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We theoretically analyze recent experiments [G. Semeghini et al., Science 374, 1242 (2021)] demon-
strating the onset of a topological spin liquid using a programmable quantum simulator based on
Rydberg atom arrays. In the experiment, robust signatures of topological order emerge in out-of-
equilibrium states that are prepared using a quasi-adiabatic state preparation protocol. We show
theoretically that the state preparation protocol can be optimized to target the fixed point of the
topological phase – the resonating valence bond (RVB) state of hard dimers – in a time that scales
linearly with the number of atoms. Moreover, we provide a two-parameter variational manifold of
tensor network (TN) states that accurately describe the many-body dynamics of the preparation
process. Using this approach we analyze the nature of the non-equilibrium state, establishing the
emergence of topological order.

Introduction. – Quantum spin liquids (QSLs) arise
from the competition between classical frustration and
quantum fluctuations [1–6]. They are paradigmatic ex-
amples of topological quantum matter [5, 6], character-
ized by long-range entanglement [7], hidden non-local or-
der [5], and exotic excitations [8]. Experimental pre-
paration and control of topological matter is of cent-
ral importance not only for understanding these many-
body quantum phenomena but also for realizing novel
approaches to fault-tolerant topological quantum com-
putation [7, 9]. Recently, the onset of a topological spin
liquid has been observed in a quantum simulator based
on Rydberg atom arrays [10]. The key idea is to exploit
the Rydberg blockade mechanism [11–15] to realize a di-
mer model, where spin liquid states are known to emerge
as equilibrium states at zero temperature [16–18]. These
states share many similarities with a resonating valence
bond (RVB) state [19] of hard dimers, where the role of
a dimer is played by an excited Rydberg state on the me-
dial lattice of a kagome lattice [Fig. 1(a)]. While the RVB
state is an equal weight superposition of all the maximal
dimer coverings of the kagome lattice, the Rydberg ar-
ray can accommodate defects in the form of uncovered
kagome vertices. Theoretical analysis showed that the
presence of a topological phase depends delicately on the
precise details of the Rydberg interactions and atomic po-
sitions [11]. Remarkably, experiments showed that robust
signatures of quantum spin liquids appear using quasi-
adiabatic detuning sweeps employed in Ref. [10], even in
regimes where QSLs are not expected to be stable as the
ground state. Understanding the dynamical preparation
process, the robustness of the emerging state, the role of
the defects, and the extent to which they can be reduced
is crucial for determining the physical properties of the
non-equilibrium state as well as its potential utility for

topological quantum information processing.
In this Letter we investigate the state produced

through the quasi-adiabatic sweep by simulating the
quantum dynamics via exact and variational methods.
We show that the defect-free RVB state can be prepared
with high fidelity in a time that scales linearly with the
number of atoms. To understand the nature of the de-
fects generated during the state preparation protocol util-
ized in the experiments [10], we introduce a novel tensor
network (TN) ansatz. We demonstrate that it accurately
describes the entire many-body dynamics of the prepara-
tion process, and we analyze the resulting phase diagram
via TN techniques. The latter allows us to study the
properties of the non-equilibrium state on system sizes
comparable to experiments [10]. By computing several
witnesses, including non-local order parameters [20, 21]
and topological entanglement entropy [22, 23], we es-
tablish the presence of an extended region in parameter
space that is adiabatically connected to the RVB state
and hosts topological order.
Model Hamiltonian and RVB state preparation. –

The Rydberg atom quantum simulator of Ref. [10] con-
sists of neutral atoms optically trapped in fixed positions
on the links of a kagome lattice. Optical transitions
between the groundstate |g〉 and the excited Rydberg
state |r〉 of each atom are controlled via a two-photon
process with Rabi frequency Ω and detuning ∆. Excited
Rydberg states interact through Van der Waals potential.
The effective Hamiltonian is [24, 25]

H =
Ω

2

∑
i

σx
i −∆

∑
i

ni + V
∑
i>j

ninj
|i− j|6 , (1)

where σx
i = |g〉i〈r|+ |r〉i〈g| and ni = |r〉i〈r|. The para-

meter V is tuned by varying the lattice spacing,
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Figure 1. (a) Mapping between a dimer model on the kagome
lattice and the Rydberg atoms system on the ruby lattice.
When Rb & 2a (shaded red circle) the Rydberg constraint is
equivalent to the dimer constraint. (b) Schematic repres-
entation of the adiabatic state preparation protocol. The
vertical grey lines separate the three stages of the prepar-
ation process: ramp-up of Ω and ∆, and ramp-down of
Ω. (c) Top: Groundstate fidelity susceptibility F = (1 −
| 〈GS(λ)|GS(λ+ dλ)〉 |)/dλ with λ= Ω/∆ and dλ= 0.0025.
Bottom: RVB overlap with the groundstate of the Hamilto-
nian Eq. (1). (d) Overlap between the dynamically pre-
pared state and the RVB state as a function of the total
sweep time T rescaled with the number of atoms N , for
∆0 =−5,∆1 = 1.5, T1 =T3 = 0.1T and T2 = 0.8T .

and its magnitude determines the blockade radius,
Rb = (V/Ω)1/6. The interactions effectively suppress sim-
ultaneous occupancy of excited Rydberg states at dis-
tance r≤Rb. Numerical calculations are performed en-
forcing this constraint exactly on periodic clusters at
Rb = 2a, where a is the minimum distance between the
atoms. Moreover, we neglect longer-range tails of the in-
teractons at r >Rb [Fig. 1(a)]. The effect of the tails and
of a relaxed blockade constraint is described in the final
part of this Letter. The phase diagram of the simplified
model hosts three phases: trivially disordered, topologic-
ally ordered, and trivially ordered as ∆ increases [11].
These three phases can be identified from the exact di-
agonalization calculations plotted in Fig. 1(c). The up-
per panel shows two clear peaks in the groundstate fi-
delity susceptibility F = (1− | 〈GS(λ)|GS(λ+ dλ)〉 |)/dλ
that signal an intermediate phase, characterized by high
overlap (' 0.7 for N = 48 atoms) with the RVB state.

We first focus on state preparation protocols depicted
in Fig. 1(b). The initial state is the vacuum, where all
the atoms are in their ground states. The driving field is
turned on at fixed detuning ∆0 and Ω increases until it
reaches its maximum value (which sets our unit of energy
and time). The detuning is then increased from ∆0 to
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Figure 2. (a) Overlap between the dynamically prepared
state during the sweep (depicted in the inset) and the ansatz
Eq. (2), optimized over the variational parameters z1, z2 for
various sweep times T , for a periodic cluster of N = 36 atoms.
The dashed line is the optimized overlap with the instantan-
eous groundstate (T = ∞). The shaded red region delimits
the topological phase in the groundstate. (b) Maximal over-
lap obtained during the sweep when 1.∆/Ω. 2, for different
N , as a function of the total sweep time rescaled by N [27].
(c) Optimal absolute values for the variational parameters
z1, z2 in the ansatz state during a semi-adiabatic sweep with
T = 103 (solid line) and on the ground state (dashed line) for
N = 36.

∆1. Finally, Ω is switched off at fixed detuning ∆1. The
durations of the three stages of the sweep are T1, T2, T3
respectively, and the total time is T . These paramet-
ers can be tuned at will, and we choose T1 =T3 = 0.1T ,
T2 = 0.8T , ∆0 =−5 and ∆1 = 1.5 in units of the max-
imum Rabi frequency. The final result moderately de-
pends on the parameter ∆1, while it is mildly affected by
the others [26]. Fig. 1(d) shows the overlap of the final
state with the defect-free RVB state as a function of the
total time T . The large and small T regimes are char-
acterized by small overlap with the RVB state. In the
former, one recovers the adiabatic limit, where the final
state is a valence bond solid (VBS), i.e. the ground state
at large detuning [11]. In the latter, the high sweep rate
creates a high density of defects on top of the maximal
density subspace. Remarkably, at intermediate T the
prepared state reaches 0.99 fidelity with the RVB state
for N = 48 atoms. The maximal overlap with the RVB
state is obtained at a time T ∗ that scales linearly with
system size N , as it is evident from Fig. 1(d), where the
overlap is plotted as a function of T/N . We note that
RVB fidelities of the dynamically prepared state exceeds
the groundstate ones by almost two orders of magnitude
[Fig. 1(c,d)].
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Ansatz for the preparation dynamics. – We now ex-
pand our focus beyond the analysis of the final state at
the end of the sweep, and aim at developing an under-
standing of the dynamics of the system during the state
preparation protocol. We are particularly interested in
regimes where the dynamics is not adiabatic and the res-
ulting density of monomers is not vanishing small. For
this we find it convenient to slightly modify the state
preparation protocol, to the one depicted in the inset of
Fig. 2(a): after initially switching on Ω, the detuning is
linearly increased until the end of the process, i.e., we set
T3 to zero [cf. Fig. 1(b)]. We focus on the state generated
at intermediate values of the detuning during this prepar-
ation protocol. Similar to the previous section, we will
use the total sweep time T as a parameter to interpolate
from a sudden quench to a perfectly adiabatic dynamics
where the system is in the instantaneous ground state.
To describe the state of the system during this dynamics
we introduce the following variational ansatz

|φ(z1, z2)〉 = N P
[

N⊗
i=1

(
1 + z2σ

+
i

) (
1+z1σ

−
i

)]
|RVB〉 ,

z1, z2 ∈ C , (2)

where P is the projector on the blockade-constraint
satisfying sector of the Hilbert space, σ−

i = |g〉i〈r|,
σ+
i = |r〉i〈g| and N is a normalization constant. We allow

the two variational parameters z1, z2 to be complex to
capture relative phases between fixed density subspaces.
To understand this manifold of states it is instructive to
consider the limiting cases. In one limit, where z1 =∞
and z2 = 0, the state reduces to the trivial vacuum state,
i.e., the initial state of the experimental state preparation
protocol. In another limit, when z1 = z2 = 0, the state
is simply the RVB state. In the vicinity of this point,
the parameters z1, z2 control the properties of defects
on top of the RVB state. These defects are monomers,
i.e. vertices of the kagome lattice that are not covered
by a dimer. Specifically, a finite value of the parameter
z1, results in the creation of nearest-neighbor monomer
pairs that are created by removing a dimer from a di-
mer covering. The value of z1 controls the density of
such pairs. A finite value of z2 effectively allows these
monomer pairs to separate, introducing pairs with larger
intra-pair distances. Finally, in the limit when z1 =∞,
all monomers are uncorrelated and their density is set
by z2. This last limiting case has been previously em-
ployed in variational studies of groundstates for Rydberg
atom arrays on the square lattice, and its norm maps to
a classical partition function with local weights [28]. An
important feature of the state |φ(z1, z2)〉 is that it is a
TN state of bond dimension 4 for all z1, z2. This follows
from the observations that the RVB state is a TN state
of bond dimension 2, and P is a TN operator with the
same bond dimension. We note that expectation values
for this state can be computed exactly by the contraction

.
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Figure 3. (a) Derivative of the density w.r.t. the parameter
z1, computed from the TN representation of the ansatz Eq. (2)
on an infinite cylinder of circumference L= 6 tensors. (b) To-
pological entanglement entropy γ of the ansatz computed on
the finite cluster of N = 48 sites depicted in the inset. (c) Di-
agonal and off-diagonal BFFM order parameters on the infin-
ite cylinder of circumference L = 6. (d) Expectation values of
open and closed string operators obtained during the dynam-
ical preparation (solid lines) and from the optimized ansatz
(empty markers) for N = 36 and T = 65.

of a tensor network of bond dimension 8 [26].
We demonstrate the effectiveness of the ansatz Eq. (2)

in Fig. 2(a), where we plot the optimized overlap with the
dynamically evolving state for various total sweep times
T (solid lines) in a periodic cluster of N = 36 atoms [26].
The dashed line denotes the optimized overlap with the
instantaneous groundstate, which corresponds to a fully
adiabatic sweep with T =∞. The shaded red region in-
dicates the topological phase in the ground state phase
diagram. Our ansatz best describes the ground state in a
neighborhood of the transition point between topological
and disordered phases, at ∆/Ω' 1.4. This is expected, as
the ansatz Eq. (2) does not break any lattice symmetry,
and as such does not include the VBS ground state at
large detuning, causing a suppression of the overlap as
the VBS phase is approached. During the preparation
dynamics, the highest overlaps with the variational state
are obtained for intermediate T . Fig. 2(b) shows that
the fidelity slowly decreases with the number of atoms,
but remains impressively large for all the system sizes
considered (> 0.99 for N = 48 atoms). Similar to what
we observed for the pure-RVB preparation protocol, the
total sweep time for which maximal fidelities are reached
increases linearly with N . In Fig. 2(c) we plot the mag-
nitude of the optimal values for the two variational para-
meters, for the fully adiabatic sweep (dashed line) and
the optimal sweep rate for N = 36.
These optimal values are to be located in the state
phase diagram reported in Fig. 3(a) that shows the de-
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rivative of the density of Rydberg excitations computed
via TN methods on an infinite cylinder with circum-
ference of length 12 links of the kagome lattice (L= 6
tensors) [26]. The presence of a peak in the derivat-
ive points at two distinct phases: an RVB-like phase
and a trivial phase when z1, z2 are small and large re-
spectively. A closer inspection of the scaling of the peak
with the length of the circumference [26] confirms a con-
tinuous phase transition separating a topological phase,
connected to the RVB state, and a trivial phase con-
nected to the vacuum. We demonstrate that the latter
has topological order by showing in Fig. 3(b) the to-
pological entanglement entropy γ of the state Eq. (2)
on a periodic cluster of N = 48 sites, obtained from
γ=SAB + SBC + SAC − SA − SB − SC − SABC [22, 23],
where SX is the entanglement entropy of the subsys-
tem X, see Fig. 3(c). A value close to ln 2 signals Z2

topological order in the region conntected to the RVB
point. To further corroborate the topological nature of
the high-density phase we compute the Bricmont, Frö-
lich, Fredenhagen, Marcu (BFFM) [20, 21] order para-
meters, as defined in Ref. [11]. These order parameters
are defined on a loop of length ` and, in a topologically
ordered phase, they vanish when `→∞. In Fig. 3(c) we
plot the diagonal and off-diagonal BFFM order paramet-
ers obtained from hexagonal loops of perimeter `= 18
links of the kagome lattice on an infinite cylinder with
L= 6 [26]. The region where both these observables are
small coincides with the conjectured topological phase.
We checked that, in this region, they vanish exponen-
tially with increasing loop length [26]. In Fig. 3(c) we
compare the building blocks of the BFFM order para-
meters, namely expectation values of string operators Zo

(Xo) and Zc (Xc) on open and closed strings, computed
during the preparation process and obtained from the
optimized ansatz Eq. (2) for a loop of length `= 6 [26].
We observe good agreements even for short preparation
times.
Effect of long-range interactions. – To study the

state preparation dynamics generated by the full Ry-
dberg Hamiltonian Eq. (1) we include long-range tails of
the Rydberg interaction and set Rb = 2.4a. The maximal
interaction distance between two excited Rydberg states
is |i − j|=

√
13a. Moreover, we relax the radius of the

hard constraint of Fig. 1(a) to one length unit, such that
each triangle has at most one dimer. While the relaxation
of the constraint notably improves the overlap with the
RVB state [26], the inclusion of long-range tails lifts the
classical degeneracy in the fully-packed dimer coverings
subspace [29]. This fact generates a complex pattern of
phases between the maximal-density components of the
prepared state, yielding suppressed overlaps between the
RVB state and the state reached at the end of the sweep
in Fig. 1(a). We refer to [26] for a more detailed dis-
cussion of this issue, and we stress here that high RVB
fidelities are obtained when only the absolute value of the
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Figure 4. (a) Optimized overlap between the ansatz Eq. (2)
(without projector P) and the state prepared through the
sweep depicted in the inset of Fig. 2(a) for different total
sweep times T . The dynamics is generated by the full Rydberg
Hamiltonian Eq. (1) with Rb = 2.4a. (b) Maximal fidelity per
site obtained during the sweep as a function of the total sweep
time T rescaled by the number of atoms N .

components of the prepared state is considered. Gaining
a deeper understanding of the effect of these phases and
their control is crucial for the experimental applicability
of the preparation protocol discussed in the first part of
this Letter.

We now focus on the ansatz Eq. (2) and compare it to
the state dynamically prepared at finite ∆/Ω. We note
that the constraint relaxation produces a non-negligible
projection of the latter on the subspace violating the
dimer constraint [10]. In an attempt to capture this
constraint-violating component, we remove the projector
P in the overlap optimization. The resulting state-phase
diagram is qualitatively unchanged w.r.t. the one in
Fig. 3 [26]. We plot in Fig. 4(a) the outcome of the optim-
ization for a periodic cluster of N = 36 atoms, for various
total sweep times T (solid lines), and including the fully
adiabatic sweep (dashed line). The result is analogous to
the one depicted in Fig. 2(a) for the PXP model, where
the smaller maximal overlaps are to be compared with
the much larger Hilbert space dimension: 224 vs ' 217

for N = 36. Remarkably, the fidelity per site increases
with increasing N for the two system sizes considered
[Fig. 4(b)].
Outlook. – We discussed dynamical preparation of

topological spin liquids in Rydberg atom arrays. First
we showed that the pure RVB state can be reached with
impressively high fidelity in a time that scales linearly
with the number of atoms. Although the optimal pre-
paration times needed to reach the highest fidelities are
somewhat longer than those accessible in the current ex-
perimental capabilities [30], further optimization, larger
Rabi frequencies as well as improved coherence in ex-
periments could make defect-free RVB state preparation
feasible. We also showed that the non-equilibrium state
observed in [10] is well described by a two-parameter fam-
ily of TN states with small bond dimension. The latter
includes the topologically ordered RVB state and the va-
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cuum. We exploit this TN representation to study the
properties of the prepared state on unprecedentedly large
systems, and infer about the stability of topological order
in the thermodynamic limit. We find that our ansatz is
fully consistent with a topological spin liquid in a finite
region in parameter space. Our work clarifies the nature
of non-equilibrium state experimentally prepared in [10],
and provides the tools for performing large-scale classical
simulations that might serve as guidance for probing to-
pological quantum matter in future quantum simulator
experiments. These studies can be extended along several
directions. For instance, our approach can be used to ex-
plore non-trivial dynamics of anyonic excitations as well
as the preparation of the other topologically degenerate
states that have a natural interpretation within the TN
framework [31]. Moreover, the dynamical preparation of
the pure RVB state is not limited to the ruby lattice
described in the present work. In particular, one can ex-
plore if this method can applied to other systems with a
ground state degeneracy growing exponentially with the
number of atoms (see e.g. Ref. [32]). In such systems
dynamical preparation protocols can be potentially used
to engineer other kinds of exotic phases of matter in a
wide variety of lattice geometries.
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