindblad equation for the dephasing (2). Thus, the
change of universality class can be experimentally acces-
sible when one observes dynamics beyond the dephasing
timescale 1/γ. As to the symmetric incoherent hopping,
Refs. [44, 45] theoretically proposed how to realize it ex-
perimentally, and in future the universal scaling may be
explored on the basis of these proposals.

Conclusion. We theoretically studied the surface-
roughness dynamics described by the Lindblad equation
with the two types of dissipation: one is the dephasing,
and the other is the symmetric incoherent hopping. In
both cases, we numerically found the emergence of a clear

FV scaling. In the former case, we analytically elucidated
that the universality class is altered due to the presence of
the dephasing. From these numerical and analytical re-
sults, we argued that the change of the universality class
occurs at infinitesimally small dissipation, suggesting the
substantial impact of dissipation.

Our findings pave an intriguing avenue for exploring
the universal fluctuation dynamics in open quantum sys-
tems. It is interesting to study whether open quan-
tum many-body systems exhibit novel universal dynam-
ics triggered by the interactions. It is also important to
consider other dissipation such as asymmetric incoherent
hopping [23, 46–50], which has close relation to classical
stochastic processes, e.g., an asymmetric simple exclusion
process [51, 52].
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