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Dissipative quantum phase transition has been widely believed to occur in a Josephson junction coupled to a
resistor despite a lack of concrete experimental evidence. Here, on the basis of both numerical and analytical
nonperturbative renormalization group (RG) analyses, we reveal breakdown of previous perturbative arguments
and defy the common wisdom that the transition always occurs at the quantum resistance RQ = h/(4e2). We
find that RG flows in nonperturbative regimes induce nonmonotonic renormalization of the charging energy
and lead to a qualitatively different phase diagram, where the insulator phase is strongly suppressed to the deep
charge regime (Cooper pair box), while the system is always superconducting in the transmon regime. We
identify a previously overlooked dangerously irrelevant term as an origin of the failure of conventional under-
standings. Our predictions can be tested in recent experiments realizing high-impedance long superconducting
waveguides and would provide a solution to the long-standing controversy about the fate of dissipative quantum
phase transition in the resistively shunted Josephson junction.

Understanding physical properties of quantum systems in-
teracting with environmental degrees of freedom is one of the
central problems in quantum many-body physics. A wide va-
riety of intriguing quantum phenomena have been revealed in
the last half century; key examples include the Kondo prob-
lem in heavy fermion materials or mesoscopic structures [1–
5], transport through quantum nanowire systems [6–10], and
quantum dissipative systems [11–14]. One of the most notable
predictions among such fundamental problems is the dissipa-
tive quantum phase transition (DQPT) occurring in the resis-
tively shunted Josephson junction (RSJ) [15–21]. Previous
studies [22–25] predicted that the Josephson junction (JJ) at
zero temperature remains superconducting below the quantum
resistance R<RQ = h/(4e2) while it becomes insulator (or
precisely normal metal) in R>RQ. This result has been ob-
tained by such theoretical methods as perturbative renormal-
ization group (RG) analysis [22–29] and path-integral Monte-
Carlo method [30–32]. While experimental attempts to ob-
serve DQPT have been made [33–37], interpretation of these
results has remained a matter of debate [30, 36, 38–40]. In
particular, a possible absence of DQPT in the predicted pa-
rameter regime has been recently reported [38]. All in all, de-
spite many years of research, a comprehensive understanding
of DQPT has yet to be achieved.

The aim of this Letter is to fill this gap and provide a solu-
tion to the long-standing controversy regarding DQPT. To this
end, we systematically analyze RSJ on the basis of numerical
and analytical nonperturbative approaches, namely, numerical
renormalization group (NRG) and functional renormalization
group (FRG). Surprisingly, both analyses lead to the ground-
state phase diagram (Fig. 1) that is dramatically different from
the one expected from the previous arguments. Specifically,
the insulator phase is strongly suppressed to the deep charge
regime EJ/EC�1 (Cooper pair box) while the system is al-
ways superconducting in the transmon regime EJ/EC � 1,
where EJ is the Josephson coupling and EC = (2e)2/2CJ is

the charging energy with the capacitance CJ . In particular, as
α=RQ/R is decreased, our results indicate the reentrant tran-
sition from insulating to superconducting phase in α�1 (see
also Fig. 4 below). These findings sharply contrast with the
common wisdom that the transition should occur at R=RQ
for any EJ/EC (red dashed line in Fig. 1(a)).

While the conventional understanding at an early stage was
made by perturbative analyses and duality argument, we point
out that these previous considerations implicitly discarded a
term (which we call the capacitance term ν∝1/EC) that was
expected to be irrelevant from dimensional counting [24, 41].
We show that this previously overlooked term is actually dan-
gerously irrelevant, i.e., it can turn into relevant at low-energy
scales due to nonperturbative renormalization (Fig. 1(b)). It
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FIG. 1. (a) Ground-state phase diagram of RSJ. Green curve indi-
cates the phase boundary determined from NRG, separating the su-
perconducting (SC) and insulator (I) phases. Red vertical dashed
line is the commonly believed boundary. (b) FRG flow diagrams
of dimensionless Josephson (charging) energy εJ(C) at different dis-
sipation strengths α. At UV scale εJ,C � 1, Josephson coupling
εJ is always relevant and triggers nonmonotonic renormalization of
dangerously irrelevant term ν ∝ 1/εC . Transition occurs at finite
EJ/EC in α<1 (green cross in top panel), while the system always
flows to the SC fixed point in α>1 (bottom panel). Previous pertur-
bative results are reproduced in the limit ν∝1/εC→0.
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is this subtle, yet crucial missing piece that completes our un-
derstanding of DQPT and explains the failure of the previous
arguments.

From a broader perspective, small quantum systems inter-
acting with a bosonic bath as studied here are fairly ubiq-
uitous in e.g., electron-phonon systems and quantum light-
matter systems. Our analyses should have a broad range of
applications to those systems which are currently the subject
of intense research in different fields. Moreover, in view of
the fundamental role of JJ in quantum circuits [42–49], the
present study will also advance our understanding of the in-
teraction between quantum information processors and elec-
tromagnetic environments in general.

Model.— We consider the following RSJ Hamiltonian, in
which JJ couples to the environmental degrees of freedom rep-
resented as a collection of harmonic oscillators [11]:

Ĥ = EC

(
N̂ − n̂r

)2
− EJ cos(ϕ) +

∑
0<k≤K

~ωkâ†kâk, (1)

n̂r =

√
α

2π

∑
0<k≤K

√
2π

kL
(â†k + âk), (2)

where ϕ is the JJ phase, N̂ =−i∂/∂ϕ is the charge operator,
bath frequencies are ωk =vk=vmπ/L with m=1, 2, · · ·M ,
K = Mπ/L is the wavenumber cutoff, and âk (â†k) is the
bosonic annihilation (creation) operator of mode k. The con-
stants v and L have the dimensions of velocity and length,
and α = RQ/R is the dimensionless frictional coefficient.
We remark that Eq. (1) takes the same form as in quantum
light-matter Hamiltonian under the long-wavelength approxi-
mation [50]. Below we aim to extract its physical properties in
the wideband conditionEJ,C�~W and thermodynamic limit
L→∞, where we denote the frequency cutoff as W =vK.

We first diagonalize the quadratic part, EC n̂
2
r +∑

k ~ωkâ
†
kâk, via the Bogoliubov transformation and

rewrite the Hamiltonian (1) as (see e.g., Ref. [41])

Ĥ =ECN̂
2 − EJ cos(ϕ)

− N̂
∑

0<k≤K

~gk(b̂k + b̂†k) +
∑

0<k≤K

~ωk b̂†k b̂k, (3)

gk =

√
2πv

αL

ωk

1 +
(
νωk

W

)2 , ν ≡ π

αεC
, εC =

EC
~W

, (4)

where we introduce the squeezed annihilation (creation) oper-
ators b̂k (b̂†k). The Hamiltonian (3) can also be derived from
a microscopic model of JJ shunted by a transmission line
with impedance R, length L, and propagation speed v [51].
A salient feature is that the capacitive coupling gk acquires
suppression at frequencies higher than W/ν = αEC/(π~)
[52–54]. This natural cutoff frequency, αEC/(π~), depends
only on the model parameters and our results are indepen-
dent of a choice of W as long as the wideband condition,
W�αEC/(π~), is satisfied.

To perform the NRG analysis [55], we next use a unitary
transformation Û = exp(−iN̂ Ξ̂) with Ξ̂ = i

∑
k
gk
ωk

(b̂†k − b̂k)

[56]. Introducing the field operators φ̂(x) and π̂(x),

φ̂(x) =
√
αϕ+

∑
0<k≤K

√
2π

kL
i(b̂k − b̂†k) cos(kx), (5)

π̂(x) =
∑

0<k≤K

√
2πk

L
(b̂k + b̂†k) sin(kx), (6)

we obtain the transformed Hamiltonian ĤU ≡ Û†ĤÛ ,

ĤU =− EJ cos

(
1√
α

∫ L

0

dxφ̂(x)fν(x)

)
+ ĤTLL, (7)

where ĤTLL is the Tomonaga-Luttinger liquid Hamiltonian
and fν(x) is the function that exponentially vanishes on the
length scale ν/K=π~v/(αEC) as follows:

ĤTLL =
~v
4π

∫ L

0

dx

[(
∂xφ̂(x)

)2
+ π̂(x)2

]
, (8)

fν(x) =
2

π

∫ K

0

dk
cos(kx)√

1 + (νk/K)2
. (9)

To derive Eq. (7), we use the sum rule,
∑
k ~g2k/ωk = EC ,

which can be shown for a general light-matter-type Hamilto-
nian [56]. The new frame (7) gives a proper basis to extend
Wilson’s NRG approach to RSJ [51, 57].

Benchmark results: the boundary sine-Gordon model.—
Before analyzing the exact RSJ Hamiltonian (7), we start
from benchmarking our NRG analysis for the boundary sine-
Gordon (bsG) model [6, 7, 22, 24, 41, 58]:

ĤbsG =− EJ cos

(
φ̂(0)√
α

)
+ ĤTLL, (10)

which can be obtained by taking the limit ν→0 in Eq. (7). Its
ground-state properties are well understood from the pertur-
bative analysis, which predicts the transition at α= 1. When
α>1, the Josephson coupling EJ is relevant and, in the origi-
nal frame (1), leads to the phase localization around ϕ∼2πZ.
In other words, the ground state is phase-coherent and super-
conducting. Conversely, when α < 1, the Josephson energy
EJ renormalizes to zero and the charge becomes localized,
i.e., the system is insulating.

To numerically determine the transition point, we use the
dc phase mobility, µ ≡ α/(2π) lim

ω→+0
ω〈ϕϕ〉ω , that becomes

zero (nonzero) in the SC (insulator) phase, where 〈ϕϕ〉ω is the
Fourier transform of the ground-state phase correlation func-
tion [15, 17, 31]. In the transformed frame, we can express it
as

µ = lim
ω→+0

∞∑
n=0

ωn0µn0δ(ω − ωn0), (11)

µn0 ≡ α
∣∣〈0|Ξ̂|n〉∣∣2, (12)

where ωn0 is the n-th excitation frequency, and we introduce
the mobility matrix element µn0 with |n〉 being the n-th en-
ergy eigenstate in the frame after the unitary transformation.
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FIG. 2. NRG benchmark results in the bsG model (10). (a) Flows
of the mobility µ10 plotted against the number of RG steps N . In
the SC phase α>αc, the mobility flows to zero (red curves), while
it remains nonzero in the insulator phase α<αc (blue curves). Pa-
rameters are εJ = 0.001 and Λ = 2.0. (b) Extrapolations of the
critical value αc to the Wilson parameter Λ→ 1. The scaling limit
εJ =EJ/~W→0 leads to the transition point αc = 0.99(2) which
agrees with the analytical value αc =1.

We find that it suffices to calculate the dominant matrix ele-
ment µ10 for the purpose of locating the transition point.

Typical NRG flows of µ10 in the bsG model are shown
in Fig. 2(a). As the energy scale is renormalized to lower
regimes, the mobility eventually converges to zero in the SC
phase α>αc, while it remains nonzero in the insulator phase
α<αc. For each Wilson parameter Λ, we determine the criti-
cal value αc(Λ) by estimating the crossover scale N(α) from
NRG flows of µ10 and assuming N(α) ∝ (α − αc)

−1. We
then extrapolate the results to Λ→ 1 and locate the transition
point [59]. As shown in Fig. 2(b), our NRG results are con-
sistent with the analytical value αc = 1 in the scaling limit
εJ≡EJ/~W→0.

Previous studies used the bsG model (10) as a supposedly
effective Hamiltonian of RSJ, which led to the vertical phase
boundary at αc=1 (red dashed line in Fig. 1(a)). The rationale
behind this argument is that the capacitance term ν is expected
to be irrelevant from its scaling dimension and thus might be
simply taken to be zero in Eq. (7) while replacing UV cutoff
by αEC/(π~) without affecting low-energy physics [24, 41].
However, the validity of this treatment must be carefully re-
examined because the UV theory (7) possesses a large capac-
itance term ν� 1, and its low-energy theory may go beyond
perturbative regimes during RG processes before reaching to a
fixed point with ν=0. To make concrete predictions, we thus
need to resort to a nonperturbative analysis that consistently
incorporates possible renormalization induced by the capaci-
tance term ν.

NRG analysis of the exact RSJ Hamiltonian.— To achieve
this, we now apply the NRG approach to the exact RSJ
Hamiltonian (7). To be concrete, we fix the charging energy
εC = EC/(~W ) = 0.05 and vary the Josephson coupling as
0<EJ/EC.0.4, for which the dimensionless couplings sat-
isfy the wideband condition εJ,C�1 at UV scale. We confirm
that our NRG analysis is already converged against the wide-
band limit [51]. Figure 3 shows typical NRG flows of µ10 at
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FIG. 3. NRG flows of µ10 in the exact RSJ Hamiltonian (7) at differ-
entEJ/EC . The inset indicates the corresponding parameter regions
in the phase diagram. The system flows to the insulator fixed point
with nonzero µ10 when EJ/EC is sufficiently small (blue curves).
In contrast, the system nonmonotonically flows to the SC fixed point
with zero µ10 if EJ/EC surpasses a critical value (red curves). Pa-
rameters are α=0.5,Λ=2.0, and εC =0.05.

α=0.5. At the beginning of RG procedures, the mobility µ10

always grows and the system tends to flow into the insulator
phase. When EJ/EC is sufficiently small, µ10 keeps increas-
ing and the system ultimately reaches to the insulator fixed
point (blue curves in Fig. 3). Surprisingly, when EJ/EC sur-
passes a certain threshold value (EJ/EC)c, the mobility µ10

turns from increasing to decreasing during RG processes and
the system eventually flows to the SC fixed point (red curves
in Fig. 3). The convergence of these flows becomes slower
as one gets closer to the transition point (e.g., EJ/EC = 0.04
in Fig.3). We determine critical values (EJ/EC)c shown in
Fig. 1(a) by extrapolating the Wilson parameter Λ → 1 for
each α [51].

Figure 4 shows fixed-point values of the phase coherence
〈cos(ϕ)〉 and the mobility µ10 at different α and EJ/EC .
The phase coherence gives inductive contribution to super-
current carried by the ground state [38, 60, 61]. The be-
haviors of 〈cos(ϕ)〉 and µ10 are consistent with each other;
〈cos(ϕ)〉 vanishes and µ10 becomes nonzero in the insula-
tor phase while the opposite is true in the superconducting
phase. These results clearly indicate that the superconduct-
ing (insulating) phase at α > 0 corresponds to the phase-
localized (phase-delocalized) phase. It is also notable that
both 〈cos(ϕ)〉 and µ10 unambiguously indicate the reentrant
transition from the insulator to SC phase as the resistanceR is
significantly increased beyond RQ (i.e., α�1). In fact, in the
limit R→∞, JJ completely decouples from the environment
and should remain superconducting (cf. Eq. (1)); our results
in Fig. 4 Fig. 1(a) are consistent with this expectation.

FRG analysis.— To understand these NRG results on a
deeper level, we employ a nonperturbative analytical ap-
proach known as the FRG [62, 63]. We use the functional
ansatz retaining the most relevant Fourier mode, cos(ϕ), and
go beyond the local potential approximation by including the
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FIG. 4. Phase coherence 〈cos(ϕ)〉 and the mobility µ10 plotted
against α = RQ/R. The inset indicates the corresponding param-
eter regions in the phase diagram at Λ = 2.0. At sufficiently large
EJ/EC , the system always resides in the SC phase (red curve).
When EJ/EC is lower than a critical value (EJ/EC)c, there ap-
pears the insulating region as well as the reentrant transition into the
SC phase in α�1 (green and blue curves). Parameters are Λ = 2.0
and εC = 0.02.

(field-independent) wavefunction renormalization, resulting
in the following set of flow equations [51]:

dl ln εJ = 1−
∫ ∞
0

dy

π
g(y), (13)

dl ln ε
−1
C = −1 + ε2J

∫ ∞
0

dy

π
h(y), (14)

where l = ln(Λ0/Λ) is the logarithmic RG scale, the dimen-
sionless parameters satisfy εJ(C) =EJ(C)/Λ0�1 at UV scale
Λ=Λ0, and the integrals of g, h give positive values [51].

When εJ�1, the flow equation (13) has the simple asymp-
totes depending on εC ,

dl ln εJ
εJ�1'

{
1−

√
2εC
8 > 0 ε−1C � 1

1− 1
α ε−1C → 0

, (15)

the latter of which reproduces the well-known perturbative re-
sult implying the presence of DQPT at αc = 1 [24]. Notably,
however, the former shows that the Josephson coupling εJ
is relevant at any α in UV regimes. This fact together with
Eq. (14) suggests that the supposedly irrelevant term ν ∝ ε−1C
can significantly grow at low-energy scales due to the nonper-
turbative corrections, i.e., it can be dangerously irrelevant.

To determine fixed points the theory ultimately flow to, we
numerically solve Eqs. (13) and (14), and obtain the flow dia-
gram in Fig. 1(b) [64]. Due to the dangerously irrelevant term,
when EJ/EC is larger than a critical value, the theory flows

into the SC fixed point even when α < 1, leading to the ab-
sence of DQPT in transmon regimes. The insulator phase is
then strongly suppressed to deep charge regimes EJ/EC�1
with α<1 [65].

At any EJ/EC , the theory initially flows in favor of the
insulator phase since the ratio obeys dl(εJ/εC) < 0 in UV
regimes εJ,C�1. At an intermediate low-energy scale, how-
ever, the theory enters nonperturbative regimes and can even-
tually exhibit the bifurcating flows to different fixed points
depending on EJ/EC (top panel in Fig. 1(b)). This competi-
tion between renormalized Josephson and charging couplings
explains the nonmonotonic NRG flows found in Fig. 3.

Discussions.— The proposed phase boundary in Fig. 1(a)
is not vertical, which may appear to contradict with what is
expected from the duality argument [15, 16, 22, 24]. The ori-
gin of this apparent inconsistency originates from the danger-
ously irrelevant term ν discussed above. Indeed, only if ν can
be safely neglected, one can establish the duality between the
weak and strong corrugation regimes [22, 51].

In the strong corrugation regimeEJ/EC�1, it was argued
[15, 22] that the RSJ Hamiltonian can be approximated by the
tight-binding model of phase localized states at ϕ=2πZ. This
model exhibits the transition at αc= 1, which seems to be in-
consistent with our results showing the absence of transition
in transmon regimes. This apparent contradiction originates
from a failure of the tight-binding description under the wide-
band condition EC� ~W , in which a cutoff-dependent term
invalidates the level truncation in each cosine well [51].

Meanwhile, if one considers the opposite limit EC�~W ,
both the tight-binding description and the duality argument
are expected to be valid without such ambiguities. This pa-
rameter regime corresponds to the left sides of our FRG phase
diagram (Fig. 1(b)). Indeed, in this limit, our results are con-
sistent with the previous results predicting the transition at
αc=1 for any EJ/EC .

To experimentally test our predictions, one has to take ac-
count of the lowest transmission-line frequency ωmin =πv/L
and finite temperature kBT , which effectively introduce an IR
cutoff in RG flows. One needs to renormalize to a sufficiently
low-energy scale to attain small 〈cos(ϕ)〉 close to a fixed-point
value; this requires a sufficiently large system size and low
temperature. For typical parameters of the insulator phase,
α=0.3 and EJ/EC =0.04, one needs ~ωmin, kBT .0.01EC
to attain 〈cosϕ〉 . 10−2 [51]. These conditions are within
reach of recent experiments [66–69] which have realized gal-
vanic coupling of JJ to a high-impedance long transmission
line. In particular, Refs. [66, 67] realize EC/h = 5.4 GHz,
ωmin/2π = 63 MHz, L ' 10 mm, and UV cutoff W/2π '
20 GHz in superconducting waveguides, while EJ is flux-
tunable. These parameters correspond to ~ωmin/EC ' 0.01
and kBT/EC 'T/250 mK. Thus, we expect that DQPT can
be observed in this parameter region at millikelvin tempera-
tures. We note that our estimation seems to be consistent with
recent report of absence of DQPT [38], on which we spec-
ulate that the experimental parameters EC/h = 13-54 GHz,
L = 16µm lead to finite-size effects causing residual phase
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coherence 〈cos(ϕ)〉[70].

In summary, we provided a comprehensive understand-
ing of the dissipative quantum phase transition in a Joseph-
son junction, which has been controversial for many years.
We performed both numerical and analytical nonperturbative
renormalization group analyses and obtained the phase dia-
gram (Fig. 1) in which the insulator phase is strongly sup-
pressed to the deep charge regime while, in the transmon
regime, the system remains superconducting at any dissipa-
tion strengths. The origin of the failure of conventional under-
standings was traced to a previously overlooked dangerously
irrelevant term which turns to be relevant in genuinely non-
perturbative regimes. Physically, this renormalization behav-
ior corresponds to the eventual decrease of charging energy
at low energies, which ultimately results in the enhancement
of EJ/EC and the phase localization. Our analysis and un-
derstanding developed here can be applied to a variety of sys-
tems ranging from strongly interacting light-matter systems to
electron-phonon problems. We hope that our work stimulates
further studies in these directions.
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[68] J. P. Martı́nez, S. Léger, N. Gheeraert, R. Dassonneville,
L. Planat, F. Foroughi, Y. Krupko, O. Buisson, C. Naud,
W. Hasch-Guichard, S. Florens, I. Snyman, and N. Roch, npj
Quantum Inf. 5, 1 (2019).
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