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The transverse-field Ising model is one of the fundamental models in quantum many-body systems, yet a full
understanding of its dynamics remains elusive in higher than one dimension. Here, we show for the first time
the breakdown of ergodicity in d-dimensional Ising models with a weak transverse field in a prethermal regime.
We demonstrate that novel Hilbert-space fragmentation occurs in the effective non-integrable model with d ≥ 2
as a consequence of only one emergent global conservation law of the domain wall number. Our results indicate
nontrivial initial-state dependence for non-equilibrium dynamics of the Ising models in a weak transverse field.

Introduction. — The transverse-field Ising model (TFIM)
serves as a minimal model among quantum many-body sys-
tems [1, 2]. Despite its simplicity, the TFIM is quite diffi-
cult to investigate in higher-than-one dimensions because of
its non-integrable nature. It is particularly important for foun-
dation of quantum statistical mechanics to elucidate dynami-
cal properties of the model. Indeed, its quantum thermaliza-
tion has recently been investigated in relatively large systems
[3–7]. For example, ergodicity in the ordered phase is contro-
versial in the two-dimensional TFIM [3, 4, 8]. It was found
that the model does not always thermalize in some quenches
with numerical experiments [8] and that non-thermal eigen-
states exist in a two-dimensional ladder system in the weak
transverse-field limit [9].

The search for understanding quantum thermalization and
the conditions behind it has been expanded substantially [10–
22] in the recent decades because of the progress in ex-
perimental techniques [23–30]. One of the most impor-
tant achievements is the eigenstate thermalization hypothe-
sis (ETH) [10–12, 15, 31], which conjectures that all energy
eigenstates are thermal and provides a sufficient condition for
thermalization in isolated quantum systems. While the ETH
has been confirmed numerically in various systems [15, 32–
38], there is also growing interest in models violating the
ETH. The emergence of non-thermal eigenstates has often
been attributed to extensively many local conserved quantities
due to, e.g., integrability [21, 39–42] and localization [43–47].
The Hilbert space fragmentation (HSF, or shattering) has re-
cently attracted much attention as yet another mechanism of
invalidating the ETH in non-integrable models [48–62]. In
some models such as fractonic systems [63, 64], kinetic con-
straints impose restrictions on the dynamics [49–51] and cre-
ate frozen regions which dynamically divide the systems. This
generates a fragmented structure of the Hilbert space with ex-
ponentially many nontrivial subspaces. In these cases, initial
states cannot access the entire Hilbert space and fail to ther-
malize. For many previous models showing the HSF, the pres-
ence of at least two conserved quantities and the locality of the

interaction were the origin of relevant kinetic constraints.
In this Letter, we show the emergence of non-ergodicity

in a prethermal regime for Ising models with a weak trans-
verse field on a hypercubic lattice in dimensions higher than
one. In particular, by analytical calculations, we reveal for the
first time that the effective model for the TFIM in the weak-
transverse-field limit exhibits the HSF for d ≥ 2. Notably,
this effective model has only one global conserved quantity
namely, the domain-wall (DW) conservation. The locality
of the Hamiltonian and the DW conservation law leads to a
kinetic constraint in the model (Fig. 1 (a)), and to the ap-
pearance of frozen regions. Due to the frozen regions, the
Hilbert space is separated into exponentially many subspaces
(Fig. 1 (b)). Consequently, the ETH breaks down and the ef-
fective model shows non-thermalizing behavior depending on
the initial state. The emergence of frozen regions in our model
is distinct from the ones in the previously studied models
which require several conserved charges for exhibiting such
frozen regions [49–51, 57]. For d = 2, we further demonstrate
that rich dynamical properties are found in subspaces inside
the DW sectors, including those found in non-integrable, inte-
grable, and quantum many-body scarred systems [55, 65–67].

Model. — We consider the TFIM on a d-dimensional hy-
percubic lattice

Ĥ = ĤDW + hx
∑
i

σ̂xi , with ĤDW := −
∑
〈i,j〉

σ̂zi σ̂
z
j , (1)

where σ̂µi (µ = x, y, z) denotes the Pauli spin operators at site
i, 〈i, j〉 indicates that the sites i and j are neighboring, and
hx denotes the strength of the transverse field. While the DW
number, i.e., the eigenvalues nDW of

∑
〈i,j〉(1 − σ̂zi σ̂zj )/2, is

not conserved under the time evolution by Ĥ for finite hx, it is
approximately conserved for a long time if hx is sufficiently
small [68]. Indeed, from a first-order perturbation theory, we
obtain the following effective Hamiltonian [9, 69]:

Ĥeff := ĤDW + hxĤ1, with Ĥ1 :=
∑
i

σ̂xi Q̂i, (2)



2

FIG. 1. (a) Schematic picture of the kinetic constraint arising from the projection operator Q̂i in the Hamiltonian (2) where we take the
dimension d as two. Each spin at site i on a square lattice is flipped only when its two nearest neighbors are up and the other two spins are
down. (b) Fragmented structure of the effective Hamiltonian. In addition to the block structure due to the conservation of the domain-wall
number nDW, the Hamiltonian matrix for an appropriate basis is further block diagonalized, namely fragmented. (c) An example of frozen
regions (non-shaded) and melting regions (blue-shaded), where d = 2 and the periodic boundary condition is assumed. Red and blue arrows
on each lattice site represent up and down spins in σ̂z

i basis, respectively. The areas surrounded by dashed lines and labelled A and D exemplify
prototypical spin configurations in frozen regions and those labelled B and C indicate one-dimensional melting regions which correspond to
the PXP and XX models, respectively. Frozen regions percolate the system so that every spin in these regions is guaranteed to have at least
three nearest-neighboring spins with the same sign.

where the operator Q̂i projects all spin configurations onto
the state space in which the sum of the z components of the
2 × d spins surrounding the site i is zero (see Fig. 1 (a)). For
example, the projector Q̂i for d = 2 is explicitly given by [70]

Q̂i :=
5

8
− 1

16

 ∑
j∈ngbh(i)

σ̂zj

2

+
3

8

∏
j∈ngbh(i)

σ̂zj , (3)

where ngbh(i) denotes the nearest-neighbor sites of the site i.
The effective Hamiltonian Ĥeff approximates the dynamics of
local observables governed by the original Hamiltonian (1) for
a certain time scale that goes to infinity as hx → 0 [70–72].

Since Ĥ1 commutes with ĤDW, Hamiltonians Ĥ1 and
Ĥeff lead to the same dynamics when we specify a DW sec-
tor. Thus, we focus on the Hamiltonian Ĥ1 in the follow-
ing. The Hamiltonian Ĥ1 is non-integrable as discussed later;
it conserves the DW number and is block-diagonalized ac-
cordingly. Apart from spatial symmetries, such as inversion,
the Hamiltonian also has global chiral symmetry, i.e., Ĥ1

anti-commutes with
∏
i σ̂

ν
i (ν = y, z) [73]. This symmetry

produces non-zero energy eigenvalues in pairs with opposite
signs. While the Hamiltonian also has global Z2 symmetry
(i.e., Ĥ1 commutes with

∏
i σ̂

x
i ), we confirm that this symme-

try is irrelevant for the emergence of HSF.
Hilbert space fragmentation. — We now demonstrate the

Hilbert-space fragmentation of Ĥ1 in each sector character-
ized by the number of DWs (see Fig. 1 (b)). We first show
that the kinetic constraint induced by Q̂i forms regions where
the spin dynamics is frozen. More specifically, let us consider
a product state |F 〉 =

∏
i∈F |si〉 forming a sub-region F on

the entire lattice Λ, where |si〉 is one of the eigenstates of σ̂zi .
If |F 〉 satisfies the following condition, we call F a frozen re-
gion: Q̂i(|F 〉⊗ |M〉) = 0 for ∀i ∈ F and any |M〉 defined on
Λ/F . The frozen regions remain unchanged under the time
evolution by Ĥ1 (as well as Ĥeff ). Meanwhile, non-frozen re-
gions, which we call melting regions, are isolated from one

another separated by frozen regions. Nontrivial dynamics oc-
curs only in the melting regions. Below we focus on the case
with d = 2 although most observations here hold for d ≥ 3
too.

Figure 1 (c) exemplifies a possible spin configuration and
associated frozen and melting regions. One simple example of
the frozen region is a ladder-like region along the lattice with
all spins aligning up in the z direction, percolating the system
from one end to the other (the area A in Fig. 1 (c)). Another
example is a wider region in which not all the spins are aligned
in the same direction (the region between the areas B and C in
Fig. 1 (c)) and surrounds some melting regions. A spin con-
figuration in a frozen region can also exhibit a checker-board
pattern (the area D in Fig. 1 (c)). In all of the cases, every spin
is arranged in such a way that at least (d + 1) of its nearest-
neighbor spins have the same direction, which set the value of
Q̂i to zero. Because this condition prohibits a frozen region to
have corners under the periodic boundary conditions, we con-
jecture that all frozen regions percolate the system from one
side to the other [70].

Because of the frozen regions, the Hilbert space has ex-
ponentially many subspaces. For example, a spin configura-
tion having a frozen region cannot change into another spin
configuration having a different frozen region by the Hamil-
tonian dynamics. This splits the Hilbert space into subspaces.
Moreover, even when the arrangement of frozen regions is the
same, there are many ways in which the DWs are spatially
distributed over separated melting regions. Since the density
of DW within each melting region is conserved over time, the
Hilbert space is broken up into even smaller subspaces. Each
subspace is therefore characterized by the configuration of the
frozen regions and the spatial distribution of the DW density
for melting regions.

The emergence of the dynamically fragmented subspaces
suggests that the relaxation dynamics of the system strongly
depends on the details of the initial state. When we take an
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FIG. 2. (a) Spin configurations of the two initial states for
N = 3 × 6 lattice. We assume that the system is surrounded by
fixed spins pointing down. Regions with blue shades show melt-
ing ones. (b) Magnetization dynamics starting from the two initial
product states. Time evolution of the expectation value 〈M̂z(t)〉 :=
〈ψ(t)| (1/N)

∑
i σ̂

z
i |ψ(t)〉 shows that a slightly different initial con-

dition results in substantially different stationary states.

initial state from one of the subspaces in a given DW sec-
tor and let it evolve, the state remains in this subspace. Let
us consider, for example, two initial product states |ψ1〉 and
|ψ2〉 shown in Fig. 2 (a), which are slightly different in their
spin configurations but have the same energy in a DW sector.
Figure 2 (b) shows the dynamics of the expectation value of
the magnetization density from these two initial product states
according to the effective Hamiltonian Ĥeff . Throughout this
paper, we perform numerical calculations under the condition
that the spins constituting the system are surrounded by fixed
frozen spins pointing down. Due to the frozen region in the
middle of the lattice, which emerges only in the state |ψ2〉,
the magnetization relaxes to substantially different values for
the two initial conditions, which indicates ergodicity break-
ing. This example highlights that a frozen region covering a
large area of the system can be converted into a melting re-
gion with a small change in the initial configuration in this
model. Similar behavior can be also observed under the time
evolution by Ĥ with a weak hx (see supplementary material
[70]).

The non-ergodicity due to the HSF in this model is deeply
related to the violation of the ETH. The fragmented struc-
ture yields exponentially many non-thermal energy eigen-
states. Simple examples of such non-thermal states are prod-
uct frozen states, which correspond to the states in isolated
subspaces with the dimension one. As detailed in Supplemen-
tal Material [70], we show that the number of frozen states in-
creases exponentially in the system size, indicating the emer-
gence of the HSF [62]. We note that Ref. [9] also finds a sim-
ilar frozen state for an effective model of TFIM on a pseudo-
one-dimensional ladder, but no HSF was discussed there. As
another example, we find eigenstates which have spatially in-
homogeneous DW density owing to frozen regions that act as
a wall to separate different melting regions.

Figure 3 (a) shows the entanglement entropy of all the en-

FIG. 3. (a) Entanglement entropy of all the energy eigenstates in
a DW sector for a 3 × 6 lattice. At its boundaries, the system is
surrounded by fixed frozen spins pointing down. In all panels (a)–
(c), we take nDW = 20, for which 0 ≤ nDW ≤ 36. We find
that the entanglement entropy exhibits a broad distribution even for
a fixed energy, indicating the breakdown of the ETH in this DW
sector. (b) Distribution of the consecutive energy-gap ratio rn [76]
for the subspace without frozen regions. The statistics is calcu-
lated after resolving the two spatial inversion symmetries along the
x and y directions [77]. Dashed line shows the Poisson prediction
PPoisson(r) = 2/(1+r)2Θ(1−r) and the solid line shows the GOE
prediction PGOE(r) = (27/4)(r+ r2)/

(
1 + r + r2

)5/2
Θ(1− r),

where Θ is the Heaviside step function. The agreement between the
result and the GOE prediction indicates the non-integrability of the
system defined in this subspace. (c) Entanglement entropy of the en-
ergy eigenstates in the subspace without frozen regions (extracted
from the panel (a)). Most of the eigenstates with close energies
have similar values of entanglement entropy, in accordance with the
ETH. Meanwhile, a small number of low-entangled eigenstates ap-
pear around specific values: E = 0,±1,±

√
2 and ±

√
6, which are

regarded as quantum many-body scars [55, 65–67, 70].

ergy eigenstates of Ĥ1 in a fixed DW sector for a 3 times 6 lat-
tice [74]. We evaluate it by computing the von-Neumann en-
tropy of the left half of the system. In generic systems obeying
the ETH, eigenstate entanglement entropies are close to one
another for close eigenenergies. In Fig. 3 (a), we demonstrate
the violation of the ETH in this model, that is, a broad distribu-
tion of the entanglement entropy even for close eigenenergies
and the presence of eigenstates with low entanglement. Due
to the existence of frozen regions that divide the system into
isolated parts, there are many eigenstates with zero bipartite
entanglement [75].

Several remarks are in order. First, the kinetic constraint
in Ĥ1 is associated with the conservation of the DW num-
ber alone. In particular, the model possesses frozen regions
that dynamically divide the system and exhibits exponentially
many frozen states. These properties are often found in the
previously studied models [62] as a consequence of more
than one conserved quantities [49–53, 57, 60]. Our finding
here demonstrates that such nontrivial physics can occur even
when there is only one apparent conserved quantity. Second,
consequences of the percolation behavior of frozen regions
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depend on d. For d = 2, the system is always divided into iso-
lated parts by frozen regions that percolate the system and act
as walls. However, for d > 2, frozen regions do not always
divide the system because their shape can be, e.g., a square
prism which percolates only in one direction along the lat-
tice. It is also worth mentioning that the Hamiltonian Eq. 2
does not yield many frozen regions and the resultant HSF for
d = 1, while we show in fact it does for d > 1. Finally, eigen-
states with frozen regions can be found in every DW sector
as long as the system is sufficiently large. Thus, non-ergodic
behavior can be found for initial states with any finite energy
density with respect to the effective Hamiltonian Ĥeff . This
suggests that the original TFIM in a weak transverse field ex-
hibits non-thermal behavior for long times at any energy scale
for particular initial states.

Subspace properties. — Now we investigate properties of
the fragmented subspaces of Ĥ1. Dynamics for each subspace
is observed only in the melting regions, being characterized by
their shapes and their boundary conditions. Here we specifi-
cally consider the case for d = 2 and show that there are a rich
variety of dynamics in some melting regions, including those
found in non-integrable, integrable, and quantum many-body
scarred systems.

The Hamiltonian Ĥ1 itself is presumably non-integrable.
To demonstrate this, let us choose a subspace having no frozen
regions. In Fig. 3 (b), we perform the analysis of energy-level
statistics for this subspace. We calculate the distribution of the
consecutive energy-gap ratio rn = min (δn/δn−1, δn−1/δn)
with δn := En+1 − En, where En denotes the nth energy
eigenvalue in the subspace [76]. The statistics of this ratio in
Fig. 3 (b) shows a good agreement with that of the Gaussian
Orthogonal Ensemble (GOE), indicating that this subspace as
well as the entire Ĥ1 is non-integrable.

Additionally, in the subspace without frozen regions, we
numerically find eigenstates with low entanglement in the
bulk of the spectrum, which are regarded as quantum many-
body scarred states [55, 65–67]. Figure 3 (c) demonstrates the
presence of such states around E = 0,±1,±

√
2 and ±

√
6.

The origin of these states cannot be attributed to frozen re-
gions as they are excluded in this subspace. We find that some
of them originate from specific local structures of the adja-
cency graph of the Hamiltonian [78, 79]; see supplementary
material for details [70].

Interestingly, we find that the one-dimensional PXP model
and the XX model can be embedded as melting regions of the
model Ĥ1. First, let us discuss the emergent PXP model (see
the area B in Fig. 1 (c)). In this one-dimensional region, all
sites are adjacent to the frozen sites with up spins. There-
fore, in this region, every spin can be flipped only when its
two nearest neighbors are down due to the kinetic constraint.
Hence, the system is effectively governed by

ĤB =
∑
i∈B

σ̂xi
1

4

(
1− σ̂zi+1

) (
1− σ̂zi−1

)
. (4)

This is the one-dimensional PXP model, a well-known non-
integrable model for hosting quantum many-body scars [66,

80–83]. This implies that one observes a long-lived oscillation
of an observable in this one-dimensional region if we prepare
an appropriate initial configuration. Second, let us briefly dis-
cuss the XX model (the area C in Fig. 1 (c)). In this region,
the direction of the spin neighboring on the right side is oppo-
site to that neighboring on the left side. We then find that the
following Hamiltonian governs the dynamics in this region:

ĤC =
∑
i∈C

σ̂xi
1

2

(
1− σ̂zi+1σ̂

z
i−1

)
. (5)

This is the same as the effective Hamiltonian of the Ising chain
in a weak transverse field [84] and is mappable to the XX
chain [85], which is exactly solvable and thus ergodicity is
broken due to the integrability. This implies that some sub-
spaces become integrable when they only have a specific type
of melting regions.

Conclusion and outlook. — In this Letter we have rigor-
ously demonstrated that the effective model obtained from the
d-dimensional Ising model in a weak transverse field on a hy-
percubic lattice exhibits the HSF for d ≥ 2. In particular, the
kinetic constraint, which is attributed to the emergent conser-
vation of the DW number in this model, forms frozen regions
that percolate the system. Consequently, each DW sector frac-
tures into exponentially many isolated subspaces, leading to
the violation of the ETH. We furthermore showed that some
of the subspaces can be non-integrable, integrable, and even
possess scarred eigenstates. Our results indicate that nontriv-
ial initial-state dependence is observed for prethermal dynam-
ics of the Ising models in a weak transverse field. Because the
TFIM in two and three dimensions are experimentally realiz-
able [5, 86–92], we believe that the model serves as a novel
platform for observing the signatures of HSF, which is dis-
tinct from previous experiments that required, e.g., tilted po-
tentials [93, 94]. We leave it for future work to investigate the
robustness of transient non-ergodicity under long-range Ising
interaction, which often arises in experiments. Finally, given
that Ĥeff is obtained in the weak-field limit of the TFIM, it is
interesting to see how properties of the Ising model without
the transverse field, such as (classical) integrability and finite-
temperature phase transition, affect physics in our model.
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[67] Z. Papić, arXiv preprint arXiv:2108.03460 (2021).
[68] D. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers, Com-

munications in Mathematical Physics 354, 809 (2017).
[69] T. Close, F. Fadugba, S. C. Benjamin, J. Fitzsimons, and B. W.

Lovett, Physical review letters 106, 167204 (2011).
[70] See Supplemental Material, which includes Refs. [95–100],

for (i) the expression of Q̂i in arbitrary dimensions, (ii) nu-
merical estimation of the timescale over which our effective
model works well, (iii) a reason for the conjecture that frozen
regions should percolate the system, (iv) analytic demonstra-
tion of the exponentially growing number of the subspaces,
and (v) numerical and some exact results on the special eigen-
states which are found in Fig. 3 (c).

[71] Z. Gong, N. Yoshioka, N. Shibata, and R. Hamazaki, Physical
Review A 101, 052122 (2020).

[72] Z. Gong, N. Yoshioka, N. Shibata, and R. Hamazaki, Physical
Review Letters 124, 210606 (2020).

[73] The DW number conservation law and the chiral symmetry ap-
pear both in a periodic boundary condition and an open bound-
ary condition.

[74] When numerically diagonalizing the Hamiltonian for (a) and
(c), we added perturbative random longitudinal fields with av-
erage strength 10−5. This is due to avoid ambiguity caused by
exact degeneracy originating from unwanted symmetries such
as inversion.

[75] The distribution at E = 0 in Fig. 3 (a) and (b) still involves
some ambiguity because of degeneracy of an exponentially
large number of zero-energy states. This may imply that the
degeneracy originates from not only the chiral symmetry and
spatial inversion symmetry [101] but also some hidden ones,
which are not broken by the additional longitudinal fields.

[76] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Physical
review letters 110, 084101 (2013).

[77] Note that the GOE distribution is obtained only after resolving
apparent symmetries, whereas the Poisson-like distribution of-
ten appears when symmetries such as inversion are unresolved
[4, 34, 102, 103].

[78] J.-Y. Desaules, A. Hudomal, C. J. Turner, and Z. Papić, Phys-
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