

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Emergent Spinon Dispersion and Symmetry Breaking in Two-Channel Kondo Lattices

Yang Ge and Yashar Komijani Phys. Rev. Lett. **129**, 077202 — Published 11 August 2022 DOI: 10.1103/PhysRevLett.129.077202 Yang Ge and Yashar Komijani*

Department of Physics, University of Cincinnati, Cincinnati, Ohio, 45221, USA

(Dated: July 5, 2022)

Two-channel Kondo lattice serves as a model for a growing family of heavy-fermion compounds. We employ dynamical large-N technique and go beyond the independent bath approximation to study this model both numerically and analytically using renormalization group ideas. We show that Kondo effect induces dynamic magnetic correlations that lead to an emergent spinon dispersion. Furthermore, we develop a quantitative framework that interpolates between infinite dimension where the channel-symmetry broken results of mean-field theory are confirmed, and one-dimension where the channel symmetry is restored and a critical fractionalized mode is found.

The screening of a magnetic impurity by the conduc-5 ⁶ tion electrons in a metal is governed by the Kondo ef-7 fect. The multi-channel version is when several channels ⁸ compete for a single impurity, as a result of which the ⁹ spin is frustrated and a new critical groundstate formed with a fractional residual impurity entropy. In the two-10 ¹¹ channel case, this entropy $\frac{1}{2} \log 2$ corresponds to a Majorana fermion. If the channel symmetry is broken, the 12 weaker channels decouple and the stronger-coupled chan-13 nels win to screen the impurity at low temperature [1-4]. 14 While the case of a single impurity is well understood, 15 much less is known about Kondo lattices where a lattice 16 of spins is screened by conduction electrons [5–7], espe-17 cially if multiple conduction channels are involved [8]. 18 The most established fact is the prediction of a large 19 Fermi surface (FS) in the Kondo-dominated regime of 20 the single-channel Kondo lattice [9]. In the multi-channel 21 case, the continuous channel symmetry naturally leads to 22 new patterns of entanglement which are potentially re-23 sponsible for the non-Fermi liquid physics [10, 11], sym-24 metry breaking and possibly fractionalized order parame-25 ter [12]. This partly arises from the fact that the residual 26 entropy seen in the impurity has to eventually disappear 27 at zero temperature in the case of a lattice. 28

2

3

Beside fundamental interest, a pressing reason for 29 studying this physics is that the multi-channel Kondo 30 lattice (MCKL), and in particular 2CKL, seems to be an 31 appropriate model for several heavy-fermion compounds, 32 e.g. the family of $PrTr_2Zn_{20}$ (*Tr*=Ir,Rh) [13, 14] as well 33 as recent proposals that MCKLs may support non-trivial 34 topology [15, 16] and non-abelian Kondo anyons [17, 18]. 35 The MCKL model is described by the Hamiltonian 36

$$H = H_c + J_K \sum_j \vec{S}_j \cdot c_{ja}^{\dagger} \vec{\sigma} c_{ja}$$
(1)

³⁷ where $H_c = -t_c \sum_{\langle ij \rangle} (c^{\dagger}_{i\alpha a} c_{j\alpha a} + h.c.)$ is the Hamiltonian ³⁸ of the conduction electrons and Einstein summation over ³⁹ spin $\alpha, \beta = 1...N$ and channel a, b = 1...K indices is ⁴⁰ assumed. This model has SU(N) spin and SU(K) channel ⁴¹ symmetries and we are interested to analyze the effect of ⁴² a channel (ch.) symmetry breaking $H \to H + \sum_j \Delta \vec{J_j} \cdot \vec{\mathcal{O}_j}$, ⁴³ where $\vec{\mathcal{O}_j} \equiv (\vec{S_j} \cdot c^{\dagger}_{ja} \vec{\sigma} c_{jb}) \vec{\tau}_{ba}$ and $\vec{\tau}$ -s act as Pauli ma-⁴⁴ trices in the channel space [19]. At first look, at least

FIG. 1. (a) The 1D version of the two-channel Kondo lattice model studied here. (b) The strong coupling leads to a channel magnet; two different patterns of channel symmetry breaking, ch. FM (top) and ch. AFM (bottom). Bold lines represents spin-singlets. (c) The entropy S of two-channel Kondo impurity vs. ch. asymmetry and temperature. At the symmetric point, S reduces to a fraction of the high-T value.

⁴⁵ certain deformation [20] of the MCKL can be thought ⁴⁶ of as a channel magnet. In the $J_K \to \infty$ limit [21], ⁴⁷ the spin is quenched due to formation of Kondo singlet ⁴⁸ with either (for K = 2) of the channels, leading to a ⁴⁹ doublet over which $\vec{\mathcal{O}}$ acts like $\vec{\tau}$ [21, 22]. Interaction ⁵⁰ among adjacent doublets leads to a "channel magnet" ⁵¹ $H_{\rm eff} \propto \frac{t^2}{J_K} \sum_{\langle ij \rangle} \vec{\mathcal{O}}_i \cdot \vec{\mathcal{O}}_j$. While channel Weiss-field favors ⁵² a ch. anti-ferromagnetic (ch. AFM) super-exchange inter-⁵³ action, the mean-field theory predicts a variety of ch. fer-⁵⁴ romagnetic (ch. FM) and ch. AFM solutions [Fig. 1(b)] ⁵⁵ depending on the conduction filling.

⁵⁶ On the other hand, some differences to a channel mag-⁵⁷ net are expected since the winning channel has a larger ⁵⁸ FS [12, 23] and the order parameter \vec{O} is strongly dissi-⁵⁹ pated by coupling to fermionic degrees of freedom. Al-⁶⁰ though a channel-symmetry broken groundstate is pre-⁶¹ dicted by both single-site dynamical mean-field theory ⁶² (DMFT) [19, 24] and static mean-field theory [23, 25, 26], ⁶³ it has not been observed in recent cluster DMFT stud-⁶⁴ ies [27]. Furthermore, the effective theory of fluctuations ⁶⁵ in the large-N limit [23] predicts a disordered phase below ⁶⁶ the lower critical dimension but the nature of this quan⁶⁷ tum paramagnet is unclear. In 1D, Andrei and Orignac have used non-abelian bosonization to show [28] that the 68 ⁶⁹ groundstate is gapless and fractionalized (dispersing Ma-70 joranas for K = 2), a prediction that contradicts the ⁷¹ analysis by Emery and Kivelson [29], and has not been 72 confirmed by the density matrix renormalization group calculations [22]. 73

Resolving these issues requires a technique that is ap-74 plicable to arbitrary dimensions and goes beyond static 75 ⁷⁶ mean-field and DMFT by capturing both quantum and spatial fluctuations. Here we show that dynamical large-77 78 N approach, recently applied successfully to study Kondo lattices [18, 30–37], is precisely such a technique. 79

We assume the spins transform as a spin-S representa-80 tion of SU(N). In the impurity case [38], the spin is fully 81 screened for K = 2S whereas it is over/under-screened for K > 2S and K < 2S, respectively [39]. The focus 83 ⁸⁴ of this paper is on the Kondo-dominated regime of the double-screened case K/2S = 2 which is schematically 85 so shown in Fig. 1(a). We use Schwinger bosons $S_{i\alpha\beta} =$ $b_{i\alpha}^{\dagger} b_{i\beta}^{\dagger}$ to form a symmetric representation of spins with ** the size $2S = b_{j\alpha}^{\dagger}b_{j\alpha}$. We then re-scale $J_K \rightarrow J_K/N$ ⁸⁹ and treat the model (1) in the large-N limit, by sending $N, K, S \to \infty$, but keeping s = S/N and $\gamma = K/N = 4s$ 91 constant. The constraint is imposed on average via a uniform Lagrange multiplier μ_b . 92

In the present large-N limit, the RKKY interaction 93 $_{94}$ is O(1/N) [inset of Fig. 2(a)] and we need to include an ⁹⁵ explicit Heisenberg interaction $H \to H + J_H \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$ ⁹⁶ between nearest neighbors $\langle ij \rangle$ to couple the impurities. $_{97}$ Nevertheless, we will show that an infinitesimal J_H is ⁹⁸ sufficient to produce significant magnetic correlations due 99 to a novel variant of RKKY interaction. For simplicity we limit ourselves to ferromagnetic correlations $J_H < 0$. 100 For a \mathcal{V} site lattice, the Lagrangian becomes [31, 40] 101

$$\mathcal{L} = \sum_{k} \bar{c}_{ka\alpha} (\partial_{\tau} + \epsilon_{k}) c_{ka\alpha} + \sum_{k} \bar{b}_{k\alpha} (\partial_{\tau} + \varepsilon_{k}) b_{k\alpha} \qquad (2)$$

$$+\sum_{j}\frac{\bar{\chi}_{ja}\chi_{ja}}{J_{K}}+\sum_{j}\frac{1}{\sqrt{N}}(\bar{\chi}_{ja}b_{j\alpha}\bar{c}_{ja\alpha}+h.c.)+2\mathcal{V}\mu_{b}S.$$

¹⁰³ holons that mediate the local Kondo interaction. In mo- ¹³⁵ In symmetric 2CK, the ground state entropy at large-N is ¹⁰⁴ mentum space, the electrons and bosons have dispersions ¹³⁶ fractional with a universal dependence on (γ, s) [21, 40]. 105 $\epsilon_k = -2t_c \cos k - \mu_c$ and $\varepsilon_k = -2t_b \cos k - \mu_b$, respectively. 137 $_{106}$ t_b is the (assumed to be homogeneous) nearest neigh- $_{138}$ 1D and ∞ D, which correspond to a Bethe lattice with ¹⁰⁷ bor hopping of spinons due to large-N decoupling of J_{H} ¹³⁹ coordination numbers z = 2 and $z = \infty$. In 1D, G(k,z)¹⁰⁶ term [31]. Here, we focus on a half-filled conduction band ¹⁴⁰ and $\Sigma(k, z)$ depend on k and z, but in ∞D , self-energies $\mu_c = 0$, but similar results are obtained at other commen- μ_1 have no spatial dependence and the Green's functions of ¹¹⁰ surate fillings [21]. In the large-N limit the dynamics is ¹⁴² spinons/electrons obey $G_{b,c}^{-1} = z + \mu_{b,c} - \Sigma_{b,c}(z) - t_{b,c}^2 G_{b,c}$. ¹¹¹ dominated by the non-crossing Feynman diagrams, re-¹¹² sulting in boson and holon self-energies $[\vec{r} \equiv (j, \tau)]$

$$\Sigma_b(\vec{r}) = -\gamma G_c(\vec{r}) G_\chi(\vec{r}), \quad \Sigma_\chi(\vec{r}) = G_c(-\vec{r}) G_b(\vec{r}), \quad (3)$$

¹¹⁴ tor $G_c^{-1}(k,z) = z - \epsilon_k$ remains bare, with z complex ¹⁴⁸ lationally invariant solutions with lattice periodicity a,

FIG. 2. 1D 2CKL model. The temperature evolution of (a) the effective energy ε_{eff} for spinons and (b) the inverse effective Kondo coupling $J_{K,\text{eff}}^{-1}$ for holons. At high-T, $J_{K,\text{eff}} = J_K$ with no k dependence. Initially, Kondo effect develops locally and $J_{K,\text{eff}}^{-1} \to 0$. Then dispersion emerges in both G_{χ} and G_b , with $J_{K,\text{eff}}^{-1}$ vanishing only at $k \sim \pm k_F$ and ε_{eff} only at $k \sim 0$. Inset of (a): Despite an O(1/N) RKKY interaction (black), an initial spinon dispersion (blue) can lead to an O(1) amplification to in the present over-screened case. Inset of (b): Entropy S vs. T for 0D, 1D $(t_b = 0.2t_c)$ and 1D $(t_b = 0.0002t_c).$

¹¹⁵ frequency. Eqs. (3) together with the Dyson equations 116 $G_b^{-1}(k, \mathbf{z}) = \mathbf{z} - \varepsilon_k - \Sigma_b(k, \mathbf{z})$ and $G_{\chi,a}^{-1}(k, \mathbf{z}) = -J_{K,a}^{-1} - J_{K,a}^{-1} - J_{K,a}^{-1}$ 117 $\Sigma_{\chi}(k,z)$ form a set of coupled integral equations that ¹¹⁸ are solved iteratively and self-consistently, while μ_b is 119 adjusted to satisfy the constraint. Thermodynamic vari-¹²⁰ ables are then computed from Green's functions [30, 31].

First, we study the case in which J_H is absent, or 121 122 $\varepsilon_k = -\mu_b$. In this limit, the self-energies remain lo-123 cal $\Sigma_{b,\chi}(n,\tau) \to \delta_{n0} \Sigma_{b,\chi}(\tau)$ and the problem reduces to ¹²⁴ the impurity problem [40]. It has never been studied ¹²⁵ whether the large-N over-screened impurities are suscep-126 tible to symmetry breaking [2]. To do so, we assume $_{127}$ that half of K channels are coupled to the impurity with $_{128} J_K + \Delta J$ and the other half with $J_K - \Delta J$. This cor-129 responds to a uniform symmetry breaking deformation ¹³⁰ $\Delta \mathcal{L} = (\Delta J/J_K^2) \sum_j [\bar{\chi}_{j1}\chi_{j1} - \bar{\chi}_{j2}\chi_{j2}]$ of the Lagrangian. ¹³² Fig. 1(c) shows the entropy of the 2CK impurity model as ¹³³ a function of channel asymmetry, verifying that the impu-¹⁰² Here, b-s are bosonic spinons and χ -s are Grassmannian ¹³⁴ rity is indeed critical w.r.t. channel symmetry breaking.

Next, we focus on finite t_b case for two settings of Importantly, the criticality of over-screened impu-144 rity solution ensures that an infinitesimal spinon hop-¹⁴⁵ ping seed $t_b \sim 0$ can get an O(1) amplification [inset $_{146}$ of Fig. (2)(a)] and dispersions for spinons and holons are ¹¹³ whereas Σ_c is O(1/N) and thus the electrons propaga-¹⁴⁷ dynamically generated. Restricting ourselves to trans-

FIG. 3. The spectral function of (a) spinons and (b) holons in a 1D two-channel Kondo lattice at $T/J_K = 0.0072$, showing emergent linearly-dispersing spinons at k = 0 (bare dispersion) is quadratic) and holons with Fermi point at $\pm k_F$. Scaling collapse of spinon and holon Green's functions in the 2CK critical regime in (c) 1D lattice $(z = 2) 0.0072 \le T/J_K \le 0.03$ and (d) ∞ D Bethe lattice ($z = \infty$) 0.006 $\leq T/J_K \leq$ 0.03. For both cases, $J_K/t_c = 6$, $t_b/t_c = 0.2$, and s = 0.15.

149 this effect can be succinctly represented by the zero-150 frequency spinon/holon effective dispersion $J_{K,{\rm eff}}^{-1}(k) \equiv$ ¹⁵¹ -Re[$G_{\chi}^{-1}(k,\omega=0)$] and $\varepsilon_{\text{eff}}(k) \equiv -\text{Re}[G_{b}^{-1}(k,\omega=0)],$ ¹⁵² shown in Fig. 2(a,b) for various temperatures. This emer-¹⁵³ gent spinon dispersion is independent of the choice of the 154 seed and agrees qualitatively with the finite t_b results [21]. The consumption of the residual entropy in the lattice by 155 the emerging dispersion is visible in the inset of Fig. 2(b). 156 We stress that in 1D, this apparent transition most likely 157 becomes a crossover when N is finite [41]. In the case of 158 ∞D , the system is prone to spin or channel magnetiza-159 tion, as discussed later. Such symmetry breakings would 160 consume the residue entropy [21]. 161

Fig. 3(a,b) shows the finite frequency spectral func-162 tion of spinons and holons, respectively. Both are domi-163 ¹⁶⁴ nated by a sharp mode with emergent Lorentz invariance. The spinons are gapless and linearly dispersing and the 165 ¹⁶⁶ holons form a FS. The temperature collapse of Fig. 3(c) $_{167}$ confirms that the spectra are critical with the local spec- $_{213}$ and coincide with those of the ∞D in the small t_b regime ¹⁶⁸ tra obeying a $T^{1-2\Delta_{b,\chi}}G''_{b,\chi}(x=0,\omega) = f_{b,\chi}(\omega/T)$ be-²¹⁴ we are interested here [21]. In presence of a dimensionless ¹⁶⁹ havior. Fig. 3(d) shows similar collapse for the case of ²¹⁵ $\lambda_0 = \Delta J/\rho J_K^2$, the RG analysis $d\lambda/d\ell = (1 - 2\Delta_\chi)\lambda$ ¹⁷⁰ infinite-coordination Bethe lattice (∞ D). A marked dif-²¹⁶ predicts a dynamical scale $w \sim T_K \lambda_0^{1+\gamma}$ [c.f. Fig. 1(c)]. ¹⁷¹ ference between the two cases is that $\Delta_{\chi} > 1/2$ for 1D, ²¹⁷ The 1D case is more subtle; as $T \to 0$, we see from ¹⁷² which leads to $-G''_{\chi}$ minima at $\omega \sim 0$, whereas $\Delta_{\chi} < 1/2$ ²¹⁸ Fig. 2 that $J_{K,\text{eff}}^{-1}(\pm k_F) \to 0$ and $\varepsilon_{\text{eff}}(0) \to 0$ at the IR ¹⁷³ in ∞ D, manifested as a peak at $\omega \sim 0$. ²¹⁹ fixed point [43]. This means that the Kondo coupling

 $_{175}$ on the volume of FS? According to Luttinger's theo- $_{221}$ $|k| > k_F$, and gets critical at $k = \pm k_F$, while the spinons $_{176}$ rem, the FS volume is related to electron phase shift $_{222}$ are gapless at k=0. At these momenta, the Dyson equa $v_a^{\text{FS}} = \mathcal{V}^{-1} \sum_k \delta_a(k)$ for a *d* dimensional lattice. From $v_a^{\text{FS}} = \mathcal{V}^{-1} \sum_k \delta_a(k)$ for a *d* dimensional lattice. From $v_a^{\text{FS}} = \mathcal{V}^{-1} \sum_k \delta_a(k)$ for a *d* dimensional lattice.

 $_{178} K = 4S$ case of the Ward identity [42], the electron ¹⁷⁹ phase shift is related to that of holons $N\delta_{c,a}(k) = \delta_{\chi,a}(k)$, $_{180}$ which itself is defined as

$$\delta_{\chi,a}(k) = -\text{Im}\{\log[-G_{\chi,a}^{-1}(k,0+i\eta)]\}.$$
 (4)

¹⁸¹ In 1D, holons are occupied for $|k| < \pi/2$. The locus of ¹⁸² points at which $J_{K,\text{eff}}^{-1}(k)$ changes sign defines a holon 183 FS which generalizes to any dimension. So, we find that $_{\chi,a} v_{\chi,a}^{\rm FS} = 2\pi S/K = \pi/2$ and the total change in electron ¹⁸⁵ FS is $N\Delta v_{c,a}^{\rm FS} = \pi/2$, corresponding to a large FS in the 186 critical phase. We use Eq. (4) to study the effect of a uni-¹⁸⁷ form symmetry breaking field $\Delta \mathcal{L}$. Fig. 4(a) shows how 188 FSs of slightly favored and disfavored channels evolve as 189 a function of T in the two cases. In 1D, the FS asym-¹⁹⁰ metry disappears, restoring a ch. symmetric criticality at ¹⁹¹ low T, consistent with the Mermin-Wagner theorem. On ¹⁹² the other hand, in ∞D the asymmetry grows and one channel totally decouples from the spins, with gapped 193 spinons and holons for both channels. The exponents 194 ¹⁹⁵ are related to Δ_{χ} ; varying ΔJ in Eq. (4) we find

$$\frac{\partial v_{\chi,a}^{\rm FS}}{\partial \Delta J} = \frac{-1}{\mathcal{V}} \sum_{k} G_{\chi}^{\prime\prime}(k,0+i\eta) = -G_{\chi}^{\prime\prime}(x=0,0+i\eta).$$
(5)

¹⁹⁶ Assuming $|G_{\chi}(\vec{r})| \sim |\vec{r}|^{-2\Delta_{\chi}}$, the holon FS is unsta-¹⁹⁷ ble against symmetry breaking when $G_{\chi}''(k_F, 0 + i\eta) \sim$ $_{^{198}}T^{2\Delta_{\chi}-d-1}$ diverges. This $2\Delta_{\chi} < d+1$ regime coincides ¹⁹⁹ with when the symmetry breaking term ΔJ is relevant, 200 in the renormalization group (RG) sense. On the other hand instability of the entire holon FS requires the divergence of $G_{\chi}''(x=0,0+i\eta) \sim T^{2\Delta_{\chi}-1}$, i.e. $2\Delta_{\chi} < 1$ which 201 202 203 is a more stringent condition and agrees with Fig. 4(a), confirming $\Delta_{\chi} = 1/2$ as the marginal dimension. 204

Fig. 4(a) shows that the symmetry breaking $\Delta \mathcal{L}$ is $_{206}$ relevant in ∞ D, but is irrelevant in 1D. To establish this 207 from the microscopic model, one has to access the in-208 frared (IR) fixed point. From the numerics we see that 209 the system flows to a critical IR fixed point, in which ²¹⁰ spinons and holons are critical in addition to electrons. ²¹¹ For an impurity $G_b \sim |\tau|^{-2\Delta_b}$ and $G_{\chi}(\tau) \sim |\tau|^{-2\Delta_{\chi}}$ are ²¹² reasonable at T = 0. The exponents are known [21, 40]:

$$0, \infty \mathbf{D}: \qquad \Delta_{\chi} = \frac{\gamma}{2(1+\gamma)}, \qquad \Delta_b = \frac{1}{2(1+\gamma)}, \quad (6)$$

What is the effect of channel symmetry breaking 220 flows to strong coupling at $|k| < k_F$, to weak coupling at

FIG. 4. (a) The evolution of FS in presence of small channel symmetry breaking in 1D and ∞ D with temperature. (b) The show the analytical values given by Eqs. (9).

We can obtain a low-energy description by expanding 224 fields near zero energy, e.g. $\psi(x) \sim e^{ik_F x} \psi_R + e^{-ik_F x} \psi_L$ 225 for electrons and holons. In 1+1 dimensions, the confor-226 227 mal invariance of the fixed point dictates the following ²²⁸ form for the T = 0 Green's functions $G(x, \tau) = G(z, \overline{z})$:

$$G_b = -\bar{\rho} \left(\frac{\mathbf{a}^2}{\bar{z}z}\right)^{\Delta_b}, \quad G_{\chi R/L} = \frac{-1}{2\pi} \left(\frac{\mathbf{a}}{\bar{z}}\right)^{\Delta_\chi \pm \frac{1}{2}} \left(\frac{\mathbf{a}}{z}\right)^{\Delta_\chi \pm \frac{1}{2}} (7)$$

²³⁰ tained from $G_{\chi R/L}$ by $\Delta_{\chi} \rightarrow 1/2$. These Green's func-²⁷⁹ Luttinger liquids for each of the c, b, χ fields with fine- $_{231}$ tions can be conformally mapped to finite-T via $z \rightarrow _{280}$ tuned Luttinger parameters that give the correct expo- $_{232}$ $(\beta/\pi)\sin(\pi z/\beta)$ replacement. Furthermore, in terms of $_{281}$ nents. Such a spinon-holon theory will have a Virasoro ²³³ $q = k + i\omega/v$, they have the Fourier transforms:

$$G_{b} = -2\pi a^{2} \bar{\rho} v_{b}^{-1} (a^{2} \bar{q} q)^{\Delta_{b}-1} \zeta_{0}(\Delta_{b})$$
(8)
$$G_{\chi R/L} = \mp a^{2} v_{\chi}^{-1} (a \bar{q})^{\Delta_{\chi}-1\mp 1/2} (a q)^{\Delta_{\chi}-1\pm 1/2} \zeta_{1}(\Delta_{\chi})$$

²³⁴ where $\zeta_n(\Delta) \equiv 2^{1-2\Delta} \Gamma(1-\Delta+n/2)/\Gamma(n/2+\Delta)$. From $_{235}$ matching the powers of frequency in Eqs. (3,7,8), we con-236 clude that $\Delta_b + \Delta_{\chi} = 3/2$ in order to satisfy the self-237 consistency. Moreover, from the matching of the ampli-²³⁸ tude of the Green's functions we find [21]

1D:
$$\Delta_{\chi} = \frac{1+6\gamma}{2(1+2\gamma)}, \qquad \Delta_b = \frac{2}{2(1+2\gamma)}.$$
 (9)

²⁴⁰ breaking perturbations are irrelevant in 1D. These are in ²⁹⁶ an RG framework with explicit examples on 0D, 1D and $_{241}$ excellent agreement with the exponents extracted from $_{297} \infty D$. The scaling analysis enables an analytical solution $_{242} \omega/T$ scaling [Fig. 4(b)] and we have established a semi- $_{298}$ to the critical exponents and susceptibilities which are $_{243}$ analytical framework to interpolate between 1D and ∞ D. $_{299}$ in good quantitative agreement with numerics, and is 244 245 ²⁴⁶ in Fig. 4 are the central results of this paper. In the ³⁰² ferromagnetic correlation is left to a future work [47]. 247 following we discuss some of the implications of these re-248 sults for physical observables that are independent of our 304 discussions with P. Coleman and N. Andrei. This work fractionalized description, leaving the details to [21]. 249

250 ²⁵¹ contraction are related to order parameter fractionaliza-³⁰⁷ for this research were performed on the Advanced Re-²⁵² tion [12, 44]. In the long time/distance limit, correlation ³⁰⁸ search Computing center at the University of Cincinnati, $_{253}$ functions of $b^{\dagger}_{\alpha}c_{a\alpha}$ and that of χ_a are given by Σ_{χ} and $_{309}$ and the Penn State University's Institute for Computa-

 $_{254}$ G_{χ} , respectively and thus, have exponents that add up to 255 zero. On the other hand, correlators of gauge-invariant ²⁵⁶ operators $\mathcal{X}_{ab} \equiv \bar{\chi}_a \chi_b$ and $\mathcal{O}_{ab} \equiv b^{\dagger}_{\alpha} b_{\beta} c^{\dagger}_{b\beta} c_{a\alpha}$ are exactly ²⁵⁷ equal since both can be constructed by taking deriva-²⁵⁸ tives of free energy w.r.t. ΔJ^{ab} before/after Hubbard-²⁵⁹ Stratonovitch transformation. A diagrammatic proof of ²⁶⁰ this equivalence is provided in [21]. Scaling analysis gives ²⁶¹ $\chi_{\rm ch}(x=0) \sim T^{4\Delta_{\chi}-1}$ and $\chi^{\rm 1D}_{\rm ch}(q=0) \sim T^{4\Delta_{\chi}-2}$ up to a 262 constant shift coming from the regular part of free energy. Another non-trivial feature of 2CK impurity fixed ²⁶⁴ point is its magnetic instability [2] whose large-N incar-²⁶⁵ nation is $\Delta_b < 1/2$ for the impurity (or ∞ D) in Eq. (6). scaling exponents $\Delta_{b/\chi}$ in 1D from the numerics. The lines ²⁶⁶ From Eq. (9), we see that this also holds for 1D 2CKL for $_{267} \gamma > 1/2$. This is reflected in the divergence of the uni-²⁶⁸ form $\chi_m(q=0)$ static magnetic susceptibilities as a func-²⁶⁹ tion of *T*. Using scaling analysis $\chi_m^{1D}(q=0) \sim T^{4\Delta_b-2}$ ²⁷⁰ and $\chi_m(x=0) \sim T^{4\Delta_b-1}$ up to a constant shift, in good $_{\rm 271}$ agreement with numerics [21]. Note that this critical spin ²⁷² behavior is different from the gapped spin sector observed ²⁷³ in [22, 29], but is qualitatively consistent with [28].

274 Lastly, the fact that the fixed point discussed above 275 is IR stable follows from the fact that the interaction 276 is exactly marginal due to $\Delta_b + \Delta_{\chi} = 3/2$ and that 277 vertex corrections remain O(1/N). The 1+1D correla-²²⁹ where $z = v\tau + ix$ and $\bar{\rho} = 2s/a$. The $G_{cR/L}$ is ob-²⁷⁸ tors (7) can be obtained from three sets of decoupled 282 central charge $c_0/N = 1 + \gamma$. On the other hand the 283 coset theory of [21, 28, 45] predicts $c_{AO}/N = \gamma/(1 + \gamma)$. 284 We have used $T \rightarrow 0$ heat-capacity and the excitation $_{285}$ velocities v to compute the central charge according to 286 $C/T = (\pi k_B^2/6v)c$ as a function of γ and found $c = c_0$ 287 [21]. Note that there is no contradiction with c-theorem 288 since the UV theory is not Lorentz invariant due to fer-²⁸⁹ romagnetism. The discrepancy with c_{AO} is likely rooted ²⁹⁰ in inability of Schwinger bosons to capture gapless spin-²⁹¹ liquids [46].

In summary, we have shown that dynamical large-292 ²⁹³ N approach can capture symmetry breaking in multi-²⁹⁴ channel Kondo impurities and lattices in presence of both ²³⁹ Note that $\Delta_{\chi} > 1/2$, ensuring that channel symmetry ²⁹⁵ emergent and induced ferromagnetic correlations within The emergent dispersion in Fig. 2, the scaling dimen- 300 applicable to higher dimensional CFTs. A determinasions in Eq. (9) and their relation to symmetry breaking 301 tion of upper/lower critical dimensions and effect of anti-

Acknowledgment—The authors acknowledge fruitful $_{\rm 305}$ was performed in part at Aspen Center for Physics, which The fractionalization $S_{\alpha\beta} \sim b^{\dagger}_{\alpha}b_{\beta}$ or $b^{\dagger}_{\alpha}c_{a\alpha} \sim \chi_{a}$ ³⁰⁶ is supported by NSF grant PHY-1607611. Computations ³¹⁰ tional and Data Sciences' Roar supercomputer.

- 311 [1] N. Andrei and C. Destri, Phys. Rev. Lett. 52, 364 (1984).
- 312 [2] I. Affleck, A. W. W. Ludwig, H.-B. Pang, and D. L. Cox,
- ³¹³ Phys. Rev. B 45, 7918 (1992).
 ³¹⁴ [3] V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812
- 314 [3] V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812
 (1992).
 316 [4] I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297
- [4] I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297
 (1993).
- ³¹⁸ [5] A. C. Hewson, *The Kondo Problem to Heavy Fermions*,
 ³¹⁹ Cambridge Studies in Magnetism (Cambridge University
 ³²⁰ Press, 1993).
- [6] Q. Si, J. H. Pixley, E. Nica, S. J. Yamamoto, P. Goswami, ³⁷⁰
 R. Yu, and S. Kirchner, J. Phys. Soc. Jpn. 83, 061005 ³⁷¹
 (2014). ³⁷²
- ³²⁴ [7] P. Coleman, *Introduction to Many-Body Physics* (Cam-³⁷³ bridge University Press, 2015). ³⁷⁴
- [8] D. L. Cox and M. Jarrell, J. Phys. Condens. Matter 8, 9825 (1996).
- ³²⁸ [9] M. Oshikawa, Phys. Rev. Lett. **84**, 3370 (2000).
- ³²⁹ [10] M. Jarrell, H. Pang, D. L. Cox, and K. H. Luk, Phys.
 ³³⁰ Rev. Lett. **77**, 1612 (1996).
- ³³¹ [11] M. Jarrell, H. B. Pang, and D. L. Cox, Phys. Rev. Lett.
 ³³² 78, 1996 (1997).
- 333 [12] Y. Komijani, A. Toth, P. Chandra, and P. Coleman, arXiv:1811.11115 (2018).
- ³³⁵ [13] T. Onimaru and H. Kusunose, J. Phys. Soc. Jpn. 85, 082002 (2019).
- 337 [14] A. S. Patri and Y. B. Kim, Phys. Rev. X 10, 041021 338 (2020).
- ³³⁹ [15] H. Hu, L. Chen, C. Setty, S. E. Grefe, A. Prokofiev,
 ³⁴⁰ S. Kirchner, S. Paschen, J. Cano, and Q. Si,
 ³⁴¹ arXiv:2110.06182 (2021).
- ³⁴² [16] M. Kornjaca, V. L. Quito, and F. Rebecca, ³⁴³ arXiv:2104.11173 (2021).
- ³⁴⁴ [17] P. L. S. Lopes, I. Affleck, and E. Sela, Phys. Rev. B 101, 085141 (2020).
- ³⁴⁶ [18] Y. Komijani, Phys. Rev. B **101**, 235131 (2020).
- ³⁴⁷ [19] S. Hoshino, J. Otsuki, and Y. Kuramoto, Phys. Rev.
 ³⁴⁸ Lett. 107, 247202 (2011).
- A naïve strong coupling limit is not a spin-singlet, but
 the Nozières doublet. See the supplementary material for
- a deformation that changes this.
- ³⁵² [21] See supplementary materials.
- 353 [22] T. Schauerte, D. L. Cox, R. M. Noack, P. G. J. van Don-
- ³⁵⁴ gen, and C. D. Batista, Phys. Rev. Lett. **94**, 147201

355 (2005).

- ³⁵⁶ [23] A. Wugalter, Y. Komijani, and P. Coleman, Phys. Rev.
 ³⁵⁷ B 101, 075133 (2020).
- ³⁵⁸ [24] S. Hoshino and Y. Kuramoto, J. Phys. Conf. Ser. 592, ³⁵⁹ 012098 (2015).
- ³⁶⁰ [25] J. S. Van Dyke, G. Zhang, and R. Flint, Phys. Rev. B
 ³⁶¹ 100, 205122 (2019).
- ³⁶² [26] G. Zhang, J. S. Van Dyke, and R. Flint, Phys. Rev. B
 ³⁶³ 98, 235143 (2018).
- 364 [27] K. Inui and Y. Motome, Phys. Rev. B 102, 155126 (2020).
- ³⁶⁶ [28] N. Andrei and E. Orignac, Phys. Rev. B 62, R3596
 ³⁶⁷ (2000).
- 368 [29] V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 71, 369 3701 (1993).
- J. Rech, P. Coleman, G. Zarand, and O. Parcollet, Phys.
 Rev. Lett. 96, 016601 (2006).
- 372 [31] Y. Komijani and P. Coleman, Phys. Rev. Lett. 120, 373 157206 (2018).
- 374 [32] Y. Komijani and P. Coleman, Phys. Rev. Lett. 122, 375 217001 (2019).
- J. Wang, Y.-Y. Chang, C.-Y. Mou, S. Kirchner, and
 C.-H. Chung, Phys. Rev. B **102**, 115133 (2020).
- ³⁷⁸ [34] B. Shen, Y. Zhang, Y. Komijani, M. Nicklas, R. Borth,
 ³⁷⁹ A. Wang, Y. Chen, Z. Nie, R. Li, X. Lu, *et al.*, Nature
 ³⁸⁰ **579**, 51 (2020).
- ³⁸¹ [35] J. Wang and Y.-f. Yang, Phys. Rev. B 104, 165120
 ³⁸² (2021).
- ³⁸³ [36] V. Drouin-Touchette, E. J. König, Y. Komijani, and
 ³⁸⁴ P. Coleman, Phys. Rev. B 103, 205147 (2021).
- ³⁸⁵ [37] R. Han, D. Hu, J. Wang, and Y.-f. Yang, Phys. Rev. B
 ³⁸⁶ 104, 245132 (2021).
- 387 [38] We use 0D to refer to the impurity problem, although aconduction band exists.
- 389 [39] P. Zinn-Justin and N. Andrei, Nucl. Phys. B 528, 648
 (1998).
- ³⁹¹ [40] O. Parcollet and A. Georges, Phys. Rev. Lett. **79**, 4665
 ³⁹² (1997).
- ³⁹³ [41] N. Read, Journal of Physics C: Solid State Physics 18,
 ³⁹⁴ 2651 (1985).
- 395 [42] P. Coleman, I. Paul, and J. Rech, Phys. Rev. B 72, 396 094430 (2005).
- ³⁹⁷ [43] This is not the case for the spinon's π -mode, $\varepsilon_{\text{eff}}(\pm \pi/a) \neq 0$, but this mode has negligible spectral weight.
- ³⁹⁹ [44] A. M. Tsvelik and P. Coleman, arXiv:2112.07781 (2021).
- 400 [45] P. Azaria, P. Lecheminant, and A. A. Nersesyan, Phys 401 ical Review B 58, R8881 (1998).
- 402 [46] D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 403 (1988).
- 404 [47] Y. Ge and Y. Komijani, in preparation.