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We present a recursive formula for the computation of the static effective Hamiltonian of a system
under a fast-oscillating drive. Our analytical result is well-suited to symbolic calculations performed
by a computer and can be implemented to arbitrary order, thus overcoming limitations of exist-
ing time-dependent perturbation methods and allowing computations that were impossible before.
We also provide a simple diagrammatic tool for calculation and treat illustrative examples. By
construction, our method applies directly to both quantum and classical systems; the difference
is left to a low-level subroutine. This sheds light on the relationship between seemingly discon-
nected independently developed methods in the literature and has direct applications in quantum
engineering.

Driven nonlinear systems display a rich spectrum of
phenomena which includes bifurcation, chaos, and topo-
logical order [1, 2]. Their behaviour is often counterin-
tuitive and, beyond fundamental interest [3], yields im-
portant applications. A classic example is the Kapitza
pendulum [4]. This system inverts its equilibrium posi-
tion against gravity when driven by an appropriate fast-
oscillating force and serves as a model for dynamical sta-
bilization of mechanical systems [5]. The potency for
novel applications transcends classical physics; recently
the dynamical stabilization of a Schrödinger cat manifold
[6–8], despite its famous fragility [9], has opened new per-
spectives for large-scale quantum computation [10]. In
the promising field of quantum simulation, Floquet engi-
neering of potentials [11] in ultracold atom experiments
has permitted the realization of novel quantum systems
with exotic properties unachievable otherwise [12]. Other
important related phenomena are discrete time crystals
[13] and many-body dynamical localization [14], just to
name a few.

In general, driven nonlinear systems do not admit
closed form solutions for their time evolution. But re-
markably, under a rapid drive, their dynamics can be
mapped to that generated by a time-independent effec-
tive Hamiltonian. This “Kamiltonian” [15] describes a
slow dynamics of the system, corrected only perturba-
tively by a fast micromotion. Over the last century, dif-
ferent perturbation methods have been developed to con-
struct such effective Hamiltonians and have succeeded in
explaining several important nonlinear dynamical phe-
nomena [1, 16–20]. However, these perturbation meth-
ods can hardly be carried out beyond the lowest orders
in practice and a clear understanding of the connection
between many of these methods is missing [21, 22]. The
differences are exacerbated by the wide disparity in start-
ing points of the classical [17, 23, 24] and quantum meth-
ods [18, 20, 25–30].

In this Letter, we construct a time-independent Kamil-
tonian perturbatively by seeking a pertinent canonical

transformation. The small parameter of the expansion
is the ratio of the typical rate of evolution of the driven

system to the frequency of the driving force. We present
a recursive formula for the Kamiltonian that allows its
calculation to arbitrary order and is well-suited for sym-
bolic manipulation. It can be applied indifferently to the
classical and quantum cases, the change involving only
a low-level subroutine of the symbolic algorithm. Our
result unifies existing methods that have been developed
solely in either the classical or quantum regimes.
We start with the equations governing time evolution

of the classical or quantum state vector ρ under the ac-
tion of a time-dependent Hamiltonian H(t) that we write
jointly as

∂tρ = {{H, ρ}}, (1)

where the double bracket can be understood as

{{H, ρ}} →

{

{H̃, ρ̃} classical (Liouville),
1
i~ [Ĥ, ρ̂] quantum (von Neumann).

(2)

Here, we have adopted the standard notation {�,�}
for the Poisson bracket over phase-space coordinates
q and p and [�,�] for the Hilbert space commuta-
tor. The state vector ρ can be taken to be either a
phase-space distribution ρ̃(q, p) or the density operator
ρ̂ =

∑

x′,x′′ ρx′x′′ |x′〉〈x′′|. Its time evolution is governed
by the Hamiltonian H which is either the phase-space
Hamiltonian H̃(q, p, t) or the operator Ĥ(q, p, t). We note
that one can also interpret {{�,�}} as the Moyal bracket
[31–33], in which case Eq. (1) describes the dynamics of
the phase-space Wigner distribution.
In this formalism agnostic to the nature of the system,

we seek a canonical transformation ρ→ ̺ such that the
time evolution of ̺ is governed, in the transformed frame,
by the sought-after time-independent Kamiltonian. We
thus consider the Lie transformation generated by a time-
dependent generator S and parametrized by ǫ,

̺ = eǫLSρ =
∑

k=0

ǫkLk
S

k!
ρ;

= ρ+ ǫ{{S, ρ}}+
ǫ2

2!
{{S, {{S, ρ}}}}+ · · · ,

(3)
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FIG. 1: Time evolution of the state vector in the transformed
(ǫ = 1) and un-transformed (ǫ = 0) frames. The red curve
represents the complicated time evolution of ρ under the time-
dependent H . The blue curve represents the simpler time
evolution of ̺ under the time-independent K. The transfor-
mation is exact. Under a sufficiently fast oscillating drive,
the fast micromotion captured by S can be neglected and K

can be taken to generate the time evolution of ρ in the un-
transformed frame.

where LS� = {{S,�}} is the Lie derivative [34–38] gen-
erated by S. Here S is either a real phase-space func-
tion S̃(q, p, t) or an Hermitian operator Ŝ(q, p, t). Equiv-
alently, the transformed state ̺ is the solution to the
differential equation ∂ǫ̺ = {{S, ̺}}, with initial condition
̺(ǫ=0)=ρ.
In the transformed representation, the dynamics obeys

formally (1) as ∂t̺ = {{K, ̺}}, with the Kamiltonian K
given by

K = eLSH +

∫ 1

0

dǫ eǫLS Ṡ; (4)

see Supplementary material Section A for the derivation.
Note that in the quantum case, Eq. (4) reduces to the

familiar expression K̂ = Û †(Ĥ− i~∂t)Û with Û = e−Ŝ/i~

[39].
We now carry out a perturbative expansion gener-

ated by S, while imposing that K is rendered time-
independent. The transformation of the time evolution
from ρ → ̺ is represented schematically in Fig. 1 and
yields

ρ = T e
∫

t

t0
dt′ LH(t′)ρ0

= eL−S(t)eLK(t−t0)eLS(t0)ρ0,
(5)

where T is the time-ordering operator and ρ0 is the initial
state. The time evolution of ρ under H (a Lie transfor-
mation generated by H and parametrized by t) can be
understood as being decomposed into three successive Lie

transformations generated by S(t0), K, and −S(t). Un-
der this decomposition, the time-ordering operator drops
out in the time evolution under K, providing an impor-
tant simplification.
To carry out the perturbative expansion, we consider

the Hamiltonian

H(t) =
∑

m∈Z

Hmeimωt (6)

with period T = 2π/ω. For the perturbative treatment
to be valid, the rate of evolution under any one Hm

needs to be much smaller than ω. In the case of an
unbounded Hamiltonian, either quantum or classical, the
corresponding space will require truncation. We focus on
the case of a periodic drive for simplicity but we note that
our treatment can be generalized to include quasiperiodic
or non-monochromatic drives; see Supplement section B
III for a concrete example. We take the following ansatz
for S and K:

S =
∑

n∈N

S(n), K =
∑

n∈N

K(n), (7)

where we take S(0) = 0 and the nth terms to be of order
n in the perturbation parameter, here taken to be 1/ω
[11, 27]. Substituting Eqs. (7) into Eq. (4) separates
the problem into orders of 1/ω. At each order, K(n) can
further be expressed as a sum of terms generated by a Lie

series as in Eq. (3), which we write as K(n) =
∑

k K
(n)
[k] .

Demanding K to be time-independent to all orders, we
find, after a few lines of algebra, the following coupled
recursive formulas:

K
(n)
[k] =



























H n = k = 0

Ṡ(n+1) + LS(n)H k = 1
n−1
∑

m=0

1
kLS(n−m)K

(m)
[k−1] 1 < k ≤ n+ 1

0 otherwise,

(8a)

S(n+1) =























−
∫

dtosc(H) n = 0

−
∫

dtosc
(

LS(n)H

+
n+1
∑

k>1

n−1
∑

m=0

1
kLS(n−m)K

(m)
[k−1]

)

n > 0,

(8b)

where osc(f) := f−f , and f = 1
T

∫ T

0 dt f . Note thatH is
taken to be of order zero in the perturbation parameter,
but this hypothesis can be relaxed in a more elaborate
treatment; see Supplement section B III.
By construction, taking the time-derivative of Eq. (8b),

substituting the result into Eq. (8a), and summing over
k yields a time-independent K(n). All in all, the compu-
tations of K and S are interleaved so that the compu-
tation of K(n) requires as an input the value of S(m≤n).
Demanding the time-independence of K(n) fixes Ṡ(n+1),
allowing the recursion to be carried out to the next order.
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FIG. 2: (a) Grid for the diagrammatic construction of K and
S. Colored circles represent the seeds generating the series
to all orders. (b) As an example, all the paths contributing

to the calculation of K
(3)
[3] are highlighted. (c) Here, only

the subpaths contributing to the recursive expression of the
aforementioned term are highlighted.

The coupled recursive formula in Eq. (8) constructs, as
announced, S and K order-by-order.
The mathematical structure of the recursive formula

Eq. (8) is shown diagrammatically in Fig. 2, as we now
explain. The figure consists of a grid indexed by the in-
tegers n and k. The grid supports a graph. Each node

(n, k) of the graph corresponds to a summand K
(n)
[k] , and

the colored ones represent the “seeds” of the calculation.

The summand K
(n)
[k] is itself a sum of terms, each corre-

sponding to a path connecting the node (n, k) to a seed.
Evaluating a path corresponds to taking Lie derivatives
over H or Ṡ(n+1) as dictated by the seed color. The
rule is that each Lie derivative is specified by a valid
subpath, which must start “downwards” and, when fol-
lowed by m horizontal edges at row k, contributes with
LS(m+1)/k. Finally, if the considered node is itself col-
ored, either H or Ṡ(n+1) must be added to the sum. We
note that our grid construction is inspired by [40], where
the construction is limited to completely classical and
time-independent systems.

Let us discuss, as an example, how K
(3)
[3] is evaluated

from the figure. As indicated by panel Fig. 2(b), K
(3)
[3]

contains only four terms corresponding to the concate-
nations of the valid subpaths (in blue). The sum reads

K
(3)
[3] =

LS(1)

1

LS(1)

2

LS(1)

3
H +

LS(1)

2

LS(1)

3
Ṡ(2)

+
LS(1)

2

LS(2)

3
Ṡ(1) +

LS(2)

2

LS(1)

3
Ṡ(1),

where the terms are ordered as enumerated in the figure.

Alternatively, one could have expressed K
(3)
[3] recur-

sively by directly applying Eq. (8a). The computation

of K
(3)
[3] then involves only the two pink subpaths shown

in Fig. 2(c) and yields

K
(3)
[3] =

LS(2)

3
K

(1)
[2] +

LS(1)

3
K

(2)
[2] .

At this stage, once all entries of the nth column are
computed, the calculation proceeds by demanding the
time-independence of K(n) computed as their row-sum
over column n and represented by the vertical bold lines
in Fig. 2(a). This is required by Eq. (8b). For the column
n = 3 the algorithm yields

S(4) = −

∫

dtosc
(

LS(3)H +K
(3)
[2] +K

(3)
[3] +K

(3)
[4]

)

,

which is a necessary ingredient to compute K(5) and so,
the calculation proceeds.
We further illustrate our formulation by treating three

concrete examples in the Supplement.
First, in Section B I, we treat a standard dynamical

system: the Kapitza pendulum. Previous works [4, 21]
find the effective Hamiltonian in the classical case by av-
eraging its equation of motion. This method is known to
become unwieldy even at the lowest orders, and moreover
lacks an equivalent quantum counterpart, which veils any
comparison to a quantum effective Hamiltonian. We ap-
ply Eq. (8) to the Kapitza pendulum to find both the
classical and quantum effective Hamiltonians, which to
our knowledge is two orders beyond what is available in
previous literature. Only by going to such a high order,
we are able locate terms in the quantum static effective
Hamiltonian that cannot be obtained by any quantiza-
tion prescription [41–43] applied to its classical counter-
part: a consequence of Groenewold’s theorem [31]. This
result explains the difficulty encountered in stating the
quantum-classical correspondence in the context of effec-
tive Hamiltonians [21, 22], underlining the necessity of
exploiting the shared underlying Lie algebra.
Second, in Section B II, we treat a driven Duffing os-

cillator, an archetype of several driven superconducting
circuits, and find the effective Hamiltonian to order 5 in
the perturbation parameter. In particular, we focus on
the renormalization of the frequency and Kerr coefficients
of the oscillator in the presence of the drive. We demon-
strate with this toy example the convergence of our series
to numerical simulations obtained via exact Floquet nu-
merical diagonalization.
Finally, in Section B III, we show the remarkable agree-

ment with state-of-the-art experiments [44] that indepen-
dently measured the effective Hamiltonian of a driven
transmon-cavity superconducting circuit [45] and could
only be analyzed numerically until our work. With this
final example, we demonstrate the generality of the re-
cursive formula: by applying it to a multi-mode, non-
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monochromatic Hamiltonian, and developing the expan-
sion for a perturbation parameter other than 1/ω, we
are able to predict and explain to a high accuracy the
measured effective Hamiltonian even at large intra-cavity
photon numbers.
We stress again that Eq. (8) is agnostic to the choice

of Lie bracket in Eq. (2). A Lie-based formulation is
thus well-suited to unify seemingly disconnected pertur-
bation methods, in particular those that, to be linked,
require the quantum-classical correspondence to be made
explicit.
Exploiting this property, we now turn to discuss the

connection between several time-dependent perturbation
methods developed independently. We consider their
common starting point to be the additive ansatz

Z = Z + ζ(Z,cZ), (9)

where Z is the state variable, cZ is the conjugate variable
to Z and ζ is a correction. For time-varying problems,
it is customary to take Z to describe the slow dynamics
and the correction to describe the fast dynamics with
vanishing time-average (ζ̄ =0). To compute ζ, different
methods proceed in vastly different ways: the classical
ones rely on partial derivatives of phase-space functions
[4, 21, 23, 24]; this draws a line separating them from the
quantum methods which rely on matrix products [21,
25–29]. These procedural differences hide their shared
structure.
We uncover the connection between these methods by

realizing that the procedural differences stem from pre-

mature specifications of a particular Lie bracket. Iden-
tifying this feature allows us to relate the correction ζ,
specified by each method, to the generator S of the Lie
transformation as ζ=(eL−S−I)Z. In other words, the
ansatz in Eq. (9) corresponds to the additive representa-
tion of the exponential map in Eq. (3). It follows that, if
carried out to all orders, these methods correspond to in-
vertible canonical transformations. See Section C of the
Supplementary material for a detailed discussion on the
relationship between the different ansätzs.
In Fig. 3, we show how we can collect seemingly discon-

nected perturbation methods and unify them under the
umbrella of Lie series. The two main branches, colored in
red (right) and blue (left), group the quantum and clas-
sical methods. The ones based on equations of motion
(EOM) correspond to different choices of Z in Eq. (9).
Among the quantum methods, secular averaging theory
(SAT) [46] corresponds to Z=ρ̂. The perturbative expan-
sion can also be developed at the level of the wave func-
tion Z= |φ〉, allowing for the derivation of higher-order
rotating wave approximations (RWA) [26]. In this case,

the ansatz is Z= |ϕ〉 and ζ= δ̂|ϕ〉 and it can be mapped to

our approach by taking ζ=(e−Ŝ/i~− 1)|ϕ〉. This last re-
lation can be understood by noting that in the quantum

case Eq. (3) reduces to eLS ρ̂=e−Ŝ/i~ρ̂eŜ/i~. Classically,

quantum

deg. “van Vleck’’ exp. [21, 27, 29]

classical

H
our result Eq. (8)

“harmonic balance’’ [17]

arbitrary

E
O
M

perturbation methods 

stemming from Lie series

E
O
M

H

“Krylov-Bogoliubov’’ avg. [4,17,21,

   23, 24]

“secular averaging thy.’’ [46]

“higher-order RWA’’ [26]

“Floquet-Magnus’’ exp. [25]

FIG. 3: Relationship between various perturbation methods
for systems submitted to a time-dependent oscillatory drive.
All the methods in the tree can be seen as falling under the
umbrella of Lie series. The methods can be divided between
classical (blue lines/left) and quantum (red lines/right) ones.
Other forks separate the methods based on the equation of
motion (EOM) from the methods based on the Hamiltonian
(H). The dashed lines refer to a class of methods whose effec-
tive Hamiltonians have not yet been identified and they are
left for future work. The methods labeled by a Z symbol are
additive ansatz-based unlike the methods containing S which
can be thought as multiplicative. For the Hamiltonian meth-
ods, the associated integration constant for S in Eq. (8b) is
specified as a condition. The double arrow refers to a bidirec-
tional relationship and the acronym RWA stands for rotating
wave approximation.

the Krylov-Bogoliubov (KB) method [4, 17, 21, 23, 24]
averages the equation of motion of the position coordi-
nate Z=q and ζ=ζ(q, p, t), where p is the conjugate mo-
mentum, and it maps to our approach with ζ=(eLS − I)q
(the change of sign in S is simply a change from the active
representation used so far to the passive representation
used in KB).

Besides the EOM methods, we also include the most
common quantum Hamiltonian methods in the geneal-
ogy of Fig. 3. They are characterized by the utilization
of Floquet theorem [47], which guarantees the existence
of a unitary transformation rendering the Kamiltonian
time-independent. They map naturally to the exponen-
tial representation discussed in this work. We find that
using the freedom in the integration constant of Eq. (8b),
as specified in Fig. 3, we recover the so-called Floquet-
Magnus expansion (S(t0) = 0) [25] or the van Vleck ex-
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pansion (S̄ = 0) [21, 27, 29]. This gives formal ground
to the observations made in [22, 28] on the connection
between these two methods.

Note that, with the exception of the Floquet-Magnus
expansion, all the aforementioned methods were limited
to the lowest orders. Instead, our symbolic formula can
be readily used to carry out the calculation to arbitrary
order with computer algebra software [48, 49]. We illus-
trate this by taking as an example the widely employed
van Vleck expansion. We have explicitly written a sym-
bolic algebra algorithm, made available in [50], and used
it to explicitly display the expansion up to order five,
automatedly (see Section D of the Supplementary mate-
rial). To the best of our knowledge, the expansion could
only be found to order three in the literature [28] until
this paper.

In summary, we developed a perturbation method to
efficiently treat rapidly driven nonlinear systems. It
yields a double coupled recursive formula well-suited for
automated symbolic computation to arbitrary order. We
achieve this result by constructing a canonical transfor-
mation that explicitly decouples the relevant dynamics,
governed by a time-independent effective Hamiltonian,
from the complicated micromotion. Our treatment is
completely agnostic to the classical or quantum nature
of the problem and sheds light on the longstanding dis-
cussion of the relationship between well-known perturba-
tion methods developed independently of each other. We
note that an application of the structural correspondence
to out-of-equilibrium driven systems had been suggested
by [16] but was not carried out until this paper. We
further remark that our formula can be generalized to
treat Hamiltonians of arbitrary order in the perturbation
parameter. This is particularly powerful when treating
parametric processes in driven nonlinear bosonic oscilla-
tors [51], and is thus relevant to Hamiltonian engineering
in superconducting quantum circuits [19, 52–54]. Finally,
we note that there is a strong relationship between time-
periodic (Floquet) and space-periodic (Bloch) systems,
and thus, our recursive formula can be adapted to com-
pute in this context the Schrieffer-Wolff transformation
[55] to arbitrary order and potentially get new results in
quantum many-body problems.
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1739 (1988). 1, 5

[17] A. H. Nayfeh, Perturbation methods (John Wiley & Sons,
2008). 1, 4

[18] A. Eckardt, Reviews of Modern Physics 89, 011004
(2017). 1

[19] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff,
Rev. Mod. Phys. 93, 025005 (2021). 5

mailto:jaya.venkat@yale.edu, xu.xiao@yale.edu
mailto:michel.devoret@yale.edu


6

[20] D. Zeuch, F. Hassler, J. J. Slim, and D. P. DiVincenzo,
Annals of Physics 423, 168327 (2020), ISSN 0003-4916.
1

[21] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A 68,
013820 (2003). 1, 3, 4, 5

[22] M. Bukov, Ph.D. thesis, Boston University (2017). 1, 3,
5

[23] N. M. Krylov and N. N. Bogoliubov, Introduction to
non-linear mechanics (In Russian) (Ac. of Sci. Ukr.
SSR, 1937), [English translation by Princeton University
Press, Princeton, 1947]. 1, 4

[24] N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic
methods in the theory of non-linear oscillations (In Rus-
sian) (1961), [English translation by Hindustan Pub.,
Delhi, 1961; Gordon and Breach, New York, 1961]. 1,
4

[25] F. Casas, J. A. Oteo, and J. Ros, Journal of Physics A,
Mathematical and General 34, 3379 (2001), ISSN 0305-
4470. 1, 4

[26] M. Mirrahimi and P. Rouchon, Dynamics and control of
open quantum systems (2015). 4

[27] A. Eckardt and E. Anisimovas, New journal of physics
17, 093039 (2015). 2, 5

[28] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka,
and H. Aoki, Physical Review B 93, 144307 (2016). 5

[29] Z. Xiao, E. Doucet, T. Noh, L. Ranzani, R. Sim-
monds, L. Govia, and A. Kamal, arXiv preprint
arXiv:2103.09260 (2021). 4, 5

[30] A. Petrescu, M. Malekakhlagh, and H. E. Türeci, Phys.
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