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Using two-dimensional simulations of sheared, brittle solids, we characterize the resulting fragmen-
tation and explore its underlying critical nature. Under quasistatic loading, a power-law distribution
of fragment masses emerges after fracture which grows with increasing strain. With increasing strain
rate, the maximum size of a grain decreases and a shallower distribution is produced. We propose
a scaling theory for distributions based on a fractal scaling of the largest mass with system size in
the quasistatic limit or with a correlation length that diverges as a power of rate in the finite-rate
limit. Critical exponents are measured using finite-size scaling techniques.

Under large forces, solids fracture and fragment. This
process in which material breaks down into smaller com-
ponents or comminution is relevant to many problems
including the motion of tectonic plates [1, 2], asteroid
collisions [3], ice floes [4, 5], ballistic armor [6–9], and
high-pressure granular flow and compaction [10–12]. The
extent of fragmentation is often measured through the
distribution of the number of fragments N of mass M or
N(M) which is a common basis for continuum formula-
tions of breakage mechanics [13–16]. Theoretical mod-
els developed to predict the evolution and final state of
N(M) [3, 17–19] have widespread application, including
even seemingly disparate processes such as crumpling pa-
per [20]. This creates a need for data and a comprehen-
sive understanding of the dynamics of fragmentation to
test and calibrate models.

Intriguingly, it is often observed in fragmented granu-
lar matter that N(M) decays as a power of increasing M
with an exponent τ , N(M) ∼ M−τ [21]. This has been
seen in experiments and simulations of impacted [22–25],
crushed [26–29], and sheared [1, 30] solids. Fragmenta-
tion has therefore been postulated to be an instance of
self-organized criticality [13, 22, 31], a theory that some
systems can naturally evolve towards a critical state [32].
Scale-invariant behavior has been found in many other
dynamic systems including sheared yield-stress materials
[33–37] and depinning elastic interfaces [38–42] which re-
spond to a slow driving rate with power-law distributed
bursts of activity or avalanches and are each understood
to represent a dynamical critical point [43–45]. In com-
parison, we have relatively little understanding of con-
nections between fragmentation and criticality.

One puzzle is the value of τ which has been measured
between 1.5 and 2.2 in different fragmented materials
[21]. Different values of τ have also been identified in
models of lattice stability [21, 46, 47] and simulations
[23–25, 29, 31, 48, 49]. However, if fragmentation is an
instance of critical behavior, one might expect all systems
described by the same critical point to share a universal
τ . It is unknown whether this could be explained by
the existence of several distinct universality classes or by
some alternate mechanism. Furthermore, it is unclear
how a critical distribution develops with strain or how
distributions depend on system size or strain rate which

can truncate critical scaling.

In this article, we explore these questions using large,
particle-based simulations of sheared, brittle solids in
two-dimensions. By tracking the evolution of the mass
distribution N(M) with strain at different rates, we pro-
vide new insight into the dynamics of fragmentation. Af-
ter fracture in the quasistatic limit, N(M) has a power-
law regime extending to an upper cutoff Mcut that grows
with strain. At larger strain rates, the system enters a
finite-rate regime where a rate-dependent Mcut emerges
that shrinks with increasing rate. Unusual finite-rate ef-
fects are also identified in the evolution of N(M) which
may explain some variation in measured exponents. We
present a scaling theory for N(M) and test it using finite-
size scaling analysis. The size of the largest grain grows
as a power of system size in the quasistatic limit and as
a power of decreasing rate in the finite-rate limit.

To create a minimal model of fragmentation, we use
ideas from molecular dynamics and bonded particle mod-
els [50] based on early work by Maloney and Robbins
[51]. Solids are represented as disordered packings of
repulsive point particles connected by pairwise, attrac-
tive bonds that break under large tensile forces. Bonds
have an equilibrium length equal to their initial length to
create a stress-free reference state. All quantities in this
letter are dedimensionalized using the diameter and mass
of a particle and the energy scale of a bond. Appendix A
includes details on the model and deformation protocol.

Under shear, solids fracture into separate fragments
which continue to break down into smaller pieces dur-
ing flow. This process results in polydisperse granular
states illustrated in Fig. 1. Individual grains or frag-
ments are identified as disconnected subgraphs in the
network of unbroken bonds. To calculate the distribu-
tion N(M), grains are logarithmically binned by mass
M and each bin is normalized by its width, labeled by
its upper cutoff, and averaged across multiple system re-
alizations. Grains of mass M < 3 were not tallied. The
ability to resolve the breakup of individual grains with
strain during a simulation helps illuminate the process
of fragmentation although advanced experimental tech-
niques have also recently been used to track fracture in
brittle materials [11, 52]. We first consider results from
large systems with side lengths of L = 2400 containing
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FIG. 1. Rendered sections of systems at 200% strain for rates of (a) ε̇ = 10−6, (b) 10−5, (c) 10−4, and (d) 10−3. Particles are
colored by the number of broken bonds interpolating from dark blue (no broken bonds) to pale yellow (all bonds broken).

∼ 8× 106 particles sheared at a strain rate of ε̇ = 10−6.
This rate exemplifies the quasistatic (QS) limit as further
reductions in rate do not affect results.

In Fig. 2(a), QS distributions N(M) are plotted for
various strains ε. Shortly after the system first fractures
at ε = 2.2%, a power-law regime has already developed
extending from a lower limit of Mmin ≈ 102 to an upper
cutoff of Mcut ≈ 104. Below Mmin, there is an excess of
small fragments as N(M) rises even faster with decreas-
ing M . The statistics of these small fragments are likely
influenced by the limiting size of a particle and are not
expected to display the same scaling. Above Mcut, N(M)
drops to zero before returning at an even larger mass of
Mmax ≈ 107, implying most of the system is still intact.
The early emergence of a power law reflects results from
impacted brittle solids which broke into power-law dis-
tributed fragments despite limited material flow [22–25].

As ε increases, the number of fragments with M <
Mmax increases. The power-law domain extends fur-
ther as Mcut grows before saturating around 3 × 106 at
ε = 100% producing granular states similar to the sys-
tem seen in Fig. 1(a). The flow of mass to smaller scales
is fueled by a reduction in Mmax which continues until
Mcut ≈Mmax. The continued breakage is consistent with
experiments which found comminution persists to large
strains in shear [1, 30]. At even larger ε (not shown), the
repository of material at Mmax is depleted and Mcut de-
cays. N(M) decreases for all M > Mmin as small grains
constitute a larger fraction of mass. At ε = 100% we
estimate a power-law exponent τ = 1.70 ± 0.08, placing
emphasis on larger M . In Fig. 2(b), data is multiplied
by this power law to highlight minimal deviation at all
ε. Over this range of ε, N(M) also grows as a power of
ε with an exponent of φ ≈ 0.55 ± 0.7 such that curves
collapse vertically in Fig. 2(b) after scaling by ε−φ. The
errorbars for exponents reflect the estimated range of val-
ues that reasonably describe the data.

A limited set of three-dimensional simulations were
also run, described in the Supplemental Material, which
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FIG. 2. (a) Quasistatic distributions N(M) at the indicated
strains ε. The dashed line represents a power law with expo-
nent τ . (b) N(M) scaled by the measured power law and εφ.
Values of exponents are listed in Table I.

exhibited qualitatively similar behavior with τ = 1.7±0.1
[53]. These values of τ fall within the range of exper-
imentally measured exponents in fragmented systems,
τ ∼ 1.5 − 2.2 [21]. The origin of this variation is un-
known, but several studies have identified potentially rel-
evant variables. In ballistic impacts, τ depended on the
initial geometry [22]. In simulations, τ may depend on
plasticity [25], the extent of loading [29], and the rules
of fracture [49]. Lattice models suggested fragility may
affect τ [21]. We focus on the effect of strain rate.

At high rates ε̇, the accelerated accumulation of stress
must be relaxed by nucleating more cracks [55] producing
a finer set of fragments [17, 23, 24, 56–58]. Correspond-
ingly in our simulations, there is a rapid drop in the size
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FIG. 3. (a) Scaled finite-rate distributions N(M) sheared to
the indicates strains ε at a rate of ε̇ = 3 × 10−4. (b) Scaled
N(M) at ε = 100% for the indicated ε̇. Dashed lines represent
exponents δ equal to 1.8 and −0.3 in (a) and −0.6 in (b).

of the largest fragments with increasing ε̇ reflected in Fig.
1. This has a dramatic effect on the evolution of N(M)
with strain as seen for data at ε̇ = 3× 10−4 in Fig. 3(a).
At small ε, N(M) drops even faster with increasing N .
While it would be difficult to claim this data is a power
law, a different exponent −(τ + δ) would be measured if
a power law was fit with δ possibly as large as 1.8.

As ε increases, Mmax decreases at a significantly faster
pace and the growth in Mcut truncates at a lower value
compared to QS data. Surprisingly, distributions become
less steep such that a fitted δ would decrease with increas-
ing ε and saturate around −0.3 at ε = 100%. While we
cannot determine whether or not these curves are real
power laws due to small and ambiguous domains, this
highlights that fragmentation can have a dramatic de-
pendence on rate and could possibly explain some vari-
ety in measured τ . Different exponents could be fit at
high rates depending on the accumulated strain. Similar
behaviors were seen in three-dimensional systems [53].

In Fig. 3(b), scaled distributions at ε = 100% and dif-
ferent ε̇ demonstrate a clear growth in Mcut with decreas-
ing ε̇ as distributions approach the QS limit. At these
large strains, the potential power-law domain is less am-
biguous and can rival those of many datasets conjectured
to be power-law distributed [59]. This limit therefore has
a stronger basis for a rate-dependent exponent with δ
growing from -0.6 to zero with decreasing ε̇. Note that
the rate of change in δ slows with decreasing ε̇ implying
this effect becomes less significant at smaller ε̇.

To characterize the rate-dependence of Mcut, we con-
sider finite-size effects at ε = 100%. At a QS rate
ε̇ = 10−6, smaller systems with side lengths L have a
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FIG. 4. Quasistatic distributions N(M) scaled by Lγ with
γ = 1.65 for the indicated system sizes L sheared at ε̇ = 10−6

to ε = 100%. The largest mass at each L is enlarged.

smaller Mcut and have fewer grains as expected. In par-
ticular, we find in Fig. 4 that N(M) scales as a power of
L with an exponent γ and, focusing on large M , estimate
γ = 1.65± 0.10 which implies the number of grains does
not grow extensively as L2. There is also an additional
spike near Mcut in small systems that disappears with
increasing L.

In contrast at a high rate of ε̇ = 10−3, N(M) is inde-
pendent of L. As ε̇ decreases, distributions for L = 75
first begin to deviate at ε̇ = 3 × 10−4 as N(M) stops
evolving with further reductions in ε̇ and finite-size effects
emerge. Larger systems with L > 75 similarly crossover
to a QS limit at lower values of ε̇. Examples of this behav-
ior are included in Appendix B. This observation reflects
results from the aforementioned depinning and yielding
transitions where QS driving allows a system to reach a
critical state. At finite rates, these systems move away
from the critical point and their dynamics are only cor-
related up to a correlation length ξ which decreases as a
power of increasing rate [44, 45, 60–64].

In a similar vein, we postulate that there exists a
diverging correlation length ξ ∼ ε̇−ν in fragmentation
where ν is a new critical exponent. In infinitely large
systems, ξ governs the maximum size of a fragment such
that Mcut ∼ ξα where α is another exponent. In finite
systems with L > ξ, L does not affect the maximum
grain size and Mcut is equivalent to that of an infinite
system. This is the finite-rate (FR) limit. In contrast if
L < ξ, the maximum grain size is constrained by L and
not ξ such that Mcut ∼ Lα and it is insensitive to further
reductions in rate. This is the QS limit. To capture these
ideas, we assume N(M) only depends upon M/Mcut for
M > Mmin for sufficiently large ξ and L and construct
two scaling ansatzes. In the QS limit,

NQS(M,L) ∼ Lγ−ατf(M/Lα) (1)

where f(x) is a scaling function that goes to zero for
x � 1 and f(x) ∼ x−τ for x � 1 to recover NQS(M) ∼
LγM−τ . In the FR regime, a d-dimensional system can
be divided up into independent regions of size ξd each of
which contain a distribution Nξ(M) of fragments. As-
suming Nξ(M) ∼ NQS(M,L = ξ), one can combine the
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τ 1.70± 0.08 N(M) ∼M−τ

φ 0.55± 0.07 N(M) ∼ εφ

γ 1.65± 0.1 N(M) ∼ Lγ

α 1.7± 0.15 Mcut ∼ Lα, ξα

ν 0.70± 0.08 ξ ∼ ε̇−ν

TABLE I. Estimates and definitions of critical exponents.
Values are consistent with the scaling relation γ+α(2−τ) = d.

(L/ξ)d contributions to derive

NFR(M, ε̇) ∼ Ldε̇ν(d−γ+ατ)z(Mε̇να) (2)

where z is a new function with the same limits as f .
In theory distributions in Figs. 4 and 3(b) can be col-

lapsed using these expressions but this is complicated by
deviations at small L and large ε̇ that violate assump-
tions as discussed in Appendix B. Alternatively, we con-
sider integrated values of N(M) which also highlight the
crossover between the QS and FR regimes. Using Eq.
(1), the nth moment of NQS(M,L) is

〈Mn〉QS =

∫
MnNQS(M,L)dM ∼ Lγ+α(n+1−τ) (3)

where integrals are dominated by the upper bound of
Mcut for n > τ − 1 ≈ 0.7. Note that N(M) is not nor-
malized such that the first moment 〈M〉 is simply the
total mass of fragments. Therefore, conservation of mass
requires 〈M〉 ∼ Ld implying γ + α(2− τ) = d. A similar
scaling relation exists for avalanche distributions in the
yielding transition [35, 36, 63]. Using this relation, Eq.
(3) simplifies to 〈Mn〉QS ∼ Ld+α(n−1). In the FR regime,

〈Mn〉FR ∼ Ldε̇να(1−n) is found by integrating Eq. (2).
As the first moment is trivial, we focus on the scaling

of the second moment. In the inset of Fig. 5, 〈M2〉L−d

does not depend on L at large ε̇ but grows as a power
of decreasing ε̇ as predicted. However, this growth is im-
mediately interrupted for the smallest system, L = 75,
as finite-size effects emerge. As ε̇ continues to decrease,
curves saturate at lower ε̇ for larger L reflecting the di-
vergence in ξ. Assuming the only relevant length scales
are ξ and L such that 〈M2〉 depends on the ratio L/ξ,
we construct the finite-size scaling ansatz

〈M2〉 ∼ Ld+αg(ε̇L1/ν) (4)

where g(x) is a scaling function which must approach a
constant at small x and x−να at large x to reproduce
QS and FR scaling, respectively. Using this expression,
data is collapsed in Fig. 5 with values of α = 1.7± 0.15
and ν = 0.70 ± 0.08. Although this collapse supports
the proposed scaling theory, it also did not account for
deviations identified at small L and high ε̇ which affect
values of 〈M2〉. Future studies should focus on larger
systems and slower rates which are expected to reduce
deviations to validate estimates of exponents.

This work provides a detailed study of fragmentation
and new insight into the rate-dependent evolution of
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FIG. 5. The second moment 〈M2〉 as a function of rate ε̇ for
the indicated system sizes L after scaling data using Eq. (4)
and exponents in Table I. The dashed line represents a power
law with exponent −να. The inset includes uncollapsed data.

the grain size distribution N(M) in shear. A power-
law regime in N(M) with exponent τ rapidly emerges
after fracture in the quasistatic limit. With increasing
strain, unfragmented material is consumed as mass flows
to smaller length scales driving an extension of the power-
law domain. For all M in this domain, N(M) grows as
a power of strain.

With increasing strain rate, fragments become finer as
the power-law regime of N(M) is truncated at a smaller,
rate-dependent limit Mcut suggesting the system moves
away from the critical quasistatic limit. The distribu-
tion also evolves differently as N(M) decays more rapidly
with N at small strains but becomes less steep with in-
creasing strain. At large strains, masses still appear to
be power-law distributed with a rate-dependent exponent
The physical origin of this effect is unknown but it indi-
cates that the relative strength of fragments of different
sizes may depend on rate.

We propose the change in Mcut with rate is captured
by a correlation length ξ that diverges as a power of de-
creasing rate. As ξ grows to exceed the system size L,
finite-size effects emerge in N(M) as the system enters
the quasistatic limit. These ideas form the basis of a scal-
ing theory for N(M) which was verified using finite-size
scaling analysis. A series of critical exponents, summa-
rized in Table I, were measured which determine the size
of the largest grain, the number of grains, and the diver-
gence of the correlation length.

While this article has begun to characterize the rich
size- and rate-dependence of fragmentation in shear,
there are many more avenues to consider. Further work
is needed to investigate the deviations to scaling seen at
high rates and in small systems and test scaling theories
in three-dimensions. It is also important to systemati-
cally explore other variables such as loading geometry,
material properties, and inertia to identify their impact
on fragmentation.
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Appendix A: Simulation details

To prepare systems, we generated disordered two-
dimensional square packings of particles using a protocol
from Refs. [63, 65] to ensure isotropic material proper-
ties. To prevent crystallization, particles are bidisperse
with diameters of either a, the unit of length, or 3/5a and
the ratio of the number of large to small particles is set to
(1+
√

5)/4. All particles have mass m. Two-dimensional
simulations can be calibrated to represent plane-strain
deformation and are relevant to thin sheets such as ice
floes [4, 5] and exploded egg shells [66]. Unlike typical
bonded particle models, particles do not have rotational
degrees of freedom although rotation emerges in clusters
of bonded particles. This reduces computational costs
allowing larger systems to be simulated for longer times.

Bonds are created using a Delaunay triangulation gen-
erated from particle positions. Bonds are two-body cen-
tral forces with magnitudes that depend on the distance
between the two particles at the start of the simulation
r0 and at the current timestep r:

FB =


6× 22/3

ur20
a2r

[(
r0
r

)12 − ( r0r )6] , r ≤ r0
C1(r − r0) + C3(r − r0)3, r0 < r < λr0

0, r ≥ λr0

.

(A1)
In compression, this is a repulsive Lennard-Jones (LJ)
force with an equilibrium distance of r0 and a stiffness at
small displacements of 36× 22/3u/a2, independent of r0,
where u is the unit of energy. In extension, the force is an
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FIG. 6. Example curves of stress (blue, dashed) and the av-
erage number of bonds per atom (red, solid) versus strain.
Data is from a system of linear size L = 1600 sheared at a
rate ε̇ = 10−6. The inset includes a snapshot at higher strains.

attractive polynomial with coefficients C1 and C3 chosen
to mirror the stiffness at r = r0 and ensure a smooth
transition to zero at r = λr0 where λ = 1.05 represents
the limiting stretch where the bond permanently breaks.

Neighboring, non-bonded particles interact with a re-
pulsive LJ force with an energy scale u. The force is
truncated at its equilibrium distance which is set equal
to the sum of particle radii. A Galilean-invariant damp-
ing force, similar to that used in dissipative particle dy-
namics [67], is applied to all pairs of interacting particles
with a magnitude of

FD = −Γ

(
1− r

rmax

)2

(r̂ · δ~v) (A2)

where r̂ is the unit vector between the two particles, δ~v is
the difference in velocities, and rmax represents the maxi-
mum interaction distance, either λr0 for bonded particles
or the sum of radii for non-bonded particles. The damp-
ing strength Γ is set to 50

√
mu/a which keeps the system

athermal and is representative of the overdamped limit.
Over the range of strain rates simulated, the kinetic en-
ergy is quickly dissipated such that inertia is unable to
sustain crack propagation or granular rearrangement if
mechanical loading were to stop. All other quantities in
this article are dimensionless, scaled by the appropriate
combination of a, m, and u.

Systems undergo pure shear where one box dimension
contracts at a true strain rate labeled ε̇ while the other
expands to preserve area. To reach large strains, simula-
tions are fully-periodic and use Kraynik-Reinelt bound-
aries [68]. Simulations were run in LAMMPS [69, 70]
which includes a recently added bonded particle model
package.

During loading, the stress rises linearly with strain ε
before cracks nucleate and grow at ε ≈ 2% causing the
stress to drop as seen in Fig. 6. The resulting system,
fractured and broken into pieces, then fluctuates around
a smaller stress as granular fragments flow in shear. This
average stress gradually decays on longer timescales as
fragments continue to break into smaller pieces, as indi-
cated by a decay in the number of bonds. Notably, this
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FIG. 7. (a) Scaled distributions N(M) for a system of size
L = 150 sheared at the indicated strain rates ε̇ to a strain
ε = 100%. (b) Similar distributions with the dependence on
Ld with d = 2 also removed for systems of the indicated sizes
at ε̇ = 10−4 and ε = 100%.

decay is punctuated by bursts of rapid bond breakage
as seen in the inset of Fig. 6. These events resemble
crackling noise produced by intermittent avalanches in
the yielding transition [44, 64, 71, 72]. This is not un-
expected as avalanche-like bursts have been found in the
propagation of cracks in heterogeneous materials [73, 74].
However, a different deformation protocol is required to
accurately separate individual events and calculate a dis-
tribution of magnitudes [35, 36].

Appendix B: Additional finite-size effects and scaling

In this appendix, we both demonstrate how distribu-
tions transition between the QS and FR limits and how
they can be roughly collapsed using scaling theories pro-
posed in the main text. As previously mentioned, the
shape of N(M) changes with decreasing rate up until it
reaches a limiting QS form at a value of ε̇ that decreases
with increasing system size L. This is seen when compar-
ing distributions at different ε̇ for L = 150 in Fig. 7(a)
to previous data at L = 2400 in Fig. 3(b). In contrast
to L = 2400 where N(M) evolves with decreasing rate
down to ε̇ = 3 × 10−6, at L = 150 N(M) converges by
ε̇ = 10−4. This behavior is also seen in Fig. 7(b) where
N(M) at ε̇ = 10−4 has a nontrivial dependence on L for
L < 300 but simply scales as L2 for L ≥ 300 where the
number of grains grows linearly with the area of the sys-
tem. As in Fig. 4, we see a spike emerge in the number
of grains near Mcut in small systems as they enter the
QS limit. The reduction in the steepness of N(M) at
large ε̇ is also preserved at small L when entering the QS
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FIG. 8. (a) Collapsed QS distributions from Fig. 4 for M >
Mmin using the procedure in Eq. (1) using a value of Mcut =
Lα. (b) Similarly collapsed FR distributions from Fig. 3(b)
using Eq. (2) and Mcut = ε̇−να. Exponents are taken from
Table I. The largest mass of each dataset is enlarged for
visibility.

limit, although this is clouded by the changing shape of
N(M) near Mcut and is quite subtle in Fig. 4. Similar
behavior is seen when comparing distributions at other
cross sections of rate or system size.

As alluded to in the main text, the scaling theories in
Eqs. (1) and (2) can be used to collapse distributions
however deviations at small L and large ε̇ as well as lim-
ited statistics near Mcut make it difficult to assess the
quality of the collapses and bound exponents. Neverthe-
less, QS distributions from Fig. 4 for different L are rea-
sonably collapsed in Fig. 8(a) using exponents in Table
I and the protocol in Eq. (1). Importantly, distributions
are consistently cut off around a constant value of M/Lα

for all L. As noted before, the spike in N(M) near Mcut

for L less than ∼ 300 implies these systems are too small
to satisfy the assumptions of Eq. (1).

Similarly, distributions in the FR limit for L = 2400
for different ε̇ from Fig. 3(b) are roughly collapsed in Fig.
8(b) using the procedure in Eq. (2). The evolution in the
steepness of the distribution, which breaks assumptions
used to derive Eq. (2) but becomes less prominent at
smaller ε̇, obscures the collapse. Notably, however, dis-
tributions again go to zero near an equivalent value of
Mε̇να for all ε̇ < 3 × 10−6 where data at ε̇ = 3 × 10−6

should not collapse as it is already transitioning to QS
behavior (Fig. 5). Despite these complications, this pro-
cess is still a useful test of exponents in Table I and is
consistent with the predicted scaling of Mcut and N(M).
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