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Inspired by recent experiments that highlight the role of nematic defects in the morphogenesis of
epithelial tissues, we develop a minimal framework to study the dynamics of an active curved surface
driven by its nematic texture. Allowing the surface to evolve via relaxational dynamics leads to a
theory linking nematic defect dynamics, cellular division rates, and Gaussian curvature. Regions of
large positive (negative) curvature and positive (negative) growth are co-localized with the presence
of positive (negative) defects. In an ex-vivo setting of cultured murine neural progenitor cells, we
show that our framework is consistent with the observed cell accumulation at positive defects and
depletion at negative defects. In an in-vivo setting, we show that the defect configuration consisting
of a bound +1 defect state, which is stabilized by activity, surrounded by two −1/2 defects can
create a stationary ring configuration of tentacles, consistent with observations of a basal marine
invertebrate Hydra.

Morphogenesis, the development of self-organized form8

in biology, results from the complex interplay of mechan-9

ical and biochemical processes [1–3]. To understand the10

dynamics of form, we need to complement our knowledge11

of the molecular constituents that unify many developmen-12

tal programs with coarse-grained theories that couple flows,13

forces, and self-regulation to generate shape and link them14

to testable experimental predictions [4–7]. At the cellu-15

lar level, there are four geometric fields– cell number, size,16

shape, and position–that vary in space and time and are re-17

sponsible for generating shape. In plant tissues, where cells18

do not change their relative positions, there has been much19

progress in linking molecular and cellular processes to tissue20

shaping [8, 9], while in animal tissues, the ability to tag and21

track thousands of cells in space and time [10–12] allow us to22

begin answering similar questions linking cellular processes23

to tissue shape [13–15].24

A particularly intriguing question in thin layered epithe-25

lial tissues is the role of topological defects in controlling26

morphogenesis, seen in experimental observations of cell ex-27

trusion [16, 17], layer formation [18], and body shaping us-28

ing bulges, pits and tentacles [19]. Complementing work29

on the role of defects in passive surfaces that allow the in-30

duced geometry to relax e.g. [20–22], here we we address31

how topological defects couple to the intrinsic geometry of32

surfaces ( Fig. 1) via a minimal theory for the relaxational33

dynamics of the intrinsic geometry of active epithelial sur-34

faces (see [23] for a recent review). Our model of epithelial35

layers is a dynamical theory of active nematics, which con-36

sist of head-tail symmetric, elongated units that consume37

energy to move and do work on their surroundings, while38

still tending to align, locally generating nematic (apolar)39

order [24–26]. Like their passive counterparts, active ne-40

matics exhibit singular distortions, i.e. topological defects41

which interrupt the nematic order [27] for a brief overview).42
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A minimal model that couples the relevant degrees of free-45

dom in an active system must allow for spatio-temporal vari-46

ations in the two-dimensional nematic tensor Qab, an active47

velocity field va determined by the local nematic field, and48
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Figure 1: Schematic of our model. Epithelial activ-
ity driven by a nematic texture leads to a flow field that
drives nematic defects. The defects then induce variations
in the intrinsic metric and thence changes in the 3-d em-
bedding of the epithelial surface. Image of Hydra in the
center, adapted from [28].

the geometry of the sheet, characterized by its 2D metric gab49

(which can be deduced from tissue geometry), and its em-50

bedding in three dimensions. For simplicity, we will assume51

that how the surface sits in 3D (the extrinsic geometry) can52

be deduced entirely by the shape of the 2D surface (the in-53

trinsic geometry), and that the dynamics of the other fields54

follows a combination of variations in the free energy and55

active flow dynamics.56

The two main contributions to the free energy that we57

consider are due to: (i) the nematic tensor Qab = A[n̂an̂b−58

1
2δ
ab], where A is the magnitude of the nematic order, and59

n̂µ is the local director field (ii) the metric gab. Then the60

total free energy F is the sum of contributions from the61

nematic field as well as from the intrinsic metric, with F =62

FQ+Fg. Here, the two-dimensional Landau-de Gennes free63

energy [29], FQ, in its covariant form, is given by64



FQ =

∫
d2x
√
g[K̃gbd∇aQab∇cQcd −K ′RTr

[
Q2
]

+
1

4
ε−2(1− 2gbcgadQ

abQcd)2]

=

∫
d2x
√
g[K̃ Tr

[
(∇ ·Q)2

]
−K ′RTr

[
Q2
]

+
1

4
ε−2(1− 2 Tr

[
Q2
]
)2] (1)

where gab is the metric, ∇α is the covariant derivative asso-65

ciated with it, and R is the scalar curvature. Here K̃ is the66

Frank elasticity parameter in the single-constant approxi-67

mation, K ′ > 0 is a curvature elasticity that can be viewed68

as a geometric contribution to the potential: with R > 069

(< 0), this term favors ordered (disordered) state, while70

last term governs the isotropic-nematic transition, with ε71

controlling the microscopic nematic correlation length [30].72

We further assume that the surface relaxes via relaxational73

dynamics analogous to diffusion; a naturally invariant form74

is then given by Ricci flow [31],75

∂tgab = −DRab + λgab (2)

where Rab is the Ricci tensor (which in 2D is given by Rab =76

1
2Rgab), D > 0 is the diffusivity, and λ(t) > 0 controls the77

growth rate of the area. In general, λ = λ(x, t), but for78

simplicity we will take λ = λ(t). Eq. (2) follows from the79

gradient-flow of the free energy Fg =
∫
d2x
√
g[KϕRϕ − λ]80

where
√
g = exp(ϕ) [32]. Kϕ(∝ D) is an elastic constant81

penalizing changes in the Gaussian curvature R.82

Then the coupled dynamics of the nematic and metric83

fields associated with gradient descent and advection by a84

non-equilibrium flow vc [33] yields85

∂tQ
ab = −vc∇cQab + [Q,Ω]ab − γ−1

Q gacgbd
1
√
g

δF
δQcd

(3)

∂tgab = −(∇avc)gcb − (∇bvc)gca − γ−1
ϕ

1
√
g

δF
δgab

, (4)

with Ωab = (∇avb − ∇bva)/2 the vorticity, and γQ and γϕ86

are the viscous coefficients for the dynamics of Qab and gab,87

respectively, with units of radians2/time.88

Closure of the system (3)-(4) requires an equation for89

the active velocity field generated by the active stress σab.90

We note that in Eq. (3) we have ignored the rate of strain91

alignment; in the biologically relevant, overdamped limit de-92

scribed by Eq. (5) this effect leads to a renormalization of93

the rigidity constant [34, 35]. In this context, σab = α̃Qab94

[24, 36]; i.e. we balance the active stresses with the substrate95

friction (neglecting elastic and non-local hydrodynamic ef-96

fects [37]), and therefore write [33]97

µvc = α̃∇aQac. (5)

Here µ is the substrate friction, α̃ is the active energy density98

with α̃ > 0 (α̃ < 0) corresponding to contractile (extensile)99

activity. We define the scaled activity coefficient α = α̃/µ.100

In terms of the problem parameters: K̃, K ′, ε, α, Kϕ,101

γQ, γϕ, and the system size L, we can define the nematic102

coherence length (or defect core radius) ξ =
√
K̃ε, the ge-103

ometric coherence length `ϕ =
√
Kϕε, a “Gaussian curva-104

ture” length `R,Q =
√
K ′ε, and `d =

√
K/|α̃|, the defect105

separation length [38]; and the relaxation times τQ = γQε
2

106

and τϕ = γϕL
2/Kϕ. This leads to the following dimen-107

sionless quantities: ξ/`ϕ, the ratio of coherence lengths for108

the nematic field and intrinsic geometry (< 1 because ex-109

trinsic geometry variations occur on scales large compared110

to the nematic defect core size); τϕ/τQ = (γϕ/γQ)(L/`ϕ)2
111

(� 1 because we assume that the long wavelength extrinsic112

geometry relaxes slowly compared to the local nematic or-113

der); and K/K ′ ∼ 1, where K = K̃ −K ′, which as we will114

discuss later is the ratio of the two different types of nematic115

elastic deformations. See the Supplemental Material [27] for116

estimates of model parameters.117

Eqs. (3) to (5) form a set of nonlinear partial differential118

equations that dictate the evolution of the nematic field Qab119

and the intrinsic geometry gab as a function of the activity120

α, when complemented by appropriate initial and bound-121

ary conditions. To make progress in a minimal setting for122

epithelial morphogenesis, we choose 2D isothermal (confor-123

mal) [39] complex coordinates z and z̄ such that124

ds2 = gzz̄dzdz̄ + gz̄zdz̄dz = 2gzz̄|dz|2 = eϕ|dz|2 (6)

and assume that the metric remains diagonal in these coor-125

dinates for all time. Furthermore, since the nematic tensor126

Qab is a traceless real bivector, we can write its components127

Q = Qzz, Q̄ = Qz̄z̄, and Qzz̄, with Qzz̄ = 0, and Q = (Q̄)∗.128

Since the metric gzz̄ measures the area in the z coordinate129

system, assuming fixed cell size, this implies that we can130

interpret ϕ = log gzz̄, i.e. the log of the cell density in these131

coordinates. In particular, the change in ϕ reflects cell di-132

vision. In these coordinates, FQ takes the form133

FQ =

∫
d2z
√
g[2Kgzz̄∇zQzz∇z̄Qz̄z̄ + 2K ′gzz̄∇z̄Qzz∇zQz̄z̄

+
1

4
ε−2(1− 4gzz̄gzz̄Q

zzQz̄z̄)2]

=

∫
d2z
√
g[2K|∇zQ|2 + 2K ′|∇z̄Q|2 +

1

4
ε−2(1− 4|Q|2)2]

(7)

where K = K̃−K ′ > 0 to guarantee positivity of the elastic134

energy, Q = Qzz and Q̄ = Qz̄z̄, and | · | is defined in terms135

of the metric [40]. Here the covariant derivatives ∇zQzz =136

∂Q+ 2(∂ϕ)Q and ∇z̄Qzz = ∂̄Q, while the scalar curvature137

R = −4e−ϕ∂∂̄ϕ. The asymmetry in the appearance of ∂ϕ in138

∇zQ and ∇z̄ is the underlying reason behind asymmetry in139

cell growth near defects: cells accumulate at positive defects140

and deplete at negative defects.141

As a preliminary step before considering active defects, we142

consider the case of passive nematics with α = 0. Then the143

dynamics for Q and ϕ in isothermal conformal coordinates144

can be written as145
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Figure 2: Dynamics near defects. Following Eqs. (10)
and (11), where R = −4e−ϕ∂∂̄ϕ, we show plots of (a) dϕ

dt

and (b) dR
dt for a single +1/2 (in red) and a single −1/2

defect (in blue), with the activity α = 0. Top inset: for
comparison, we show the experimental growth rate of nor-
malized cell density [17]. Middle and bottom insets: cor-
responding plots of active contribution for dϕ

dt and dR
dt for

φ = 0, α = 1. Parameters used are K = 1, K ′ = 1, ε = 1.

γQ∂tQ = 2Kgzz̄∇z̄∇zQ+ 2K ′gzz̄∇z∇z̄Q
+ 2ε−2(1− 4|Q|2)Q (8)

γϕ∂tϕ = −KϕR+ 4K|∇zQ|2 + 4Kgzz̄(Q∇z∇z̄Q̄+ Q̄∇z̄∇zQ)

− 4K ′|∇z̄Q|2 −
1

4
ε−2(1− 4|Q|2)(1− 20|Q|2)+λ,

(9)

where the covariant derivative terms are ∇z̄∇zQ = ∂̄∂Q +146

2(∂̄∂ϕ)Q+ 2∂ϕ∂̄Q and ∇z∇z̄Q = ∂∂̄Q+ 2∂ϕ∂̄Q.147

For a flat configuration with ϕ = 0, denoting ϕ± and Q±148

as the local geometry and nematic field in the neighborhood149

of ±1/2 defects, Eq. (9) in the neighborhood of a defect150

simplifies to151

γϕ∂tϕ
+ = 4K|∂Q+|2 + 2K(Q+∂∂̄Q̄+ + Q̄+∂̄∂Q+)

− 4K ′|∂̄Q+|2 − 1

4
ε−2(1− 4|Q+|2)(1− 20|Q+|2) + λ

(10)

γϕ∂tϕ
− = 4K|∂Q−|2 + 2K(Q−∂∂̄Q̄− + Q̄−∂̄∂Q−)

− 4K ′|∂̄Q−|2 − 1

4
ε−2(1− 4|Q−|2)(1− 20|Q−|2) + λ

(11)

Now noting that Q+ = (Q−)∗ and that in the vicinity of152

the positive (negative) defect core ∂̄Q+ (∂Q−) = 0 leads to153

γϕ∂tϕ
+ − γϕ∂tϕ− = 4K|∂Q+|2 + 4K ′|∂̄Q−|2

= 4K̃|∂Q+|2 > 0. (12)

Interpreting ϕ as the logarithm of the cell density (since154

the Gaussian curvature R = −4e−ϕ∂∂̄ϕ), in the absence155

of net surface growth, this implies that ϕ will increase at156

a +1/2 defect and decrease near a −1/2 defect (since the157

two changes must balance each other), and the cell density158

will increase (decrease) at plus (minus) defects, i.e. cells159

accumulate (deplete) at the defects. This shows that in a160

passive setting without activity, positive curvature growth161

via a positive defect can still occur. The mechanism we162

propose is a geometric alternative to previously-proposed163

mechanisms for cell accumulation at topological defects due164

to anisotropic friction [17, 18], and can operate either in-165

dependently or together with previously-proposed mecha-166

nisms.167

In the top panel of Fig. 2, we show the initial profile of168

ϕ at t = 0 from our analysis, showing the dynamic asym-169

metry between a plus and minus defect, consistent with the170

experimental observations of cell density in the vicinity of171

defects in murine neural progenitor epithelia [17]. In the172

bottom panel of Fig. 2, we show that this asymmetry in173

the shape in the neighborhood of ±1/2 defects is reflected174

in the Gaussian curvature of the surface which is positive175

(negative) near a plus (minus) defect, consistent with inde-176

pendent observations in a different experiment [19].177

Activity, i.e. α 6= 0, leads to anisotropic flow because178

of gradients in the nematic order parameter; this acts as179

an additional source of geometric frustration, modifying the180

Gaussian curvature of the sheet [27]. More generally, we181

rewrite the coupled Eqs. (8) and (9) in complex coordinates182

with ∂tQ → DtQ = ∂tQ + vz∇zQ + vz̄∇z̄Q − (∇zvz −183

∇z̄vz̄)Q and ∂tϕ → Dtϕ = ∂tϕ + 2(∇zvz + ∇z̄vz̄), where184

in the over-damped limit, vz = α∇zQ = α[∂Q + 2(∂ϕ)Q]185

and ∇zvz = ∂zv
z + (∂ϕ)vz. To solve these equations and186

follow the nematic field and the intrinsic geometry, we use a187

finite-difference scheme with periodic boundary conditions188

to simulate a ring-like structure seen in Hydra [27].189

We find that an initially flat geometry with a single +1190

defect in the center and two −1/2 defects on the edges, using191

the ansatz from [41], settles into a stationary defect config-192

uration of a ring of equally spaced +1 defects (bound state193

of two +1/2 defects) separated by pairs of −1/2 defects in a194

cylindrical geometry (see Fig. 3(a)), similar to that observed195
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(b)
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Figure 3: Defect texture and geometry. We numer-
ically integrate Eqs. (8) and (9) (with the substitution
∂t → Dt) to obtain steady state plots of (a) the mag-
nitude of the nematic order parameter |Q| and (b) the
curvature density (given by −4∂∂̄ϕ). We note that the
sign of the curvature correlates with the sign of the de-
fect, and that the defect configuration is a lattice of +1
bound states separated by pairs of −1/2 defects. In the
inset, we show the profile of the nematic order |Q| (blue)
and ϕ (red) along the x-axis. The profile of |Q|, which is
dictated by the nematic coherence length, is smaller than
the width of the profile of ϕ since `ϕ > ξ. Parameters for
simulations: α = −0.8, K = 1, K ′ = 0, γQ = γϕ = 1,
Kϕ = 4, and ε = 2, in terms of which ξ = 1, `R,Q = 1, and
`ϕ = 2. See text and the Supplemental Material [27] for
details.

in [19]. Activity plays a key role in stabilizing this configu-196

ration, and in particular, the +1 bound state is a result of197

balance of Coulombic repulsion between the defects and ac-198

tive motility [27]. Indeed, the larger the activity parameter199

for the extensile case α < 0, the tighter is the +1 bound de-200

fect. Moreover, the curvature is positive near a plus defect,201

and negative near a minus defect, as can be seen in Fig. 3(b).202

Plotting the profiles of |Q| and ϕ along the vertical x-axis,203

we find that the peak in ϕ near the origin indicates out-204

ward bulging of the geometry. Moreover, the profile of |Q|205

which is dictated by the nematic coherence length is much206

narrower than the width of ϕ along the x-axis, which is ex-207

pected given that the geometric coherence length is larger208

than the nematic coherence length, i.e. `ϕ > ξ and similar209

to what was observed experimentally in [17] and in numeri-210

cal simulations of phase field models e.g. [42]. (See [27] for211

a plot of the flow field at a late time).212

To ground these results, we turn to observations of ep-213

ithelial morphogenesis in Hydra, a small, fresh-water basal214

marine invertebrate that has been a model organism for215

studying the dynamics of body shaping [19, 43, 44]. The216

tubular body of the organism consists of a bilayer of epithe-217

lial cells which contains condensed supracellular actin fibers218

which align parallel to the body axis in the outer (ectoderm)219

layer and perpendicular to the body axis in the inner (en-220

doderm) layer [45]. A variable number of tentacles form a221

ring around the body, near the head, and form when a sin-222

gle +1 defect is surrounded by a pair of −1/2 defects [19],223

with the sign of the curvature is correlated with the sign of224

the defect, consistent with our results summarized in Fig. 3.225

Indeed, a qualitative rendering of the shape associated with226

the presence of these bound defect states shown in Fig. 4(a)227

provides a simple projective view of the body plan in the228

neighborhood of the ring of tentacles.229

Although knowing the intrinsic geometry does not always230

allow us to deduce the extrinsic geometry, it is possible to231

get a numerical approximation (see SI-Algorithm for finding232

embedding) of the local shape of the active surface as shown233

in Fig. 4(b),(c) near a +1 defect. Furthermore, we see that234

at early times the time evolution of the height follows the235

scaling law h ∝
√
t, which can be analytically derived by236

using Eq. (10) (see SI- Algorithm for finding embedding).237

Our minimal framework coupling the dynamics of an ac-238

tive nematic field on a curved surface to the intrinsic ge-239

ometry of the surface via relaxational dynamics has focused240

on the interplay between geometry and nematic defects and241

leads to three simple conclusions: (i) the sign of the cur-242

vature is correlated with the sign of the defect, (ii) cells243

accumulate and form mounds at positive defects and are244

depleted at negative defects, and (iii) a stationary ring con-245

figuration of equally spaced +1 defects separated by pairs of246

−1/2 defects can form. These results are consistent with ex-247

perimental observations in different systems such as neural248

progenitor cells in-vitro and Hydra morphogenesis in-vivo.249

Moving forward, a more complete description must include250

a complete characterization of the dynamics of embedding251

and the possible time-dependence of isothermal coordinates,252

e.g. using phase field models for active deformable shells253

[42, 46] that account for both the induced and the intrinsic254

geometry of the manifolds, but now including feedback on255

activity of the form α = α(Qab, gab, . . .), potential directions256

for future work. Indeed, a recent preprint [47] submitted af-257

ter the first version of the current paper was submitted has258

begun to address some closely-related questions.259

We thank Xianfeng David Gu and Shing-Tung Yau for260

valuable discussions on reconstructing the embedding from261

4



(a) (b) t = 0.004τϕ (c) t = 0.13τϕ (d)

Figure 4: Extrinsic geometry. In (a), sketch of the geometry for the tentacle configuration from our simulation. The
black dots represent +1 defects, the stars represent −1/2 defects, and black lines depict the nematic order. Three of the
−1/2 defects are on the opposite side. In (b) and (c): snapshots from simulations of height u of tentacle in real space
near a +1 defect for early and late times, where insets (adapted from [19]) are snapshots of tentacle formation near a +1
defect for early and late times. In (d), plot of the height h(t) at the center of the +1 defect as a function of time t. Red
points are data from simulation and blue curve is the fit h(t) = h0[1 − exp(−t/τ)]1/2, where we find that h0 = 3.87L and

τ = 0.01τϕ. Initially, h(t) ∝ L
ξ
L
`ϕ
L
√

t
τϕ

and τ ∝ τϕ. See the Supplemental Material [27] for details. All plots use rescaled

coordinates x′ = x/L, y′ = y/L, and t′ = t/τϕ.

the intrinsic metric, and discussions with Suraj Shankar,262
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