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The localization–delocalization transition is at the heart of strong correlation physics. Recently, there is great
interest in multiorbital systems where this transition can be restricted to certain orbitals, leading to an orbital-
selective Mott phase (OSMP). Theoretically, the OSMP is widely studied for kinetically decoupled orbitals,
but the effect of interorbital hopping remains unclear. Here, we show how nonlocal interorbital hopping leads
to local hybridization in single-site dynamical mean-field theory (DMFT). Under fairly general circumstances,
this implies that, at zero temperature, the OSMP, involving the Mott-insulating state of one orbital, is unstable
against interorbital hopping to another, metallic orbital. We further show that the coherence scale below which
all electrons are itinerant is very small and gets exponentially suppressed even if the interorbital hopping is not
overly small. Within this framework, the OSMP with interorbital hopping may thus reach down to extremely
low temperatures T but not to T = 0. Accordingly, it is part of a coherence–incoherence crossover and not a
quantum critical point. We present analytical arguments supported by numerical results using the numerical
renormalization group as DMFT impurity solver. We also compare our findings with previous slave-spin studies.

The evolution of the electronic structure from localized to
itinerant is a fundamental problem in condensed-matter physics
and relevant to many interesting materials. It continues to
receive much experimental attention as the transition region
between localized and delocalized behavior hosts remarkable
phenomena, like high-temperature superconductivity [1–3].

Recently, there is focus on multiorbital systems, triggered
by the observation of orbital selectivity whereby a subset of
orbitals (denoted “heavy”) has much larger effective mass than
another group (denoted “light”). An illustrative example under
current study is FeTe1−xSex [4–7]. There, among the t2g
orbitals, the dxy is the heaviest. A central idea in this field
is the orbital-selective Mott phase (OSMP) [8] where heavy
electrons are Mott-localized and coexist with itinerant light
electrons. This idea is relevant to numerous model systems and
materials [9–19]. Often, a small difference among the orbitals
at the one-particle level is drastically amplified by many-body
correlations. Importantly, a sharp localization–delocalization
boundary can only be defined at zero temperature, T =0, via
the participation of charge carriers in the volume of the Fermi
surface.

The OSMP has been investigated intensively using dynami-
cal mean-field theory (DMFT) [20, 21] and slave-spin methods
[22–24]. There is consensus that the OSMP is realized within
these methods in the absence of hopping matrix elements be-
tween different orbitals [25–30]. This assumption is natural
for local matrix elements (which are zero in high-symmetry
situations [31]) but not for nonlocal ones (which are allowed
by symmetry) [35]. In realistic materials estimations, the in-
terorbital nonlocal hopping amplitudes are often comparable
to those of the light electrons [36].

Earlier attempts to study the OSMP including interorbital
hopping tio resulted in different pictures. Using slave spins,
Refs. [34, 39] concluded that the OSMP survives finite tio
at T = 0, while LDA+DMFT calculations of FeTe using a
Monte Carlo impurity solver [40] [41] argued for a smooth
crossover, where localization occurs only at sufficiently high

FIG. 1. Two possible scenarios, a) and b), for the zero-temperature
(T = 0) phase diagram of multiorbital systems as a function of
Coulomb repulsion U and interorbital hopping tio. Here, we provide
evidence for scenario b) in which any finite tio replaces the OSMP
by a Fermi liquid (FL). The coherence scale Tcoh, below which all
electrons are itinerant, is very low close to the OSMP and Mott phase.

T [44]. These two pictures are sketched in Fig. 1 as qualitative
T =0 phase diagrams. They also lead to different behavior at
finite temperature: In the first case, one expects definite scaling
behavior tied to a coherence scale Tcoh which vanishes when
a control parameter x (e.g., interaction strength or doping)
reaches a critical value xc. But the second scenario predicts
a coherence–incoherence crossover where there is no such xc
and Tcoh stays finite.

Here, we settle this issue within the paramagnetic single-site
DMFT in favor of the second scenario. We provide analytic
arguments why any finite tio destabilizes the OSMP, based
on the DMFT equations. The underlying mechanism has a
simple physical interpretation, and we show that the same
mechanism is obstructed within the more approximate slave-
spin methods (thus explaining the results of Refs. [34, 39]).
We obtain an exact numerical solution of the DMFT equations
for a multiorbital model with interorbital hopping using the
numerical renormalization group (NRG) [47]. This method
is necessary to reach arbitrarily low T and to show that Tcoh,
while always finite, can be extremely small.

The basic argument is: the DMFT views correlated systems
as a collection of atoms, each of which hybridizes with the
environment given by the rest of the lattice. The low-energy
hybridization plays a key role: it is generically finite for Fermi
liquids and vanishes for Mott insulators. We will show that the
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low-energy hybridization of an electron in any orbital is finite
as long as it can hop to another, delocalized orbital and back.
This process is described by the momentum-dependent interor-
bital hopping εiok and the momentum- and frequency-dependent
density of states Alt

kν of a light orbital, as
∑

k(εiok )2Alt
kν . It is

this low-energy hybridization which destabilizes the Mott state
in favor of a Fermi-liquid ground state. Below, we derive the
hybridization formula for a two-orbital model, discuss the co-
herence scale, and illustrate the consequences with numerical
results.

Model—We consider a multiorbital Hubbard Hamiltonian

Ĥ =
∑
ijnmσ d̂

†
inσh

nm
ij d̂jmσ +

∑
i Ĥint[d̂inσ], (1)

where d̂†inσ creates an electron at site i, in orbital n, and with
spin σ. The hopping matrix hnmij features nonlocal (i 6= j)
interorbital (n 6= m) hopping; its Fourier transform is hnmk .
Ĥint denotes the local interaction. In single-site DMFT, cor-
relations are assumed to be local [20]. The propagator reads
Gkν =[ν+µ−hk−Σν ]−1 with the chemical potential µ and
the retarded, matrix-valued self-energy Σν . In sufficiently
symmetric situations, the orbitals can be chosen orthogonal,
such that local one-particle objects are diagonal in orbital space
[21, 48]. This includesGloc,ν =

∑
kGkν , Σν , and the on-site

energies εd =
∑

k hk−µ. Momentum sums are normalized:∑
k 1=1.
A minimal model for the OSMP has two (orthogonal) or-

bitals, a light (lt) and a heavy (hv) orbital. We write the general
hopping matrix, including the interorbital hopping εiok , as

hk − µ =

(
εltk εiok
εiok εhv

k

)
, (2)

The local propagator follows from a 2×2 matrix inversion as

Gloc,ν =
∑
k

1∏
n=lt,hv[ν − εnk − Σnν ]− (εiok )2

×
(
ν − εhv

k − Σhv
ν −εiok

−εiok ν − εltk − Σlt
ν

)
. (3)

For our numeric results, we use the simplistic expressions

εnk = −2tn[cos(kx) + cos(ky) + cos(kz)]− µ,
εiok = −2tio[cos(kx)− cos(ky)], (4)

for which diagonality of εd and Gloc,ν is obvious. However,
our general arguments are independent of the choice of Eq. (4).

DMFT equations—In DMFT, the lattice model is mapped
onto an impurity model. We call the (orbital-diagonal) impurity
propagator gν =[ν−εd−∆ν−Σν ]−1, where ∆ν is the retarded
hybridization function. The appropriate ∆ν is found by itera-
tion until self-consistency between the local lattice propagator
and its impurity counterpart,Gloc,ν =gν , is reached.

The diagonal elements of the local propagator are (m 6=n)

Gnloc,ν =
∑
k

1

rnkν − Σnν
, rnkν = ν − εnk −

(εiok )2

ν − εmk − Σmν
,

(5)

FIG. 2. Spectral functions An for the light and heavy orbital. At
tio = 0, we find an OSMP with Ahv gapped. Finite tio destabilizes
the OSMP as Ahv develops a thin quasiparticle peak. Inset: In the
OSMP, limν→0Alt

ν converges only asymptotically [30, 49].

taken from Eq. (3). The hybridization in the bare impurity
propagator is then determined according to Gnloc,ν = gnν . With
1/gn0,ν = ν − εnd −∆n

ν , ∆n
ν can be found from

1

gn0,ν
= Σnν +

1

Gnloc,ν

=

∑
k

rnkν
rnkν−Σnν∑

k
1

rnkν−Σnν

. (6)

This intermediate result is key for the following discussion. It
gives the hybridization components for a general two-orbital
system [Eq. (2)] according to the DMFT self-consistency con-
dition. We reshuffled the self-energy from the numerator into
the denominator, but no approximation was made thus far.

While Eq. (6) holds at self-consistency, during the DMFT
iteration, it is used to update ∆n

ν from a given solution of
the impurity model (yielding Σnν ) to the next. We can briefly
check the noninteracting case, Σnν = 0, for which DMFT self-
consistency is trivial. There, Eq. (6) correctly yields gn0,ν =∑

k
1
rnkν

. Next, we use Eq. (6) to investigate whether the OSMP
is stable against interorbital hopping. To this end, we start from
a converged DMFT solution with tio = 0 realizing the OSMP.
Then, we turn on tio to check if the Mott insulator persists.

Indeed, starting at tio =0 and setting, e.g., thv� tlt at large
interaction and half filling, the heavy orbital is Mott-insulating
while the light orbital remains metallic. The Mott insulator
is signaled by a gap in the local density of states Ahv

ν , where
−πAnν = ImGnloc,ν = Im gnν , and a divergent effective mass,
i.e., limν→0 |Σhv

ν | =∞. The impurity solution yielding gν
and Σν is determined by the hybridization ∆ν with spectral
weights An∆,ν = −Im ∆n

ν/π. In most cases [11, 50–53], a
Fermi-liquid ground state is found if all An∆,ν are finite around
ν=0, while a Mott-insulating orbital requires a gapped An∆,ν .

Now, we perform the first DMFT update, starting from the
OSMP solution but setting tio 6=0. It is clear from Eq. (5) that
limν→0 |Σhv

ν |=∞ makes Gnloc,ν=0 for both n independent of
εiok , so that, in particular, Ahv

ν remains gapped. However, the
result of the next iteration is determined by An∆, not An. The
divergent self-energy also simplifies the updated hybridization
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FIG. 3. Hybridization function A∆ in the heavy orbital for several DMFT iterations with finite tio, starting from the OSMP solution at tio =0.
Circles on the vertical axis give values (tio/tlt)

2×const according to Eq. (7). Dashed vertical lines indicate the coherence scale after the first
DMFT iteration, T (1)

K , and after the last DMFT iteration, Tcoh. For tio/tlt =0.2, T (1)
K �T and Tcoh&T ; this opens a window of intermediate

energies |ν|>Tcoh with OSMP-like features (cf. Fig. 4).

function. In the limit ν→0 within the OSMP, Eq. (6) yields

|Σhv
ν |→∞ :

1

ghv
0,ν

=
∑
k

rhv
kν , ∆hv

ν =
∑
k

(εiok )2Glt
kν . (7)

For the second relation, ν − εhv
d in 1/ghv

0,ν and
∑

k(ν − εhv
k )

from rhv
k cancel, andGlt

kν =1/(ν−εltk−Σlt
ν ) when Σhv

ν diverges.
Equation (7) is our main result. Assuming a divergent Σhv

ν at
low frequencies, ∆hv

ν retains a finite value, independent of Σhv
ν .

Since a finite hybridization yields a Fermi-liquid ground state
in fairly general impurity models [11, 50–53], we find that,
with Ahv

∆,ν =
∑

k(εiok )2Alt
kν > 0, the Mott-insulating state of

the heavy orbital is unstable against interorbital hopping. In fur-
ther DMFT iterations, a quasiparticle peak in the heavy orbital
will form, and Σhv

ν will no longer diverge. In the Supplemental
Material [54], we show that Eq. (7) holds analogously for any
number of orbitals, and we provide a free-energy functional to
illustrate the universal nature of the effect described above.

We next include a temperature/energy coherence scale be-
low which the Fermi-liquid properties are found. In the single-
impurity Anderson model with large interaction U and (non-
singular) hybridization A∆, this scale is the Kondo tempera-
ture TK ∝ exp(−αU/A∆,ν=0) [55]. Similar behavior is ex-
pected for our model, albeit it with an effective Ũ encoding
further microscopic parameters (like Hund’s coupling J) [56].
For the first DMFT iteration after switching from tio = 0 to
tio 6= 0, we have Ahv

∆,ν=0 ∝ t2io/tlt from Eq. (7) and thus

T
(1)
K ∝exp[−αŨtlt/t2io] = c(tlt/tio)2 , with c ∝ exp[−αŨ/tlt]

reminiscent of a single-orbital Kondo scale. This shows that the
coherence scale for the first DMFT iteration after the OSMP
can be extremely small. In the next iterations, Σhv

ν no longer
diverges, and Ahv

∆,ν=0 cannot be deduced as easily. However,
it is clear that delocalization of the heavy orbital will open
more hybridization channels, so that T (1)

K becomes a lower
bound for the actual coherence scale after DMFT convergence,
Tcoh≥T (1)

K .
Numerical results—We now turn to numerical results for the

model of Eqs. (1), (2) and (4). We denote the half-bandwidth
of εnk by Dn = 6tn and consider two half-filled orbitals with
Dlt/Dhv =2. Dhv =1 is our energy unit, T =10−8, and Ĥint

is given by the Kanamori Hamiltonian [54] with parameters
U = 2.4 and J = 0.4 [11]. We use NRG as a real-frequency
impurity solver for DMFT [54] and assume paramagnetism.

To set the stage, Fig. 2 shows two sets of spectral functions
An for different interorbital hopping. Our interaction param-
eters are such that tio = 0 realizes an OSMP, where Ahv has
a gap while Alt has a peak at ν = 0. Coupled to unscreened
magnetic moments, the metallic orbital at T =0 behaves as a
singular Fermi liquid [30, 49], where limν→0Alt

ν converges
only asymptotically (see inset) and formally Zlt =0. For finite
tio, Ahv develops a narrow quasiparticle peak, replacing the
OSMP by a Fermi-liquid ground state. Nevertheless, at larger
energies |ν| & 10−2, the two sets of spectral functions for
tio = 0 and tio 6= 0 are very similar. Particularly, pronounced
Hubbard bands in Ahv exist in both phases [58].

Figure 3 illustrates our instability argument. It shows Ahv
∆

for several DMFT iterations with finite tio starting from the
OSMP solution at tio = 0. In the first iteration, Ahv

∆,ν ∝
(tio/tlt)

2 according to Eq. (7). The resulting metallic state
leads to an increased hybridization for the next iteration. Its
coherence scale (below which, e.g., Anν converge) roughly fol-
lows T (1)

K ∝ c(tlt/tio)2 . For tio/tlt = 0.2, T (1)
K � T , so that

Ahv
∆,ν for the next iteration converges below T only. In the sub-

sequent DMFT iterations, the hybridization further builds up
until the actual coherence scale Tcoh≥T (1)

K is established. For
tio/tlt = 0.2, Tcoh &T is very low, and OSMP-like behavior
persists for |ν| > Tcoh.

Indeed, Fig. 4 shows the spectral functions and self-energies
after DMFT convergence. For all tio>0, a Fermi-liquid ground
state is obtained, with a finite quasiparticle peak obeying Lut-
tinger pinning [60] Anν=0 = ρnν=0 and self-energies having a
linear real part. At the lowest tio>0, however, both properties
are fulfilled only at very low energies |ν|< Tcoh ∼ 4 · 10−7

(even though Alt increases most strongly around |ν|∼10−1).
For |ν|>Tcoh, the system is hardly distinguishable from the
OSMP: in an intermediate regime of around four orders of
magnitude, Ahv

ν almost vanishes and Σlt
ν follows the logarith-

mic behavior of the OSMP [30, 49]. While the quasiparticle
weights Zn=1/(1− ∂νReΣnν |ν=0) are already on the percent



4

FIG. 4. Spectral functions Aν and self-energies Σ̃ν = Σν−Σν=0

after DMFT convergence. For tio/tlt∈{0.4, 0.3, 0.2}, Fermi-liquid
behavior with Aν=0 obeying Luttinger pinning (circles) and linear
Re Σ̃ is seen below coherence scales of roughly 10−3, 10−4, and
4 · 10−7, respectively (cf. Fig. 3). For tio/tlt = 0.2 and 10−5 <

ν/Dhv < 10−1, Ahv almost vanishes and Re Σ̃lt perfectly follows
the logarithmic behavior [30, 49] of the tio = 0 OSMP. The three
dotted lines indicate κν, with κ=102, 5·103, 105 from bottom to top.

level for tio/tlt =0.3, they reach values as low as 10−3 for the
light and 10−5 for the heavy orbital at tio/tlt =0.2. Decreasing
tio further, an OSMP is recovered as Tcoh<T =10−8.

Comparison with slave spins—We finally compare our re-
sults to previous slave-spin studies which found the OSMP
to be stable against interorbital hopping [39]. Slave-spin ap-
proaches decompose the physical fermions d̂ into a bosonic
slave-spin operator b̂ and a slave fermion f̂†, d̂†imσ= b̂imσ f̂

†
imσ .

It was shown that minimizing the mean-field decoupled free
energy in slave-spin approaches is equivalent to a DMFT-like
treatment where the slave-spin impurity solver yields the quasi-
particle weight and DMFT self-consistency is imposed on the
slave fermions [34] [see their Eq. (30)].

Expressions for the f fermions follow from those of the d
fermions by expanding the self-energy to linear order, Σnν ≈
an+(1−1/Zn)ν, and dividing outZn. For the local propagator
[Eq. (5)], Gd,nloc,ν =ZnG

f,n
loc,ν , this yields (m 6=n)

Gf,nloc,ν =
∑
k

[
ν − εf,nk −

(εf,iok )2

ν − εf,mk

]−1

,

εf,nk = Zn(εd,nk + an), (εf,iok )2 = ZltZhv(εd,iok )2.

Due to the factor ZltZhv, the interorbital hopping has no effect
here if Zhv =0. This agrees with our previous point that a dom-
inant |Σhv

ν | makes Gd,nloc,ν independent of εd,iok . More insight is

obtained from the impurity propagator, gd,nν =Zng
f,n
ν , with

gf,nν =
1

ν−εnf−∆f,n
ν

, εnf =Zn(εnd+an), ∆f,n
ν =Zn∆d,n

ν .

One finds that the f -fermion self-consistency condition
(Gf,nloc,ν = gf,nν ) leads to the same result for the d-fermion
hybridization as in Eq. (7), now in the form ∆d,hv

ν =∑
k(εd,iok )2ZltG

f,lt
kν . This is still finite if the light orbital is

metallic (here Zlt>0). However, the crucial difference is that
the impurity model for the slave spins is not characterized by
∆d
ν but by ∆f

ν . Here, each component is tied to the quasiparti-
cle weight, ∆f,n

ν =Zn∆d,n
ν . Hence, if Zhv =0, the slave-spin

impurity solver has no chance of seeing ∆d,hv
ν=0 6=0 and, thereby,

no chance of generating Zhv > 0 and leaving the OSMP. In
other words, the inseparable connection of Zn and ∆d,n

ν in
slave-spin studies leads to additional stationary points of the
free energy, not present in DMFT.

Conclusion—Using single-site DMFT, we showed that in-
terorbital hopping tio is a relevant perturbation to the OSMP
and destabilizes it at T =0 in favor of a Fermi-liquid ground
state. The reason is that the low-energy hybridization in a
given orbital has a finite contribution which stems from hop-
ping to another orbital and back. Crucially, this term depends
only on the availability of states in the intermediate orbital
and not on the effective mass of the electron hopping. While
an arbitrarily large imbalance in effective masses can still ex-
ist, within single-site DMFT, there is generically no OSMP
with tio>0 at T =0 and more generally below the coherence
scale. Its finite-temperature properties may thus be viewed as
a coherence–incoherence crossover, where selected orbitals
are localized for T > Tcoh but itinerant for T < Tcoh. This
crossover can either be tuned by increasing T in a given sys-
tem [4] or by decreasing Tcoh at fixed (nonzero) T (as in [7]).

Our analytic arguments are supported by numerical results
using NRG as a DMFT impurity solver, capable of accessing
real frequencies and arbitrarily low temperatures. This allowed
us to demonstrate that Tcoh, below which the Fermi-liquid
properties are found, is very sensitive to system parameters
and can be extremely small, even for moderate values of tio/tlt.
We showed that many properties of the tio 6=0 state for energies
above Tcoh are almost indistinguishable from the tio =0 OSMP
that reaches down to T =0. Future theoretical work should aim
to go beyond single-site DMFT to address the influence of non-
local, interorbital self-energy components in renormalizing tio
[61]. Experimentally, our results can be tested by measuring
the normal-state Fermi-surface volume at very low T and by
analyzing the scaling behavior in the OSMP at T >0.
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