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Trapped atomic ions are a versatile platform for studying interactions between spins and bosons
by coupling the internal states of the ions to their motion. Measurement of complex motional states
with multiple modes is challenging, because all motional state populations can only be measured
indirectly through the spin state of ions. Here we present a general method to determine the Fock
state distributions and to reconstruct the density matrix of an arbitrary multi-mode motional state.
We experimentally verify the method using different entangled states of multiple radial modes in a
5-ion chain. This method can be extended to any system with Jaynes-Cummings type interactions.

Introduction.—Trapped atomic ion systems are a flex-
ible platform for quantum simulations. High-fidelity
single-qubit rotations and two-qubit entangling gates
have been realized in trapped ion systems [1–6], enabling
spin-based digital quantum simulations [7–11]. Apart
from digital simulations, the Jaynes-Cummings type in-
teractions between ion spins and motional phonons of the
harmonic potential offer a natural platform for analog
quantum simulations of spin-boson coupling [12–18]. We
can also take advantage of combining discrete and con-
tinuous variables for quantum computation based on en-
coding qubits in bosonic modes [19, 20] and demonstrat-
ing hybrid quantum computation [21, 22]. These appli-
cations require coherent manipulation and measurement
of complex bosonic states, and specifically in trapped-
ion systems, motional states with potentially multiple
modes.

Comparing with qubit spin state which in trapped-
ion systems can be measured with less than 0.1% er-
ror [23–27], the motional Fock state distributions, i.e.,
the probabilities of the state in each motional Fock state
basis, cannot be measured directly: the states need to
be mapped onto qubit spin states. For single-mode mo-
tional states, by driving Jaynes-Cummings type inter-
actions, the Fock state distributions have been charac-
terized [28] and the density matrix as well as Wigner
functions of non-classical motional states have been re-
constructed [29–32]. With multiple motional modes, one
cannot simply measure each mode and then combine the
results, since the entanglement between different modes
will be traced out. Several attempts have been made to
resolve two-mode Fock state distributions and to verify
certain types of entangled two-mode motional states, but
these approaches either introduce overhead from phonon
arithmetic operations and multiple rounds of detection
or are not available for normal modes [33, 34]. Meth-
ods for measuring many-mode Fock states remain under
explored.

Here we propose a general method to efficiently deter-
mine the Fock state distributions of an arbitrary multi-
mode motional state in a trapped-ion system by applying
coherent manipulations and joint qubit state measure-
ment on multiple ions, and experimentally demonstrate
the measurement of the Fock state distributions of differ-
ent two-mode and three-mode motional states. We dis-
cuss the theory of reconstructing the density matrix of a
d-mode motional quantum state by extending the single-
mode result in Ref. [29], and reconstruct the density ma-
trix of a 2-mode motional Bell state. This measurement
requires individual Jaynes-Cummings type interactions
and measurements on n-spins, and is a useful tool for
studying the behavior of multiple bosonic modes in any
system that meets these requirements.
Theory.—We briefly describe the effective Hamiltoni-

ans that drive the coherent manipulations between the
spin states |↑〉 and |↓〉 and motional Fock states |n〉 of
ions (for a detailed derivation of these Hamiltonians see
Ref. [35]). In the Lamb-Dicke limit where the motion of
the ion is small compared to the laser wavelength, we can
tune the lasers to drive (anti-)Jaynes-Cummings transi-
tions |↓〉 |n〉 ↔ |↑〉 |n± 1〉, namely blue sideband (BSB)
and red sideband (RSB) transitions:

HBSB = iΩb
(
σ+a

†eiφb − σ−ae−iφb
)

HRSB = iΩr
(
σ+ae

iφr − σ−a†e−iφr
) (1)

where σ+(−) are spin raising(lowering) operators, a†(a)
are motional raising(lowering) operators, and Ωr(b) and
φr(b) are the Rabi frequency and phase of R(B)SB transi-
tions. By applying RSB and BSB transitions simultane-
ously with the same Rabi frequency Ω, one can achieve
a spin-state dependent coherent displacement Hamilto-
nian [36]:

HD = iΩ
(
σ+ae

iφr − σ−a†e−iφr + σ+a
†eiφb − σ−ae−iφb

)
= iΩ

(
σ+e

iφs − σ−e−iφs
) (
a†eiφm + ae−iφm

)
(2)
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where φs = (φb + φr) /2 and φm = (φb − φr) /2.
When the spin state of the ion is the +1-eigenstate of
i
(
σ+e

iφs − σ−e−iφs
)
, the motional state experiences a

displacement operation D
(
Ωteiφm

)
, where t is the total

displacement time. We can apply the operations above to
multiple motional modes and create various non-classical
multi-mode motional states.

After preparing a d-mode motional target state ρ, we
can measure the Fock state distributions of the state,
Pk1,··· ,kd = 〈k1 · · · kd| ρ |k1 · · · kd〉. Here |k1 · · · kd〉 de-
notes the d-mode Fock state basis with kj phonons in the
jth mode. Previous works have obtained 2-mode Fock
state distributions, but this was with the cost of serials
of composite pulses and projection measurements [33].
Based on our ability to do individual gate operations
and detection on each ion, we develop a faster and more
straightforward way to determine the values of Pk1,··· ,kd .
After the target state is prepared and d ions in the chain
are set to |↓〉 state, we drive BSB transitions of the d
modes on d ions (d-mode BSB) separately with different
Rabi frequencies

Hd-mode BSB =

d∑
j=1

iΩj

(
σ+,ja

†
je
iφj − σ−,jaje−iφj

)
(3)

for the same amount of time t. For all 2d joint spin state
configurations, the probability of measuring the ions in a
certain configuration P (t) has the form

P (t) =

∞∑
k1,··· ,kd=0

Pk1,··· ,kd

d∏
j=1

Γj (t) (4)

where

Γj(t) =

{
cos2

(√
kj + 1Ωjt

)
if the j-th spin state is |↓〉

sin2
(√

kj + 1Ωjt
)

if the j-th spin state is |↑〉
(5)

Then the values of Pk1,··· ,kd can be fit from this joint

spin state distribution by using
∏d
j=1 Γj (t) as a basis

set. With motional decoherence, Eq. (4) works as an
appropriate approximation when the motional coherence
time τ � t.

With the ability to fit all Fock state probabil-
ities of a density matrix, we can further deter-
mine the off-diagonal terms of the target state den-
sity matrix. As in Ref. [29], we apply displace-
ment operations D (α) = exp

(
αa† − α∗a

)
on each mo-

tional mode with certain displacement amplitudes and
phases, and then measure the Fock state distributions
of the displaced target state Qk1···kd (α1, · · · , αd) =

〈k1 · · · kd|
∏d
j=1D

†
j (αj) ρ

∏d
j=1Dj (αj) |k1 · · · kd〉. Here

Dj (αj) represents displacement operations on mode j
with displacement amount αj . Assuming the maximum

phonon number of the reconstructed state is nmax, we
displace each mode along a circle,

αj,pj = |αj | exp [i (π/N) pj ] , j = 1, · · · , d (6)

where N = nmax + 1 and pj ∈ {−N, · · · , N − 1}. Then
we perform a d-dimensional discrete Fourier transform of
these (2N)d sets of Qk1,··· ,kd (α1,p1 , · · · , αd,pd) and trun-
cate the summation at nmax:

Q
(l1···ld)
k1···kd =

1

(2N)d

N−1∑
p1=−N

· · ·
N−1∑
pd=−N[

Qk1···kd(α1,p1 , · · · , αd,pd)e−i
∑d

j=1(ljpj)π/N
]

=

nmax∑
n1=max(0,−l1)

· · ·
nmax∑

nd=max(0,−ld)

γ
(l1)
k1n1
· · · γ(ld)kdnd

· ρl1+n1,··· ,ld+nd,n1,··· ,nd
(7)

with

γ
(li)
kini

=
e−|αi|2 |αi|2ki

ki!

min(ki,ni+li)∑
ji=0

min(ki,ni)∑
j′i=0

|αi|2(ni−ji−j′i)+li

· (−1)−ji−j
′
i

(
ki
ji

)(
k′i
j′i

) √
ni!(ni + li)!

(ni − j′i)!(ni + li − ji)!
(8)

where i = 1, · · · , d and ρl1+n1,··· ,ld+nd,n1,··· ,nd
=

〈l1 + n1, · · · , ld + nd |ρ|n1 · · ·nd〉 (See derivations in sup-
plementary material). In Eqs. (7), (8) the values of
Qk1,··· ,kd (α1,p1 , · · · , αd,pd) come from d-mode BSB fit-

ting and γ
(li)
kini

are known once the displacement distances
|αi| are fixed. Therefore each element in the target state
density matrix ρ(l1+n1),··· ,(ld+nd),n1,··· ,nd

can be recon-
structed [37]. In reality we set a maximum cutoff kmax

in Eq. (4) based on the expected input state maximum
phonon number to avoid infinite summation, which sat-
isfies kmax ≥ nmax since displacement operations can po-
tentially increase the maximum phonon number of inter-
est.
Experiment.—We experimentally verify the d-mode

BSB fitting method for d = 2 and 3 and the density ma-
trix reconstruction method for d = 2. The detailed hard-
ware and firmware setup is described in Ref. [3, 38]. As is
shown in Fig. 1, a 5-ion 171Yb+ chain with an average ion
separation of about 5 µm is confined in a micro-fabricated
linear radio-frequency Paul trap [39] with radial motional
modes ω ∼ 2.3 MHz. To avoid cross coupling between
the modes and to reduce the heating effect, the zig-zag
mode and the third radial mode are selected for 2-mode
motional state preparation and measurement, with a fre-
quency separation of about 85 kHz. For 3-mode mo-
tional states we also drive the fourth radial mode, which
is about 50 kHz away from zig-zag mode. The qubit
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rotations and ion-motion coupling transitions are driven
by stimulated Raman transitions using two orthogonal
mode-locked 355 nm picosecond-pulsed laser beams. One
elliptical global beam is shined on all ions and two indi-
vidual addressing beams are tightly focused onto the sec-
ond and third ions and can be steered across the chain
to address the other ions using microelectromechanical
system tilting mirrors.

(b)(a)

Trap surface

kglobal

kindividual

DC
DC

RF

RF

Spin

Mode 1Mode 2

(c)

FIG. 1. (a) Schematic diagram of our surface trap and Ra-
man beam configurations (not to scale). The two individual
addressing beams are focused on the second and third in the
chain and can be tilted to address different ions. (b) Coupling
strength of zig-zag mode, the fourth and the third radial mode
to each ion, with the middle three ions highlighted in dark
blue color. To measure the Fock state population related to a
certain mode, we select the ion with comparatively large cou-
pling strength to avoid slow sideband Rabi oscillations. (c)
Generation sequences of motional Bell state (|00〉 + |11〉) /

√
2

using sideband transitions on different modes.

At the start of the experiment, the ions are laser cooled
using Doppler and EIT cooling to n̄ ≈ 0.3, then the
modes used for experiment are further sideband cooled
to the motional ground state (n̄ ≈ 0.03). The tar-
get motional states are prepared by driving carrier, mo-
tional sideband transitions and push operations of dif-
ferent modes on certain ions (See supplementary mate-
rial), and an example of generating motional Bell state
(|00〉+ |11〉) /

√
2 is illustrated in Fig. 1(c). The coher-

ent displacement operation with controlled distance and
phase is realized by applying the Hamiltonian in Eq. (2)
with the ion spin rotated to the +1-eigenstate of Eq. (2).
The displacement distance is calibrated by applying the
displacement operator to a motional ground state, then
measuring the Cummings collapse and revival of BSB
transition and fitting to a coherent state [28]. After ap-
plying the coherent displacement operation the ion spin
is rotated back to |↓〉 state. Finally we drive the 2(3)-
mode BSB transition and all joint spin state distributions
are recorded. The 2-mode BSB transition is driven by in-
dividual Raman beams addressing the second and third

ions, and the 3-mode BSB transition requires steering one
individual Raman beam onto the fourth ion. Once the
sideband Rabi frequencies of different modes on different
ions are calibrated, the Fock state distributions Pk1,··· ,kd
of either the target state or the displaced target state
can be found using the d-mode BSB fitting method as
described.

We demonstrate the 2-mode BSB fitting by measur-
ing the Fock state distribution of various 2-mode mo-
tional states. In Fig. 2 we show the 2-mode BSB time
scan curves and Fock state distribution fitting results of
motional Bell states (|00〉+ |11〉) /

√
2, (|01〉+ |10〉) /

√
2,

and the product of two coherent states |α1〉 |α2〉, where
|α1| = 0.56 and |α2| = 0.53 are fitted from single-mode
BSB time scan curve. Here we truncate at kmax = 3 to
cover most non-zero Fock state distributions while not
overfitting the data. The uncertainties of Pk1,k2 are ex-
tracted from the covariance matrix of least square fitting.
The fitting result of Pk1,k2 shows an agreement with the
expected values within one standard deviation, thereby
proving that the 2-mode BSB fit method works properly.

To verify the 3-mode BSB fitting, we prepare a mo-
tional W-state (|100〉+ |010〉+ |001〉) /

√
3 then measure

the 3-mode Fock state probabilities. Fig. (3) shows the
time scan curve and the Fock state distribution fitting re-
sults. For the fitting we select the Fock state basis that
is at most one phonon different from |100〉, |010〉 and
|001〉 to avoid overfitting, and the fitting result shows an
agreement with the ideal case within one standard de-
viation. In the Supplementary Materials, we use parity
scans to show the entangled nature of the state. This re-
sult verifies that for higher number of motional modes the
multi-mode BSB fitting can still extract the Fock state
distributions. To reduce the uncertainties of the Fock
state distribution result, one can repeat the experimental
sequence for more times to obtain data sets with smaller
errorbar and less influence from random fluctuations.

We further reconstruct the density matrix of motional
Bell state (|00〉+ i |11〉) /

√
2 up to nmax = 1. To realize

this measurement we apply 16 pairs of displacement op-
erations on 2 modes with different angles in phase spaces
then measure phonon state populations Qk1,k2 (α1, α2).
From all values of Qk1,k2 (α1, α2), we use Eq. (7)(8) to re-
construct the density matrix. In Fig. 4 we show the real
and imaginary part of the reconstructed density matrix
of (|00〉+ i |11〉) /

√
2 with the uncertainties of each ele-

ment. The reconstructed density matrix has the expected
behavior ρ00,11 = −ρ11,00 = 0.40(4)i, ρ00,00 = 0.41(5)
and ρ11,11 = 0.51(12), and achieves a fidelity of 0.87(11)
including all state preparation and measurement error.
The result shows a significant entanglement between two
motional modes, which cannot be extracted from projec-
tion measurements on a single mode. Notice that the
reconstruction process does not guarantee the positive
semi-definiteness of final density matrix, which is mostly
caused by non-ideal fitting of Qk1,k2 (α1, α2). If we cal-



4

(a1)

(b3)(b2)(b1)

(a3)(a2)

FIG. 2. 2-mode BSB fitting results for (|00〉 + |11〉) /
√

2, (|01〉 + |10〉) /
√

2, and |α1〉 |α2〉. In (a1) (a2) and (a3), the joint spin
state distributions P↓↓, P↓↑, P↑↓, P↑↑ (dots) and the curve of ideal case (lines) are plotted. Each point is averaged over 100
experiments and the errorbars denote one standard deviation. The Fock state distribution fitting results with uncertainties
(blue) are shown in (b1) (b2) and (b3) along with the ideal case (orange). Within the uncertainties, the fitting values of Pk1,k2

match with the expected values.

(a)

(b)

FIG. 3. 3-mode BSB time scan and fitting results for a mo-
tional W-state (|100〉 + |010〉 + |001〉) /

√
3. In (a), the time

scan curve for all 8 configurations of the three-ion joint spin
state distributions are plotted together with the ideal curve
and each data point is averaged over 400 experiments. The
Fock state population fitting results along with infidelities
(blue) and the ideal case (orange) are show in (b). The fit-
ting results show a population close to 1/3 in |001〉, |010〉 and
|100〉, and all other state populations are close to 0.

culate the covariance matrix of the final density matrix
elements based on that of 2-mode BSB fitting and ex-
tract the uncertainties, then within the uncertainties we
can find a positive semi-definite density matrix that is
closest to the reconstructed state.

0

0.5

1

𝜌
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0

0.5

𝜌

(a) (b)

real imag

FIG. 4. Reconstructed density matrix of (|00〉 + i |11〉)/
√

2.
The state was displaced by |α1| = 0.52 and |α2| = 0.51. In the
real part (a) we observe a population of close to 0.5 on ρ00,00
and ρ11,11 while in the imaginary part (b) the off-diagonal
term ρ00,11 and ρ11,00 has opposite signs and amplitudes close
to 0.5. All other components in real and imaginary part are
close to 0.

Outlook.—Generally, to extract the Fock state pop-
ulations, the number of fitting parameters scales as
O
(
(kmax)d

)
, and to reconstruct the full density matrix,

(2nmax + 2)
d

sets of displacement operations with dif-
ferent push directions in phase spaces are required. In
practice, as kmax, nmax and d scale up, the risk of over-
fitting increases, thus introducing larger uncertainties in
the final reconstructed density matrix. However, the to-
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tal number of parameters for reconstruction has the same
order of magnitude as that of free parameters in a d-mode
motional density matrix with maximum phonon number
cutoff nmax, (nmax)

2d − 1, therefore this reconstruction
method is efficient for the general case. For more spe-
cific cases such as low-rank target states, methods such
as compressed sensing [40] and sample-optimal tomogra-
phy [41] can potentially achieve a better scaling on total
measurement effort.

The reconstruction method can be implemented in
any system that has Jaynes-Cummings type interactions,
such as circuit QED [42, 43] and optomechanical sys-
tems [44, 45]. For the experiments in which multi-mode
Fock state distribution is of interest, such as phononic
boson sampling [46], the multi-mode BSB fitting method
can be of great benefit.
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