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Mobility edge, a critical energy separating localized and extended excitations, is a key concept for
understanding quantum localization. Aubry-André (AA) model, a paradigm for exploring quantum
localization, does not naturally allow mobility edges due to self-duality. Using the momentum-state
lattice of quantum gas of Cs atoms to synthesize a nonlinear AA model, we provide experimental
evidence for mobility edge induced by interactions. By identifying the extended-to-localized tran-
sition of different energy eigenstates, we construct a mobility-edge phase diagram. The location
of mobility edge in the low- or high-energy region is tunable via repulsive or attractive interac-
tions. Our observation is in good agreement with the theory, and supports an interpretation of such
interaction-induced mobility edge via a generalized AA model. Our work also offers new possibilities
to engineer quantum transport and phase transitions in disordered systems.

Introduction – The concept of mobility edge (ME), a
critical energy separating extended and exponentially lo-
calized energy eigen-states in the excitation spectrum,
is key for understanding Anderson localization [1–13]
induced by the random disorders in three dimensions
(3D) [14]. In low dimensions, arbitrarily weak random
disorders can make all single-particle eigenstates localize,
hence ME is absent. The localization phenomena have
also been actively studied in the quasiperiodic lattice sys-
tems with incommensurate modulations [15–24], such as
those described by the Aubry-André (AA) model [15].

Realization of the AA model in cold atoms has led
to the first observation of the localization transition of
a noninteracting Bose-Einstein condensate (BEC) [25].
As the AA model has self-dual symmetry [15], the lo-
calization transition is energy-independent (i.e., no ME),
with all eigenstates being localized across a single criti-
cal point. Intriguingly, variants of AA model with broken
self-duality, such as the generalized Aubry-André (GAA)
model [26], can host ME already in one dimension (1D).
So far, the existence of ME has been mainly conjectured
in noninteracting quasiperiodic lattice systems [26–35],
and experimentally confirmed with cold atoms in optical
lattices [36].

Beyond noninteracting systems, the realization and
control of ME are of fundamental interests, but are gen-
erally challenging. Recently, some atomic experiments in
this direction have been carried out, showing how single-
particle MEs are affected by weak interactions [37, 38],
and many-body ME has been discussed in the context of
the many-body localization [39]. In these experiments,
however, ME is already expected without interactions.
It is thus highly desired to understand MEs based on
systems with tunable interactions.

In this work, we demonstrate that ME can be induced
and tuned by interaction; the physical picture is shown

FIG. 1. Illustration of interaction-induced mobility edge
and experimental scheme. (a) Top: without interaction, all
eigenstates in the energy spectrum are either localized (blue)
or extended (red). Bottom: weak interaction can suppress
or enhance localization depending on the energy, thus mo-
bility edge emerges in the spectrum. (b) Top: a quasi-1D
133Cs BEC with tunable atomic interaction is illuminated
by a pair of counter-propagating laser beams, one with a
frequency ω and the other with multifrequency components
ωj (j = −10, ..., 9). Bottom: The lasers, far detuned from
the atomic transition, drive a series of engineered two-photon
Bragg transitions that couple 21 momentum states with the
increment of 2~k (with k = 2π/λ). This synthesizes a nonlin-
ear AA model with L = 21 sites in the momentum space.

in Fig. 1(a): weak interaction can have different dressing
effects on different energy eigenstates of the AA model,
resulting in a suppressed or enhanced localization of an
eigenstate, thus a critical energy (i.e., ME) is expected
in the excitation spectrum.

Experimentally, we observe signatures of ME based
on the momentum-state lattice of quasi-1D 133Cs BEC
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that simulates a nonlinear AA model [Fig. 1(b)]. Ex-
ploiting the tunable scattering length of Cs atoms with
Feshbach resonances [40–44], we realize a nonlinear AA
model under a wide range of interactions, and observe
the extended-to-localized transitions that depend on the
energy of the excited states. In particular, the controlla-
bility of all the system parameters including interactions
allows us to access the highest excited state, which can
be viewed as the ground state of the associated negative
Hamiltonian. We demonstrate that interactions can en-
hance the localization of either low- or high-energy eigen-
states, depending on the sign of the interactions. We
further construct a mobility-edge phase diagram, which
agrees well with the theory.

Such interaction-induced ME can be understood
through an effective noninteracting GAA model. While
the nonlinear AA model and its variants [45–48] have
been studied before in optical and atomic setups [6, 8, 45–
51], the exploration of ME in the model remains elusive.

ME in the nonlinear AA model – We start by theoret-
ically showing how ME arises in the nonlinear AA model

i~ϕ̇j = J(ϕj+1 + ϕj−1)

+ ∆ cos(2πβj + φ)ϕj − U |ϕj |2ϕj . (1)

Here ~ is the reduced Planck’s constant, ϕj is the wave
function at site j in a lattice of size L with

∑
j |ϕj |2 = 1,

and J is the nearest-neighbor coupling. The quasiperi-
odic lattice potential with β = (

√
5−1)/2 has a modula-

tion strength ∆ and phase φ. The nonlinear term char-
acterized by U in our subsequent discussion arises from
the atomic interaction. When U = 0, Eq. (1) reduces
to the AA model, with all eigenstates being extended for
∆/J < 2 and localized for ∆/J > 2.

We are interested in the weak interaction regime
|U/J | . 1 where the self-trapping [52, 53] does not occur,
and every eigenstate has a correspondence in the non-
interacting counterpart [54]. Insights can be obtained
by noting that the combination of the nonlinear term
and the incommensurate modulation results in a density-
dependent potential V ext

j = ∆ cos(2πβj + φ) − Unj ,

with the density nj = |ϕj |2. As the density distri-
bution is shaped by the incommensurate modulation,
V ext
j contains multiple harmonics of the quasiperiodic-

ity (i.e., 2πβ), which breaks the self-duality and leads
to ME. For |U/∆| � 1, perturbative analysis suggests
V ext
j is effectively a GAA lattice potential. For instance,

when φ = 0, by Fourier expanding the density up to
the second harmonics of the quasiperiodicity, we have
V ext
j ≈ (∆−Uc1) cos(2πβj)−Uc2 cos(4πβj) (apart from

some constant), with the expansion coefficients c1 and
c2. It approximates the GAA lattice potential [26]

V j
GAA = ∆

cos(2πβj)

1− α∗(U) cos(2πβj)
(2)

with α∗ � 1 and α∗ ∝ −U , up to the second har-
monics. Thus the physics of Eq. (1) may be under-
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FIG. 2. Theoretical prediction. (a)-(b) Participation ratio
r of (a) GS and (b) ES for various quasiperiodic modula-
tion strengths ∆/J and interactions U/J . The state is local-
ized (extended) in blue (red) region. The transition (white
curve) is identified as where r = 0.103, the critical value in
the noninteracting case [56]. (c) Regimes in the parameter
spaces (∆/J, U/J) where ME may exist. In phases I and
III, extended and localized eigenstates coexist, signaling ME;
In phase I (III), low energy states are extended (localized).
The boundaries are denoted by the green and blue curves.
(d) Verification of the effective GAA model. The α∗ defined
in Eq. (3) is calculated as a function of U/J (solid curve).
For small U/J , it exhibits a linear relation α∗ = −0.81U/J
(dashed curve). In all panels, the lattice size is L = 21.

stood via an effective noninteracting GAA model : i~ϕ̇j =

J(ϕj+1 + ϕj−1)+V j
GAAϕj . As the GAA model hosts an

exact ME [26], the location Ec of ME in a weakly non-
linear AA model is expected to be

Ec =
sgn(∆)(2|J | − |∆|)

α∗(U)
, (3)

where sgn denotes the sign function. Because α∗ ∝ −U ,
we expect the location of ME in the low- or high-energy
region is swapped when U → −U .

The above analysis is supported by numerical calcula-
tions. We focus on the ground state (GS) and the highest
excited state (ES) of the nonlinear AA model [55], and
characterize their degree of localization via the partici-
pation ratio

r =
1

L

1∑L
j=1 n

2
j

. (4)

For a localized state, r ≈ 0; for an extended state, the
maximum possible r is 1. Figures 2(a) and 2(b) show
the participation ratio r as a function of ∆/J and U/J
for GS and ES, respectively. To identify the transition
from the extended to the localized, we use the critical
value of r at ∆/J = 2 in the noninteracting limit (see
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FIG. 3. Experimental realization of the nonlinear AA model in a Cs BEC with tunable quasiperiodic modulation strength
∆/J and interaction U/J . (a) Images of momentum distribution for various ∆/J in a noninteracting BEC. The ∆/J is tuned
via engineering the frequency difference between the pair of Bragg lasers in Fig. 1(b). The BEC is initialized at the momentum
lattice site j = 0. The absorption image is taken after t = 1.28 ms evolution and 18 ms TOF. (b) Measured momentum width
〈d(t)〉 as a function of the evolution time t in a noninteracting BEC under various ∆/J . Corresponding solid curves denote
the numerical simulations [58]. (c) Measured momentum width 〈d〉 at t = 0.64 ms as a function of the scattering length a (in
unit of Bohr radius a0) for ∆/J = 1. The scattering length is tuned via a Feshbach resonance. The solid curve denotes the
numerical simulation [58]. Error bars denote 1σ standard deviations. In all panels, the coupling rates are J/~ = 2π × 500 Hz.

white curves) [56]; for L = 21 sites, the critical value
is r = 0.103. We see that while the transition points
of GS and ES coincide without interaction, they differ
in the presence of interaction, suggesting the transition
is energy-dependent. Moreover, adding U > 0 enhances
localization of GS but delocalizes ES, whereas the oppo-
site occurs for U < 0. This can be intuitively understood,
because for U > 0 (U < 0), a more localized (extended)
GS is favored to minimize the interaction energy −Unj ;
whereas the opposite is expected for the ES, which may
be viewed as the GS of the negative Hamiltonian.

The critical points of GS and ES divide the parame-
ter space (∆, U) into four regimes [Fig. 2(c)]. In phase
II (IV), all states are localized (extended). But in both
phases I and III, extended and localized states coexist,
signaling the existence of ME. When increasing the in-
commensurate modulation strength ∆, ME emerges from
the high-energy regime in I (U < 0), while it emerges
from the low-energy regime in III (U > 0).

We validate the effective GAA model through numer-
ical simulations. We calculate the effective parameter
α∗ = (∆g

c − ∆e
c)/(E

c
e − Ec

g) based on Eq. (3), where
Ec

g (Ec
e) denotes the energy of GS (ES) at their critical

point ∆g
c (∆e

c), representing where ME coincides with
the lowest (highest) energy. Figure 2(d) shows α∗ as
a function of U/J (blue curve). It is linear for small
interactions, confirming the previous conjecture. In
the linear regime, we expect the location of ME to be
given by Eq. (3). When the linearity breaks down, the
effective model is no longer suitable.

Experimental realization of the model – We exper-
imentally realize the nonlinear AA model using the
momentum-state lattice of 133Cs BEC that contains
4 × 104 atoms in the hyperfine state |F = 3,mF = 3〉

[Fig. 1(b)] [57]. We start with a BEC confined in a quasi-
1D optical trap [58]. Two counter-propagating laser
beams with the wavelength λ = 1064 nm are applied,
one with a frequency ω, while the other containing multi-
frequency components ωj = ω − ∆ωj , j = −10, ..., 9.
They drive a series of two-photon Bragg transitions to
couple 21 discrete momentum states with the momen-
tum increment of 2~k (with k = 2π/λ), which simulates
AA model of L = 21 sites with the nearest-neighbor
coupling J [59]. The incommensurate modulation is
realized by engineering ∆ωj to yield an on-site energy
∆ cos(2βπj + φ) [58] with both ∆ and φ controllable
via Bragg lasers. We employ a broad Feshbach reso-
nance centered at magnetic field B = −11.7 G to tune
the atomic s-wave scattering length [40–44]. According
to the mean-field theory of the momentum-lattice sys-
tem [38, 60–62], the atomic interaction leads to the non-
linear term in Eq. (1), with U = (4π~2a/m)ρ̄, where m is
the atomic mass and ρ̄ is an effective atomic density [58].
We note that a quasi-1D BEC can be stable for a < 0 [63];
Experimentally, we do not observe the collapse of BEC
for a < 0 on the time scale of 2 ms relevant for our mea-
surements. To avoid significant three-body loss [64], we
restrict ourselves to a > −100a0 (a0 is the Bohr radius).

To confirm the realization of the nonlinear AA model,
we first tune a ≈ 0 and observe the transport of the non-
interacting BEC by controlling the incommensurate mod-
ulation strength ∆. Initially, the BEC with zero momen-
tum is prepared at momentum-state lattice site j = 0,
before the Bragg lasers are switched on. After an evo-
lution time t, the momentum distribution is measured
through the time-of-flight (TOF) technique [58]. TOF
images for t = 4~/J = 1.28 ms under different ∆/J are
illustrated in Fig. 3(a). As expected from the AA model,
atoms spread over several lattice sites for ∆/J < 2, but
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FIG. 4. Construction of mobility-edge (ME) phase diagram.
(a)-(b) Identification of the extended-to-localized transition
points of (a) GS and (b) ES. The experimental participation
ratio r is shown as a function of quasiperiodic modulation
∆/J in the semi-log2 plot for various interactions. By fitting
(solid curves) the experimental data via an empirical rela-
tion [58], we extract the transition point. In (a) and (b), the
error bar indicates the 1σ standard deviation. (c) Construc-
tion of the phase diagram and identification of ME. We super-
impose the extracted transition points of GS (green circles)
and ES (blue squares) on the theoretical phase diagram in
Fig. 2(c). In the inset, we compare the data for |U/J | < 0.25
with the predictions from the effective GAA model [green
(blue) line for GS (ES)]. The error bar in (c) shows the fitting
error. In (a)-(c), the coupling rates are J/~ = 2π × 275 Hz.

localizing sharply near the initial position for ∆/J > 2.
Figure 3(b) shows the time-dependent momentum width,
〈d(t)〉 =

∑
j |j|nj(t), where nj(t) is the measured fraction

of atomic population at the momentum state |2j~k〉 at
time t. We observe the familiar crossover from the bal-
listic transport to localization with increasing ∆/J , in
agreement with the numerical simulations (solid lines)
based on Gross-Pitaevskii (GP) equation [58].

Next, we tune the scattering length from a < 0 to
a > 0 using the broad Feshbach resonance and fix
the incommensurate modulation strength at ∆/J = 1.
Figure 3(c) shows the measured momentum width 〈d〉
at t = 2~/J = 0.64 ms under various interactions. We
observe 〈d〉 decreases with the interaction strength,
regardless of its sign, suggesting an increased degree
of localization. The experiment agrees qualitatively
with the GP calculations [58] (red curve). Note that

for a < 0, the discrepancy between the experiment and
theory is likely caused by the nonadiabatic effects in
the Feshbach tuning, which generate thermal atoms
reducing the coupling efficiency in the Bragg transitions.

Construction of ME phase diagram – Important for
our study is the preparation of GS and ES under vari-
ous incommensurate modulation strengths and interac-
tions. We prepare GS following the adiabatic protocol in
Ref. [38]. It consists of switching off the laser coupling
between lattice sites and initializing atoms in the ground
state at zero-momentum site j = 0. Then, by linearly
ramping the coupling from J = 0 to J/~ = 2π × 275 Hz
in 1 ms and holding there for 1 ms, the initial state is
transferred to GS of the lattice system.

A reliable preparation of ES, however, was nontrivial
due to non-adiabatic effects [38]. Here we adopt a strat-
egy which is motivated by the fact that ES of a Hamilto-
nian H can be viewed as GS of −H. Experimentally, in
preparing ES of a system with desired J , ∆ and a we in-
stead realize an associated “negative Hamiltonian” (i.e.,
−H) with−J , −∆ and−a. To realize−J , we introduce a
relative phase π in the two-photon Bragg transition cou-
pling neighboring momentum states [c.f. Fig. 1(b)]. The
−∆ is achieved by tuning φ. Crucially, the conversion
from a to −a is uniquely enabled by Feshbach tuning of
the interaction of Cs atoms. Then we adiabatically pre-
pare GS of the negative system similarly as before: after
switching off the laser coupling and initializing atoms at
a site with the lowest energy, we linearly ramp up J , thus
achieving ES of the original system.

After the state preparation, we measure the popula-
tion in each momentum mode to obtain the participa-
tion ratio r according to Eq. (4). We identify the poten-
tial extended-to-localized transition by numerically fit-
ting the experimental data of r as a function of ∆/J [58],
as shown in Figs. 4(a) and 4(b). For U ≈ 0, the transition
is at ∆/J = 2 for both GS and ES, as expected. Com-
paring Figs. 4(a) and 4(b) shows that the localization
of GS is enhanced (suppressed) under U > 0 (U < 0),
whereas the opposite occurs for ES, in agreement with
the predictions. Owing to the non-adiabatic effect in the
experimental ramp, the participation ratio r is gener-
ically smaller than the idealized value expected from
Eq. (1) [58]. Moreover, the experimental r deep in the
localized phase is slightly higher than r = 1/21 [58] due
to the residual population. Nevertheless, these imperfec-
tions and finite-size effect do not qualitatively change the
transitions.

Finally, to construct the phase diagram, we collect the
extracted transition points of GS and ES under various
interactions into Fig. 4(c). The good agreement between
the experiment and theory provides strong evidences on
the existence of interaction-induced ME. It also confirms
that, depending on whether the atomic interaction U is
attractive or repulsive, ME emerges from the high- or
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low-energy region of the excitation spectrum. In the inset
of Fig. 4(c), we compare the experimental data with the
predictions from the effective GAA model [c.f. Fig. 2(d)].
As shown, the effective model provides a good explana-
tion of the data for |U/J | . 0.25, suggesting the location
of ME in this regime is given by Eq. (3).

Conclusion – In this work we have provided experi-
mental evidence that ME can be induced and controlled
by interactions in a 1D quasiperiodic momentum lattice.
Our observations may further understandings of ME in
an interacting system and offer intriguing insights into
the interplay between disorder and interaction [65–67].
Moreover, the widely tunable atomic interaction featured
by the Cs atoms presents new opportunities for the quan-
tum transport and quantum phase transitions in disor-
dered systems.
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