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Generic many-body systems coupled to an environment lose their quantum entanglement due
to decoherence and evolve to a mixed state with only classical correlations. Here, we show that
measurements can stabilize quantum entanglement within open quantum systems. Specifically, in
random unitary circuits with dephasing at the boundary, we find both numerically and analytically
that projective measurements performed at a small nonvanishing rate results in a steady state with
an L1/3 power-law scaling entanglement negativity within the system. Using an analytical mapping
to a statistical mechanics model of directed polymers in a random environment, we show that the
power-law negativity scaling can be understood as Kardar-Parisi-Zhang (KPZ) fluctuations due
to the random measurement locations. Further increasing the measurement rate leads to a phase
transition into an area-law negativity phase, which is of the same universality as the entanglement
transition in monitored random circuits without decoherence.

The dynamics of quantum entanglement is being inves-
tigated extensively as a potential resource for quantum
information processing [1–9]. Recent theoretical devel-
opments have shown that large-scale quantum entangle-
ment can be established in monitored quantum systems
undergoing unitary evolution interspersed by measure-
ments [4, 5, 10–15]. For moderate measurement rates
below a threshold, the entanglement generated by the
unitary evolution can overcome the disentangling effect
of measurements, leading to volume-law scaling of the en-
tanglement entropy in individual quantum state trajec-
tories at late times. Increasing the measurement rate be-
yond a critical value drives a measurement-induced phase
transition (MIPT) to a steady state with area-law scaling
of the entanglement entropy [4, 5].

Studies of monitored systems thus far have largely
focused on dynamics involving only unitary gates and
projective measurements, which preserves the purity of
the quantum state. Insofar as such monitored circuits
can be understood as models for entanglement dynam-
ics in generic many-body systems, they are missing an
important ingredient. Real systems always exhibit unin-
tended decoherent interactions with their environment,
leading inevitably to mixed-state dynamics. Such effects
typically destroy internal entanglement, as the system
degrees of freedom become entangled with the infinite
bath instead of with each other. For example, in moni-
tored random circuits, a nonvanishing rate of decoherence
throughout the bulk inevitably results in a short-range
entangled steady state at late times [16]. It is there-
fore natural to ask if a monitored system with weaker
decoherence can sustain large scale entanglement in the
steady state.

In this Letter, we address this question in models of
one-dimensional quantum circuits consisting of random
unitary gates and measurements, coupled to an infinite
bath at the boundary implemented as a dephasing quan-
tum channel [see Fig. 1(a)]. Utilizing the logarithmic en-
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FIG. 1. (a) Circuit diagram for the model studied. Qudits
are evolved under random unitary gates (blue) and projec-
tive measurements (red dots) occurring randomly at a rate p,
along with dephasing channels (green) applied on the first and
last qudit between each layer of unitary gates. (b) Late-time
logarithmic negativity between subsystems A and B, taken to
be the left and right halves of the qubit chain, as a function of
measurement rate p. Different curves indicate various system
sizes L, ranging from 40 (light blue) to 280 (dark green). In-

set: Logarithmic negativity as a function of L1/3 (blue dots)

at p = 0.1, along with the fitting curve y = c1L
1/3 + c2 (or-

ange line) with c1 ≈ 0.779 and c2 ≈ −1.307. The numerical
results are averaged over 200 random circuit realizations.

tanglement negativity as a measure of mixed-state entan-
glement [17–26], we employ both numerical simulations
of Clifford circuits and an analytical mapping to a sta-
tistical mechanics model to assess the scaling of internal
entanglement in the circuit qubits.

While the entanglement negativity vanishes in the ab-
sence of measurements as expected, we find numerically
that the half-system negativity exhibits an L1/3 power-
law scaling with system size for nonzero measurement
rates below the MIPT critical point [see Fig. 1(b)]. This
power law persists until a critical measurement rate pc,
above which the negativity exhibits an area law.

To develop a theoretical understanding of the observed
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power-law negativity, we build on previous works map-
ping the dynamics of entanglement entropy in random
circuits to effective statistical mechanics models [3, 16,
27–29]. Using a similar replica formalism to previous
works, we show that the negativity can be calculated us-
ing the same effective model of ferromagnetic spins with
different boundary conditions [30]. The vanishing of the
volume law contribution to the negativity in the pres-
ence of dephasing channels is immediately seen to be a
consequence of symmetry-breaking boundary conditions
imposed by dephasing.

The exponent 1/3 has previously been observed in sub-
leading contributions to the bipartite entanglement en-
tropy in the pure state dynamics of circuit models, both
in t1/3 subleading growth of entanglement entropy over
time in pure unitary circuits [3, 28], and in `1/3 sublead-
ing scaling of late-time entanglement entropy with sub-
system size in monitored circuits within the volume law
phase [31]. This exponent was explained as the Kardar-
Parisi-Zhang (KPZ) fluctuations of the domain walls, in-
terpreted as directed polymers in a random environment
[32–35]. Here, we analytically derive a mapping relating
the negativity to a collection of directed polymers within
a limit of large qudit dimension d → ∞ and verify its
prediction of L1/3 negativity scaling. Building on pre-
vious works [28, 31, 36], we explicitly demonstrate the
role of measurements in generating a random attractive
potential on the polymers, which naturally lead to KPZ
fluctuations in the negativity for nonzero measurement
rates.

Model.— We consider a chain of L d-qudits with open
boundary conditions, initialized in the product state
|0〉⊗L, and evolved under a brick-wall random unitary
circuit [see Fig. 1(a)], where each gate is independently
drawn from the Haar ensemble. In between layers of
unitary gates, each ith qudit is measured in the com-
putational basis {|a〉}d−1a=0 with probability p, which col-
lapses the system onto the state ρ 7→ P a

i ρP
a
i / tr(P a

i ρ)
with probability tr(P a

i ρ) given by the Born rule, where
P a
i = |a〉〈a|i projects the ith qudit onto the state |a〉.

To model the coupling to an infinite bath, the boundary
qudits i = 1 and i = L are subjected to local dephasing
described by Di[ρ] =

∑d−1
a=0 P

a
i ρP

a
i [37, 38]. This cou-

pling can also be understood as a measurement in which
we average the density matrix over all possible measure-
ment outcomes.

The addition of dephasing channels results in open-
system dynamics and inevitably drives the system into a
mixed state, for which the von Neumann entropy is no
longer a meaningful measure of entanglement [39, 40]. To
quantify quantum entanglement within the system at late
times, we employ the logarithmic negativity [18–26, 30],
a measure of mixed-state bipartite entanglement and a
rigorous upper bound to the distillable entanglement of

a mixed state [17, 40–44]:

EA:B [ρ] = log
∥∥ρTB

∥∥
1
, (1)

where ρTB is the partial transpose of ρ in subsystem B,
and ‖·‖1 denotes the trace norm. Throughout this work,
we take A and B to respectively consist of the left and
right halves of the qudit chain. Note that Ref. [25] pre-
viously used the logarithmic negativity to characterize
the conformal field theory underlying the MIPT without
decoherence.

Numerical Results.— To efficiently simulate the cir-
cuit, we employ random Clifford unitary gates acting on
d = 2 qubits using the stabilizer formalism [3, 10, 45–
49]. While the Clifford gates are not generic, they form
a unitary 3-design [50] and are expected to give the same
qualitative behavior as the Haar random circuit. The
late time negativity as a function of measurement rate p
for system sizes up to L = 280 are shown in Fig. 1(b).

In the case without measurements (i.e. p = 0), the late
time negativity is uniformly zero independent of system
size. This is to be expected both from general physi-
cal considerations and from Page’s theorem [24, 51, 52]:
if the dephasing channels are understood as an effec-
tive coupling to an infinitely large bath, then the sys-
tem becomes maximally entangled with the bath at late
times and no bipartite entanglement within the system
remains.

Remarkably, the negativity sharply increases as p in-
creases from zero and exhibits nontrivial scaling with the
system size. At moderate measurement rates, for exam-
ple p = 0.1, the scaling of the negativity is consistent
with a power law of the form EA:B = c1L

1/3 + c2 for two
fitting parameters c1,2 as shown in the inset.

At sufficiently high measurement rates, the negativity
begins to decrease as a function of measurement strength.
This culminates in a measurement-induced transition at
pc in which the power law coefficient c1 vanishes. Since
our circuit model differs from previous pure-state circuits
only in its boundary conditions, we expect the bulk criti-
cal behavior to be identical to that of the ordinary MIPT
without dephasing. In the supplemental material [49] we
perform a finite-size scaling analysis and find pc ' 0.16
consistent with previous works [4, 10, 53], but we cannot
reliably extract a correlation length exponent ν due to
the numerical smallness of the negativity.

Effective Statistical Mechanics Model.— Our numer-
ical results can be understood analytically by relat-
ing the averaged logarithmic negativity to the free en-
ergy of directed polymers in a random environment.
Here, we consider the Haar random circuit acting on d-
qudits with d → ∞ allowing for greater analytical con-
trol [3, 16, 28, 29, 49]. Within the effective model, the
L1/3 negativity scaling can be understood as KPZ fluc-
tuations of the directed polymers. Complete details of
the statistical mechanics model can be found in the sup-
plemental material [49].
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FIG. 2. Schematic zero temperature spin configurations of

Z(n,k) and Z
(n,k)
0 for a fixed disorder realization of measure-

ment locations. The final time boundary conditions are shown
at the top of each diagram: Z(n,k) contains cyclic permuta-
tions C (orange) at the top of region A and anticyclic permu-

tations C̄ (red) at the top of region B, while Z
(n,k)
0 contains

cyclic permutations along the entire top boundary. Dephasing
at the left and right boundaries of the chain enforces identity
permutations I (blue) at the left and right boundaries of the
effective model. An intermediate domain of spins D (green)

appears in Z(n,k) by a similar mechanism as in Ref. [30].
Viewing domain walls as collections of polymers, measure-
ments result in a random attractive potential on the polymers,
leading to KPZ fluctuations in the negativity.

The nth Rényi negativity [19–22] (properly defined for
n ≥ 4) for a fixed set of measurement locations X in
spacetime, averaged over Haar unitary gates U = {Uij,t}
and measurement outcomes m, is given by

E(n)A:B(X) = EU
∑
m

pm
1

2− n log

{
tr[(ρTB

m )n]

tr ρnm

}
, (2)

where ρm is the unnormalized density matrix obtained
along the measurement trajectory m, and pm = tr ρm is
the probability for achieving the measurement outcomes
m conditioned on the locations of the measurements X
and the unitary realization U . The logarithmic negativity
(1) is obtained from (2) using the peculiar limit n → 1
along even n [19, 20].

To facilitate the mapping, we employ the replica trick

[35, 54] to write E(n)A:B = limk→0 E(n,k)A:B , where E(n,k)A:B can
be interpreted as being proportional to the difference of
two free energies:

E(n,k)A:B (X) = − 1

k(n− 2)
log

{
Z(n,k)

Z
(n,k)
0

}
, (3)

where the two “partition functions” Z(n,k) and Z
(n,k)
0

differ only in their boundary conditions at the final time
slice. Note that these partition functions contain the
averages over unitary realizations and measurement out-
comes, but not the locations of measurements; following
Ref. [36], and in contrast to previous works [16, 29], we
leave the locations of measurements as quenched disor-
der.

As in previous works [16, 28, 29, 36, 55–58], av-
eraging over Haar random unitary gates results in a

sum over pairing configurations between the replicated
copies of the density matrix. The bulk effective statis-
tical mechanics model is then a lattice magnet contain-
ing permutation-valued spins with ferromagnetic inter-
actions, where a given permutation σ from the permu-
tation group Snk+1 represents a local tensor contraction
between each `th ket and the σ(`)th bra. The boundary

conditions of Z(n,k) and Z
(n,k)
0 at the final time, which

are unique to the calculation of the Rényi negativity [30],
are shown in figure 2: Z(n,k) contains cyclic permutations
C at the top of region A and anticyclic permutations C̄
at the top of region B, while Z

(n,k)
0 contains cyclic per-

mutations along the entire top boundary. E(n,k)A:B is thus
proportional to the free energy cost of imposing a domain
wall between C and C̄ at the interface of A and B at the
final time boundary. In the analytically tractable d→∞
limit, the energetic cost per-length of a domain wall away
from a measured site is [16, 28, 29]

βE(σi, σj) =
∣∣σ−1i σj

∣∣ log d (d→∞), (4)

where
∣∣σ−1i σj

∣∣ is the number of transpositions required
to obtain the permutation σj from σi. The limit d→∞
imposes zero temperature, β−1 → 0. Ref. [28] argued
(in the absence of measurements) that a domain wall
between permutations σi and σj should be viewed as a
collection of

∣∣σ−1i σj
∣∣ “elementary” domain walls given

by transpositions, which become non-interacting in the
d → ∞ limit according to (4). Weak interactions be-
tween such elementary domain walls can be calculated
perturbatively in powers of 1/d.

The presence of boundary dephasing channels modi-
fies the left and right boundary conditions of the effec-
tive model. In contrast to the open boundary conditions
for models without decoherence [28], dephasing imposes
identity permutation spins I at the left and right bound-
aries, leading to the domain wall structure in figure 2;
note that an intermediate domain of spins D (green) can
appear in Z(n,k) without additional energy cost provided
that

∣∣σ−1D∣∣+ ∣∣D−1τ ∣∣ =
∣∣σ−1τ ∣∣ for σ, τ = C, C̄, I [30, 49].

Using (4), this domain wall structure leads to a negativ-
ity in the d→∞ limit of the form

E(n,k)A:B (X) =
log d

2

{
`A + `B − `AB

}
, (5)

where `R is the length of the minimal domain wall sep-
arating the top boundary of region R from the rest of
the system. Note that this quantity is independent of
the replica indices (n, k), allowing for the replica limit to
be trivially taken. In the absence of measurements these
domain walls take straight lines through the system, and
the negativity therefore vanishes [49]. This is consistent
both with the expectation from Page’s theorem and the
p = 0 numerical results of figure 1.

To explain the L1/3 scaling of negativity at nonzero
measurement rates, we must address the role of measure-
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ments in the effective spin model. By keeping the space-
time locations of measurements as unaveraged quenched
disorder, we find that measurements effectively eliminate
the ferromagnetic bonds between adjacent spins. In the
d → ∞ limit, each domain wall will optimize to pass
through as many measurement locations as possible to
minimize its energy. Viewing each domain wall as a col-
lection of polymers as in [28], the elimination of ferro-
magnetic bonds can be understood as a random attrac-
tive potential on the polymers, wherein the energy of a
polymer is reduced by log d for each measured site the
polymer passes through. The total energy cost of a sin-
gle polymer, directed [59] in the x direction with spatial
profile y(x), is given by

βH[y(x)] = log d

∫
dx

{
1 +

1

2
(∂xy)2 + V (x, y)

}
, (6)

where V (x, y) is a random potential with mean p log d

and variance p(1 − p)(log d)2δ(x − x′)δ(y − y′). E(n,k)A:B

is then simply proportional to the sum of the polymer

ground state energies in Z(n,k), minus those in Z
(n,k)
0 .

Each such energy may then be averaged over measure-
ment locations independently.

The free energy of a directed polymer in a random
environment has been well-studied – it is equivalent
to the KPZ equation via the Hopf-Cole transformation
[32, 33, 35, 60]. Since the polymers here are restricted
to the half-plane below the final time slice, a solution for
the free energy of each polymer is obtained from the KPZ
equation in the half-plane, which can be calculated an-
alytically using Bethe ansatz methods [31, 61, 62]. The
result is an energetic contribution s0` + s1`

1/3 for each
polymer of horizontal length `, where s0 and s1 are non-
universal positive constants. It can then be seen from
(5) that the linear contributions from each polymer can-
cel as in the p = 0 case, but the `1/3 contributions due to
KPZ fluctuations in the polymer lengths do not – they
yield a positive L1/3 growth of the averaged Rényi neg-

ativity E(n)A:B . Although this analytical argument cannot
compute the dependence of the power-law coefficient s1
on the measurement rate, the qualitative prediction of
L1/3 negativity scaling for nonzero measurement rates is
consistent with the Clifford numerical results.

Discussion.— We have shown that the active monitor-
ing of a random quantum circuit with decoherence at the
boundaries can stabilize large-scale entanglement. This
is evinced by the L1/3 power-law scaling of late time en-
tanglement negativity, which is obtained only for nonzero
measurement rates below a critical threshold pc. The en-
hancement of quantum entanglement by measurements
in the presence of decoherence stands in contrast with
the effect of measurements in random circuits featur-
ing strictly pure state dynamics [4, 5, 10, 11, 16, 29],
wherein measurements disentangle system qubits from
each other and decrease the internal entanglement of the
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FIG. 3. Late-time stabilizer length distribution in log-log
scale. Here, we consider a circuit with decoherence at two
random sites rather than two edges in each time step. Blue
and red curve represent the results with and without dephas-
ing baths at the boundary, respectively. The numerical sim-
ulation is performed in the circuits of size L = 480 and with
measurement rate p = 0.1. The results are averaged over 200
random circuit realizations.

system. Here, in the mixed state dynamics, measure-
ments can play an additional role by curtailing decoher-
ence. This occurs both by disentangling system qudits
from the bath, allowing them to re-entangle with each
other, as well as by diminishing long range entanglement
structures with which the boundary dephasing channels
could decohere the bulk. Remarkably, while measure-
ments cannot protect the full volume-law entanglement
from decoherence, the interplay between dephasing and
measurements has revealed the “critical” L1/3 scaling of
entanglement which was previously hidden as a sublead-
ing contribution in the pure state dynamics [31].

In random Clifford circuits with strictly pure state dy-
namics, the distribution of stabilizer lengths has previ-
ously offered insight on the bipartite entanglement en-
tropy [10]. It is therefore interesting to see how the
stabilizer length distribution is modified in the presence
of boundary dephasing channels [see Fig. 3]. Although
the length distribution does not directly determine the
negativity in a mixed state, it can be used to compute
the mutual information IA:B = SA + SB − SAB [37],
which shows qualitatively similar behavior to the neg-
ativity [49] despite failing as a mixed-state entanglement
measure. On one hand, we see that dephasing channels
act as a stabilizer “sink” by destroying the buildup at
lengths x = L/2, which was previously responsible for
the volume law contribution to the mutual information
with no dephasing [10]. On the other hand, measure-
ments can act as a “source”, both by creating new short
stabilizers, and by preventing stabilizers from becoming
so long that they reach the system boundaries and de-
phase. This is evident in the power-law ramp, which is
robust to dephasing and would be absent without mea-
surements, and is responsible for the power-law scaling of
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IA:B . The resulting steady-state dynamics of the stabi-
lizer length distribution is reminiscent of energy transfer
under turbulent cascade, and it is tempting to develop
an effective classical model for the stabilizer dynamics to
capture the power law length distribution.

It is also interesting to consider how the negativity is
affected by replacing the Markovian quantum channels
with explicit bath qudits. For bath sizes smaller than
the system, it is expected by Page’s theorem that the
negativity within the system can retain volume law scal-
ing in the absence of measurements. However, since the
continuous monitoring of the system reduces the effective
number of qudits participating in the system-bath entan-
glement dynamics, the negativity can undergo a first or-
der Page-like transition within the volume law entropy
phase of the monitored circuit. The details of this Page-
like negativity transition will be left for future work [63].

In our analysis, it was crucial that decoherence oc-
curred only at the boundary. Instead, bulk decoherence
will manifest as a symmetry-breaking field in the statisti-
cal mechanics model reducing (Snk+1×Snk+1)oZ2 down
to a residual Snk+1×Z2 symmetry [64]. The decoherence
pins the spins to the state I, which is symmetric under
the residual symmetry, resulting in a maximally mixed
state in the circuit. To establish a large-scale entangle-
ment negativity in the presence of bulk decoherence, one
needs to spontaneously break the residual Z2 Hermiticity
symmetry. One possibility is to introduce additional non-
unitary elements, such as active feedback. A designed
feedback process utilizing the knowledge of measurement
results might possibly create preference of C and C̄ over
I, leading to a residual Z2 symmetry breaking state with
large-scale entanglement.

More broadly, we expect our results to be relevant
beyond random circuit models to more realistic Hamil-
tonian dynamics. Given the significant recent interest
in open system quantum dynamics, it is interesting to
consider whether the unique interplay between measure-
ments and decoherence exhibited here can lead to new
phases of nonequilibrium dynamics in settings accessible
to modern experiments.
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