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Two-channel Kondo lattice serves as a model for a growing family of heavy-fermion compounds.
We employ dynamical large-N technique and go beyond the independent bath approximation to
study this model both numerically and analytically using renormalization group ideas. We show
that Kondo effect induces dynamic magnetic correlations that lead to an emergent spinon dispersion.
Furthermore, we develop a quantitative framework that interpolates between infinite dimension
where the channel-symmetry broken results of mean-field theory are confirmed, and one-dimension
where the channel symmetry is restored and a critical fractionalized mode is found.

The screening of a magnetic impurity by the conduc-5

tion electrons in a metal is governed by the Kondo ef-6

fect. The multi-channel version is when several channels7

compete for a single impurity, as a result of which the8

spin is frustrated and a new critical groundstate formed9

with a fractional residual impurity entropy. In the two-10

channel case, this entropy 1
2 log 2 corresponds to a Ma-11

jorana fermion. If the channel symmetry is broken, the12

weaker channels decouple and the stronger-coupled chan-13

nels win to screen the impurity at low temperature [1–4].14

While the case of a single impurity is well understood,15

much less is known about Kondo lattices where a lattice16

of spins is screened by conduction electrons [5–7], espe-17

cially if multiple conduction channels are involved [8].18

The most established fact is the prediction of a large19

Fermi surface (FS) in the Kondo-dominated regime of20

the single-channel Kondo lattice [9]. In the multi-channel21

case, the continuous channel symmetry naturally leads to22

new patterns of entanglement which are potentially re-23

sponsible for the non-Fermi liquid physics [10, 11], sym-24

metry breaking and possibly fractionalized order parame-25

ter [12]. This partly arises from the fact that the residual26

entropy seen in the impurity has to eventually disappear27

at zero temperature in the case of a lattice.28

Beside fundamental interest, a pressing reason for29

studying this physics is that the multi-channel Kondo30

lattice (MCKL), and in particular 2CKL, seems to be an31

appropriate model for several heavy-fermion compounds,32

e.g. the family of PrTr2Zn20 (Tr=Ir,Rh) [13, 14] as well33

as recent proposals that MCKLs may support non-trivial34

topology [15, 16] and non-abelian Kondo anyons [17, 18].35

The MCKL model is described by the Hamiltonian36

H = Hc + JK
∑
j

~Sj · c†ja~σcja (1)

where Hc = −tc
∑
〈ij〉(c

†
iαacjαa+h.c.) is the Hamiltonian37

of the conduction electrons and Einstein summation over38

spin α, β = 1 . . . N and channel a, b = 1 . . .K indices is39

assumed. This model has SU(N) spin and SU(K) channel40

symmetries and we are interested to analyze the effect of41

a channel (ch.) symmetry breaking H → H+
∑
j ∆ ~Jj · ~Oj ,42

where ~Oj ≡ (~Sj · c†ja~σcjb)~τba and ~τ -s act as Pauli ma-43

trices in the channel space [19]. At first look, at least44

FIG. 1. (a) The 1D version of the two-channel Kondo lat-
tice model studied here. (b) The strong coupling leads to a
channel magnet; two different patterns of channel symmetry
breaking, ch. FM (top) and ch. AFM (bottom). Bold lines
represents spin-singlets. (c) The entropy S of two-channel
Kondo impurity vs. ch. asymmetry and temperature. At the
symmetric point, S reduces to a fraction of the high-T value.

certain deformation [20] of the MCKL can be thought45

of as a channel magnet. In the JK → ∞ limit [21],46

the spin is quenched due to formation of Kondo singlet47

with either (for K = 2) of the channels, leading to a48

doublet over which ~O acts like ~τ [21, 22]. Interaction49

among adjacent doublets leads to a “channel magnet”50

Heff ∝ t2

JK

∑
〈ij〉

~Oi · ~Oj . While channel Weiss-field favors51

a ch. anti-ferromagnetic (ch. AFM) super-exchange inter-52

action, the mean-field theory predicts a variety of ch. fer-53

romagnetic (ch. FM) and ch. AFM solutions [Fig. 1(b)]54

depending on the conduction filling.55

On the other hand, some differences to a channel mag-56

net are expected since the winning channel has a larger57

FS [12, 23] and the order parameter ~O is strongly dissi-58

pated by coupling to fermionic degrees of freedom. Al-59

though a channel-symmetry broken groundstate is pre-60

dicted by both single-site dynamical mean-field theory61

(DMFT) [19, 24] and static mean-field theory [23, 25, 26],62

it has not been observed in recent cluster DMFT stud-63

ies [27]. Furthermore, the effective theory of fluctuations64

in the large-N limit [23] predicts a disordered phase below65

the lower critical dimension but the nature of this quan-66
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tum paramagnet is unclear. In 1D, Andrei and Orignac67

have used non-abelian bosonization to show [28] that the68

groundstate is gapless and fractionalized (dispersing Ma-69

joranas for K = 2), a prediction that contradicts the70

analysis by Emery and Kivelson [29], and has not been71

confirmed by the density matrix renormalization group72

calculations [22].73

Resolving these issues requires a technique that is ap-74

plicable to arbitrary dimensions and goes beyond static75

mean-field and DMFT by capturing both quantum and76

spatial fluctuations. Here we show that dynamical large-77

N approach, recently applied successfully to study Kondo78

lattices [18, 30–37], is precisely such a technique.79

We assume the spins transform as a spin-S representa-80

tion of SU(N). In the impurity case [38], the spin is fully81

screened for K = 2S whereas it is over/under-screened82

for K > 2S and K < 2S, respectively [39]. The focus83

of this paper is on the Kondo-dominated regime of the84

double-screened case K/2S = 2 which is schematically85

shown in Fig. 1(a). We use Schwinger bosons Sjαβ =86

b†jαbjβ to form a symmetric representation of spins with87

the size 2S = b†jαbjα. We then re-scale JK → JK/N88

and treat the model (1) in the large-N limit, by sending89

N,K, S →∞, but keeping s = S/N and γ = K/N = 4s90

constant. The constraint is imposed on average via a91

uniform Lagrange multiplier µb.92

In the present large-N limit, the RKKY interaction93

is O(1/N) [inset of Fig. 2(a)] and we need to include an94

explicit Heisenberg interaction H → H+JH
∑
〈ij〉

~Si · ~Sj95

between nearest neighbors 〈ij〉 to couple the impurities.96

Nevertheless, we will show that an infinitesimal JH is97

sufficient to produce significant magnetic correlations due98

to a novel variant of RKKY interaction. For simplicity99

we limit ourselves to ferromagnetic correlations JH < 0.100

For a V site lattice, the Lagrangian becomes [31, 40]101

L =
∑
k

c̄kaα(∂τ + εk)ckaα +
∑
k

b̄kα(∂τ + εk)bkα (2)

+
∑
j

χ̄jaχja
JK

+
∑
j

1√
N

(χ̄jabjαc̄jaα + h.c.) + 2VµbS.

Here, b-s are bosonic spinons and χ-s are Grassmannian102

holons that mediate the local Kondo interaction. In mo-103

mentum space, the electrons and bosons have dispersions104

εk = −2tc cos k−µc and εk = −2tb cos k−µb, respectively.105

tb is the (assumed to be homogeneous) nearest neigh-106

bor hopping of spinons due to large-N decoupling of JH107

term [31]. Here, we focus on a half-filled conduction band108

µc = 0, but similar results are obtained at other commen-109

surate fillings [21]. In the large-N limit the dynamics is110

dominated by the non-crossing Feynman diagrams, re-111

sulting in boson and holon self-energies [~r ≡ (j, τ)]112

Σb(~r) = −γGc(~r)Gχ(~r), Σχ(~r) = Gc(−~r)Gb(~r), (3)

whereas Σc is O(1/N) and thus the electrons propaga-113

tor G−1
c (k, z) = z − εk remains bare, with z complex114

FIG. 2. 1D 2CKL model. The temperature evolution of (a)
the effective energy εeff for spinons and (b) the inverse effec-
tive Kondo coupling J−1

K,eff for holons. At high-T , JK,eff = JK
with no k dependence. Initially, Kondo effect develops lo-
cally and J−1

K,eff → 0. Then dispersion emerges in both Gχ

and Gb, with J−1
K,eff vanishing only at k∼±kF and εeff only

at k ∼ 0. Inset of (a): Despite an O(1/N) RKKY interac-
tion (black), an initial spinon dispersion (blue) can lead to an
O(1) amplification to in the present over-screened case. In-
set of (b): Entropy S vs. T for 0D, 1D (tb = 0.2tc) and 1D’
(tb = 0.0002tc).

frequency. Eqs. (3) together with the Dyson equations115

G−1
b (k, z) = z − εk − Σb(k, z) and G−1

χ,a(k, z) = −J−1
K,a −116

Σχ(k, z) form a set of coupled integral equations that117

are solved iteratively and self-consistently, while µb is118

adjusted to satisfy the constraint. Thermodynamic vari-119

ables are then computed from Green’s functions [30, 31].120

First, we study the case in which JH is absent, or121

εk = −µb. In this limit, the self-energies remain lo-122

cal Σb,χ(n, τ) → δn0Σb,χ(τ) and the problem reduces to123

the impurity problem [40]. It has never been studied124

whether the large-N over-screened impurities are suscep-125

tible to symmetry breaking [2]. To do so, we assume126

that half of K channels are coupled to the impurity with127

JK + ∆J and the other half with JK − ∆J . This cor-128

responds to a uniform symmetry breaking deformation129

∆L = (∆J/J2
K)
∑
j [χ̄j1χj1 − χ̄j2χj2] of the Lagrangian.130

Fig. 1(c) shows the entropy of the 2CK impurity model as131132

a function of channel asymmetry, verifying that the impu-133

rity is indeed critical w.r.t. channel symmetry breaking.134

In symmetric 2CK, the ground state entropy at large-N is135

fractional with a universal dependence on (γ, s) [21, 40].136

Next, we focus on finite tb case for two settings of137

1D and ∞D, which correspond to a Bethe lattice with138

coordination numbers z = 2 and z = ∞. In 1D, G(k, z)139

and Σ(k, z) depend on k and z, but in ∞D, self-energies140

have no spatial dependence and the Green’s functions of141

spinons/electrons obey G−1
b,c = z+µb,c−Σb,c(z)−t2b,cGb,c.142

Importantly, the criticality of over-screened impu-143

rity solution ensures that an infinitesimal spinon hop-144

ping seed tb ∼ 0 can get an O(1) amplification [inset145

of Fig. (2)(a)] and dispersions for spinons and holons are146

dynamically generated. Restricting ourselves to trans-147

lationally invariant solutions with lattice periodicity a,148
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FIG. 3. The spectral function of (a) spinons and (b) holons
in a 1D two-channel Kondo lattice at T/JK = 0.0072, showing
emergent linearly-dispersing spinons at k = 0 (bare dispersion
is quadratic) and holons with Fermi point at ±kF . Scaling
collapse of spinon and holon Green’s functions in the 2CK
critical regime in (c) 1D lattice (z = 2) 0.0072 ≤ T/JK ≤ 0.03
and (d)∞D Bethe lattice (z =∞) 0.006 ≤ T/JK ≤ 0.03. For
both cases, JK/tc = 6, tb/tc = 0.2, and s = 0.15.

this effect can be succinctly represented by the zero-149

frequency spinon/holon effective dispersion J−1
K,eff(k) ≡150

−Re[G−1
χ (k, ω = 0)] and εeff(k) ≡ −Re[G−1

b (k, ω = 0)],151

shown in Fig. 2(a,b) for various temperatures. This emer-152

gent spinon dispersion is independent of the choice of the153

seed and agrees qualitatively with the finite tb results [21].154

The consumption of the residual entropy in the lattice by155

the emerging dispersion is visible in the inset of Fig. 2(b).156

We stress that in 1D, this apparent transition most likely157

becomes a crossover when N is finite [41]. In the case of158

∞D, the system is prone to spin or channel magnetiza-159

tion, as discussed later. Such symmetry breakings would160

consume the residue entropy [21].161

Fig. 3(a,b) shows the finite frequency spectral func-162

tion of spinons and holons, respectively. Both are domi-163

nated by a sharp mode with emergent Lorentz invariance.164

The spinons are gapless and linearly dispersing and the165

holons form a FS. The temperature collapse of Fig. 3(c)166

confirms that the spectra are critical with the local spec-167

tra obeying a T 1−2∆b,χG′′b,χ(x = 0, ω) = fb,χ(ω/T ) be-168

havior. Fig. 3(d) shows similar collapse for the case of169

infinite-coordination Bethe lattice (∞D). A marked dif-170

ference between the two cases is that ∆χ > 1/2 for 1D,171

which leads to −G′′χ minima at ω ∼ 0, whereas ∆χ < 1/2172

in ∞D, manifested as a peak at ω ∼ 0.173

What is the effect of channel symmetry breaking174

on the volume of FS? According to Luttinger’s theo-175

rem, the FS volume is related to electron phase shift176

vFS
a = V−1

∑
k δa(k) for a d dimensional lattice. From177

K = 4S case of the Ward identity [42], the electron178

phase shift is related to that of holons Nδc,a(k) = δχ,a(k),179

which itself is defined as180

δχ,a(k) = −Im{log[−G−1
χ,a(k, 0 + iη)]}. (4)

In 1D, holons are occupied for |k| < π/2. The locus of181

points at which J−1
K,eff(k) changes sign defines a holon182

FS which generalizes to any dimension. So, we find that183

vFS
χ,a = 2πS/K = π/2 and the total change in electron184

FS is N∆vFS
c,a = π/2, corresponding to a large FS in the185

critical phase. We use Eq. (4) to study the effect of a uni-186

form symmetry breaking field ∆L. Fig. 4(a) shows how187

FSs of slightly favored and disfavored channels evolve as188

a function of T in the two cases. In 1D, the FS asym-189

metry disappears, restoring a ch. symmetric criticality at190

low T , consistent with the Mermin-Wagner theorem. On191

the other hand, in ∞D the asymmetry grows and one192

channel totally decouples from the spins, with gapped193

spinons and holons for both channels. The exponents194

are related to ∆χ; varying ∆J in Eq. (4) we find195

∂vFS
χ,a

∂∆J
=
−1

V
∑
k

G′′χ(k, 0+iη) = −G′′χ(x = 0, 0+iη). (5)

Assuming |Gχ(~r)| ∼ |~r|−2∆χ , the holon FS is unsta-196

ble against symmetry breaking when G′′χ(kF , 0 + iη) ∼197

T 2∆χ−d−1 diverges. This 2∆χ < d + 1 regime coincides198

with when the symmetry breaking term ∆J is relevant,199

in the renormalization group (RG) sense. On the other200

hand instability of the entire holon FS requires the diver-201

gence of G′′χ(x = 0, 0+ iη) ∼ T 2∆χ−1, i.e. 2∆χ < 1 which202

is a more stringent condition and agrees with Fig. 4(a),203

confirming ∆χ = 1/2 as the marginal dimension.204

Fig. 4(a) shows that the symmetry breaking ∆L is205

relevant in ∞D, but is irrelevant in 1D. To establish this206

from the microscopic model, one has to access the in-207

frared (IR) fixed point. From the numerics we see that208

the system flows to a critical IR fixed point, in which209

spinons and holons are critical in addition to electrons.210

For an impurity Gb ∼ |τ |−2∆b and Gχ(τ) ∼ |τ |−2∆χ are211

reasonable at T = 0. The exponents are known [21, 40]:212

0,∞D : ∆χ =
γ

2(1 + γ)
, ∆b =

1

2(1 + γ)
, (6)

and coincide with those of the∞D in the small tb regime213

we are interested here [21]. In presence of a dimensionless214

λ0 = ∆J/ρJ2
K , the RG analysis dλ/d` = (1 − 2∆χ)λ215

predicts a dynamical scale w ∼ TKλ1+γ
0 [c.f. Fig. 1(c)].216

The 1D case is more subtle; as T → 0, we see from217

Fig. 2 that J−1
K,eff(±kF ) → 0 and εeff(0) → 0 at the IR218

fixed point [43]. This means that the Kondo coupling219

flows to strong coupling at |k| < kF , to weak coupling at220

|k| > kF , and gets critical at k = ±kF , while the spinons221

are gapless at k=0. At these momenta, the Dyson equa-222

tion has the form Gb∆Σb|k∼0 = Gχ∆Σχ|k∼±kF = −1.223
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FIG. 4. (a) The evolution of FS in presence of small channel
symmetry breaking in 1D and∞D with temperature. (b) The
scaling exponents ∆b/χ in 1D from the numerics. The lines
show the analytical values given by Eqs. (9).

We can obtain a low-energy description by expanding224

fields near zero energy, e.g. ψ(x) ∼ eikF xψR + e−ikF xψL225

for electrons and holons. In 1+1 dimensions, the confor-226

mal invariance of the fixed point dictates the following227

form for the T = 0 Green’s functions G(x, τ) = G(z, z̄):228

Gb = −ρ̄
( a2

z̄z

)∆b

, GχR/L =
−1

2π

(a

z̄

)∆χ± 1
2
(a

z

)∆χ∓ 1
2

(7)

where z = vτ + ix and ρ̄ = 2s/a. The GcR/L is ob-229

tained from GχR/L by ∆χ → 1/2. These Green’s func-230

tions can be conformally mapped to finite-T via z →231

(β/π) sin(πz/β) replacement. Furthermore, in terms of232

q = k + iω/v, they have the Fourier transforms:233

Gb = −2πa2ρ̄v−1
b (a2q̄q)∆b−1ζ0(∆b) (8)

GχR/L = ∓a2v−1
χ (aq̄)∆χ−1∓1/2(aq)∆χ−1±1/2ζ1(∆χ)

where ζn(∆) ≡ 21−2∆Γ(1−∆ + n/2)/Γ(n/2 + ∆). From234

matching the powers of frequency in Eqs. (3,7,8), we con-235

clude that ∆b + ∆χ = 3/2 in order to satisfy the self-236

consistency. Moreover, from the matching of the ampli-237

tude of the Green’s functions we find [21]238

1D : ∆χ =
1 + 6γ

2(1 + 2γ)
, ∆b =

2

2(1 + 2γ)
. (9)

Note that ∆χ > 1/2, ensuring that channel symmetry239

breaking perturbations are irrelevant in 1D. These are in240

excellent agreement with the exponents extracted from241

ω/T scaling [Fig. 4(b)] and we have established a semi-242

analytical framework to interpolate between 1D and∞D.243

The emergent dispersion in Fig. 2, the scaling dimen-244

sions in Eq. (9) and their relation to symmetry breaking245

in Fig. 4 are the central results of this paper. In the246

following we discuss some of the implications of these re-247

sults for physical observables that are independent of our248

fractionalized description, leaving the details to [21].249

The fractionalization Sαβ ∼ b†αbβ or b†αcaα ∼ χa250

contraction are related to order parameter fractionaliza-251

tion [12, 44]. In the long time/distance limit, correlation252

functions of b†αcaα and that of χa are given by Σχ and253

Gχ, respectively and thus, have exponents that add up to254

zero. On the other hand, correlators of gauge-invariant255

operators Xab ≡ χ̄aχb and Oab ≡ b†αbβc
†
bβcaα are exactly256

equal since both can be constructed by taking deriva-257

tives of free energy w.r.t. ∆Jab before/after Hubbard-258

Stratonovitch transformation. A diagrammatic proof of259

this equivalence is provided in [21]. Scaling analysis gives260

χch(x = 0) ∼ T 4∆χ−1 and χ1D
ch (q = 0) ∼ T 4∆χ−2 up to a261

constant shift coming from the regular part of free energy.262

Another non-trivial feature of 2CK impurity fixed263

point is its magnetic instability [2] whose large-N incar-264

nation is ∆b < 1/2 for the impurity (or ∞D) in Eq. (6).265

From Eq. (9), we see that this also holds for 1D 2CKL for266

γ > 1/2. This is reflected in the divergence of the uni-267

form χm(q = 0) static magnetic susceptibilities as a func-268

tion of T . Using scaling analysis χ1D
m (q = 0) ∼ T 4∆b−2

269

and χm(x = 0) ∼ T 4∆b−1 up to a constant shift, in good270

agreement with numerics [21]. Note that this critical spin271

behavior is different from the gapped spin sector observed272

in [22, 29], but is qualitatively consistent with [28].273

Lastly, the fact that the fixed point discussed above274

is IR stable follows from the fact that the interaction275

is exactly marginal due to ∆b + ∆χ = 3/2 and that276

vertex corrections remain O(1/N). The 1+1D correla-277

tors (7) can be obtained from three sets of decoupled278

Luttinger liquids for each of the c, b, χ fields with fine-279

tuned Luttinger parameters that give the correct expo-280

nents. Such a spinon-holon theory will have a Virasoro281

central charge c0/N = 1 + γ. On the other hand the282

coset theory of [21, 28, 45] predicts cAO/N = γ/(1 + γ).283

We have used T → 0 heat-capacity and the excitation284

velocities v to compute the central charge according to285

C/T = (πk2
B/6v)c as a function of γ and found c = c0286

[21]. Note that there is no contradiction with c-theorem287

since the UV theory is not Lorentz invariant due to fer-288

romagnetism. The discrepancy with cAO is likely rooted289

in inability of Schwinger bosons to capture gapless spin-290

liquids [46].291

In summary, we have shown that dynamical large-292

N approach can capture symmetry breaking in multi-293

channel Kondo impurities and lattices in presence of both294

emergent and induced ferromagnetic correlations within295

an RG framework with explicit examples on 0D, 1D and296

∞D. The scaling analysis enables an analytical solution297

to the critical exponents and susceptibilities which are298

in good quantitative agreement with numerics, and is299

applicable to higher dimensional CFTs. A determina-300

tion of upper/lower critical dimensions and effect of anti-301

ferromagnetic correlation is left to a future work [47].302
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