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Ab initio calculations of the phonon-induced band structure renormalization are currently based
on the perturbative Allen-Heine theory and its many-body generalizations. These approaches are
unsuitable to describe materials where electrons form localized polarons. Here, we develop a self-
consistent, many-body Green’s function theory of band structure renormalization that incorporates
localization and self-trapping. We show that the present approach reduces to the Allen-Heine theory
in the weak-coupling limit, and to total energy calculations of self-trapped polarons in the strong-
coupling limit. To demonstrate this methodology, we reproduce the path-integral results of Feynman
and diagrammatic Monte Carlo calculations for the Fröhlich model at all couplings, and we calculate
the zero point renormalization of the band gap of an ionic insulator including polaronic effects.

The past decade has seen much progress in first-
principles calculations of phonon-induced renormaliza-
tion of band structures, including temperature depen-
dence and quantum zero-point effects [1, 2]. For exam-
ple, since the initial ab initio implementations [3, 4] of
the Allen and Heine (AH) theory [5], several improve-
ments have been made including calculations of com-
plete band structures of semiconductors [6–9] and non-
adiabatic effects [10, 11]. On a related front, ab initio
many-body Green’s function approaches have been used
to calculate [12–22] band structure kinks and satellites
observed in angle resolved photoelectron spectra [23–29],
cf. Fig. 1(a),(b). One important limitation of these meth-
ods is that they do not consider the possibility of electron
localization into a polaron.

A polaron forms when an excess electron induces a
distortion of the crystal lattice, which in turn acts as a
potential well and promotes electron localization [30–32].
Calculations of polarons are usually performed by adding
or removing an electron from a large supercell using
density-functional theory (DFT) [33–39], cf. Fig. 1(d),(e).
To overcome the DFT self-interaction error and the com-
putational complexity of large supercell calculations, this
direct approach has recently been reformulated as a non-
linear eigenvalue problem within density-functional per-
turbation theory (DFPT) [40, 41]. These “polaronic”
methods carry two limitations: ions are described us-
ing the adiabatic Born-Oppenheimer approximation, and
quantum nuclear effects are neglected.

The relation between AH-based approaches, which in-
clude many-body effects but do not consider electron lo-
calization, and polaronic approaches, which capture lo-
calization effects but do not include non-adiabaticity and
quantum fluctuations, remains unclear. In particular,
it is unclear whether these methods describe the same

physics, so that they can be used interchangeably, or else
they capture separate phenomena. Furthermore, it is
unclear whether one approach is to be preferred over an-
other for specific classes of materials.

Here, we address these questions by developing a
self-consistent many-body Green’s function theory of
phonon-induced band structure renormalization which
includes non-adiabatic effects and localization on the
same footing. We show that the present theory reduces
to AH-based approaches for materials that host large po-
larons, and to the ab initio polaron equations of Ref. 41
for materials with small polarons. To illustrate the broad
applicability of this method, we calculate the energy of
the Fröhlich polaron, and we obtain very good agree-
ment with the path integral results of Feynman [42] and
with diagrammatic Monte Carlo calculations [43, 44]. As
a first ab initio calculation using this method, we ob-
tain the phonon-induced band gap renormalization of
LiF, and we show that polaron localization effects dom-
inate over the standard Fan-Migdal and Debye-Waller
self-energies [2].

The effective Hamiltonian describing a coupled
electron-phonon system is given by [2, 45]:

Ĥ =
∑
nk

εnkĉ
†
nkĉnk +

∑
qν

h̄ωqν(â†qν âqν + 1/2)

+N
− 1

2
p

∑
k,q
mnν

gmnν(k,q) ĉ†mk+qĉnk(âqν + â†−qν) , (1)

where εnk represents the single-particle eigenvalue of an
electron in the band n with crystal momentum k, ωqν is
the frequency of a phonon in the branch ν with crystal
momentum q, and ĉ†nk/ĉnk and â†qν/âqν are the asso-
ciated fermionic and bosonic creation/annihilation op-
erators, respectively; gmnν(k,q) denotes the electron-
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FIG. 1. (a) Schematic illustration of the ground state of the N -electron system, with atoms vibrating around the equilibrium
sites of the periodic crystal. (b) Schematic of phonon-induced band structure renormalization, as obtained by using the Fan-
Migdal and Debye-Waller self-energies. The dashed line is the non-interacting band, the brown lines are the renormalized band
and its phonon sidebands. (c) Self-consistent set of equations for calculating electron-phonon renormalization of band structures
including polaron localization effects, Eqs. (1)-(4). (d) Schematic illustration of the ground state of the N+1-electron system,
where the excess electron forms a localized polaron. (e) In the scenario illustrated in (d), the energy of the conduction band
bottom is lowered by the formation energy of the polaron.

phonon coupling matrix element between the electrons
nk and mk + q via the phonon qν, and Np is the number
of unit cells in the periodic Born-von Kármán supercell.
The limitations of the effective Hamiltonian in Eq. (1)
are discussed in the companion manuscript [45]

To investigate the ground state of the Hamiltonian in
Eq. (1) in the presence of an excess electron or hole, we
focus on the electron Green’s function. We consider a
periodic crystal with N electrons, and we define the elec-
tron Green’s function as the expectation value of the field
operators over the ground state of the N+1-particle sys-
tem: G12 = −(i/h̄)〈N+1|T̂ ĉ1 ĉ†2|N+1〉. In this defini-
tion we use the compact notation 1 = {n1,k1, t1} and
2 = {n2,k2, t2}, t is the time, and T̂ is the time-ordering
operator. Our present definition of Green’s function dif-
fers from the conventional definition [46] where the ex-
pectation value is over the the ground state |N〉; this
choice is essential to capture localization effects. Using
Schwinger’s functional derivative technique [2, 46, 47], in
the companion manuscript [45] we derive the following
Dyson equation:

G12 = G0
12 +G0

13

(
ΣFM

34 + ΣP
34

)
G42, (2)

where summation over repeated numbered indices is im-
plied throughout the manuscript. In this expression, G0

is the Green’s function in the absence of electron-phonon
interactions, ΣFM is the Fan-Migdal self-energy [2, 48–
50], and ΣP is a new contribution which we call “pola-
ronic” self-energy.

The Fan-Migdal self-energy is given by:

ΣFM
12 = i g314G3(1),5 Γ526D6,4(1) , (3)

where the electron-phonon matrix elements is written

compactly as g123 = N
−1/2
p gn2n1ν3(k1,q3) δk2,k1+q3

, the
notation G3(1),5 stands for Gn3k3,n5k5

(t1, t5), and there
is no summation over bracketed indices. In Eq. (3), D

is the phonon Green’s function and Γ is the electron-
phonon vertex; explicit expressions for these quantities
are provided in Ref. 45.

The polaronic self-energy ΣP appearing in Eq. (2) is
given by:

ΣP
12 = δ(t1−t2) g213

〈ẑ3〉
l3

. (4)

In this equation, l3 = lqν is a short for the zero-point
displacement amplitude, and the term 〈ẑ3〉 = 〈ẑqν〉 rep-
resents the expectation value of the normal vibrational
coordinates ẑqν over the ground state of theN+1-particle
system, 〈N+1|ẑqν |N+1〉 , which is directly related to the
atomic displacements in the polaronic configuration [45].
This expectation value depends in turn on the many-
body electron density via the equal-time Green’s func-
tion, 〈ẑ3〉 = −il3(2/ω3)g∗453G5(1),4(1+) [45]. ΣP is nonzero
whenever the atoms of the N+1-electron ground state are
displaced from the equilibrium sites of the N -electron
ground state, hence it describes polaron localization ef-
fects.

Equations (1)-(4) define a self-consistent formulation
of the electron-phonon renormalization of energy bands
which includes the effects of polaron formation. The rela-
tion between these equations is schematically illustrated
in Fig. 1(c).

Since our formalism starts from Eq. (1), which does
not include terms of second order in the atomic dis-
placements, our self-energy Σ does not contain the
standard Debye-Waller contribution. This term must
be added separately, as described in the companion
manuscript [45].

The above formalism can be turned into a practical
computational method by expressing the Fourier trans-
form of the Green’s function into frequency domain ω
via Dyson orbitals fs(r) using the Lehmann representa-
tion, G(ω) =

∑
s fsf

∗
s /[h̄ω − εs − iηsgn(µ − εs)], where
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FIG. 2. (a) Ground-state energy of the Fröhlich polaron,
∆E/h̄ω, as a function of the coupling strength α: present cal-
culation (blue line), Feynman’s path integral results [42] (gray
line), and diagrammatic Monte Carlo (DMC) data taken from
Ref. [51] (black circles). Red lines indicate the asymptotic
expansions at weak and strong coupling, respectively. The
quasiparticle amplitudes |Ak|2 in these limits are shown in the
inset, superimposed to the free electron band. (b) Breakdown
of the ground-state energy of the Fröhlich polaron into its self-
energy contributions.

µ is the chemical potential, and η → 0+. The Dyson
orbitals of the occupied manifold are given by fs(r) =

〈N, s | ψ̂(r) |N+1 〉 [45, 46], where |N, s〉 denotes the s-th

excited state of the N -electron system, ψ̂(r) is the elec-
tron field operator, and εs = EN+1 − EN,s. In Ref. 45
we show that we can identify the Dyson orbital for the
lowest-energy excitation of the N+1-particle system with
the electronic component of the polaron wavefunction.
Following the strategy of Ref. 41, we expand the orbitals
in the basis of single-particle Bloch wavefunctions ψnk,

fs = N
−1/2
p

∑
nkA

s
nk ψnk. This representation allows us

to recast Eqs. (2)-(4) into a nonlinear eigenvalue problem
for the quasiparticle amplitudes Asnk and the electron ad-
dition/removal energies εs:[

ε1δ12 + ΣFM
12 (εs/h̄) + ΣP

12

]
As2 = εsA

s
1 , (5)

where

ΣFM
12 (ω)=±g∗143 g253

∑
s

As4A
s,∗
5

Np

θ [±(εs − µ)]

±h̄ω ∓ εs−h̄ω3+iη
,

(6)

ΣP
12 = −2 g213 g

∗
543

h̄ω3

εs<µ∑
s

As4A
s,∗
5

Np
. (7)

In Eq. (6), there is a sum over the ± terms and θ is
the Heaviside step function. The same expressions are
given without using compact notation in Eqs. (41) and
(45) of the companion manuscript [45]. To reach Eq. (6)
we approximated the vertex Γ by the standard electron-
phonon matrix element g, and we replaced the interacting
phonon Green’s function D by its adiabatic counterpart,
as obtained e.g. from DFPT calculations.

Equations (5)-(6) are still too complex for ab initio cal-
culations. To proceed further, we assume that the added
electron in the (N+1)-electron system has a negligible
effect on the valence manifold of the N -electron system.
The validity of this assumption is assessed in Ref. [45].
With this choice, the N occupied Dyson orbitals can be
replaced by Bloch wave functions, and their contribu-
tion to ΣP vanishes, while the Dyson orbital of the ex-
cess electron is to be determined by solving the equations
self-consistently. After this simplification, and replacing
the Green’s function by its non-interacting counterpart
in Eq. (6), Eqs. (6) and (7) become:

ΣFM
nk,n′k′(ω) = ±δnk,n

′k′

Np

∑
mqν

|gmnν(k,q)|2

× θ [±(εmk+q − µ)]

±h̄ω ∓ εmk+q − h̄ωqν + iη
, (8)

ΣP
nk,n′k′ = − 2

N2
p

∑
mm′νk′′

Am′k′′+k−k′ A∗mk′′

× g∗m′mν(k′′,k− k′) gnn′ν(k′,k− k′)

h̄ωk−k′ν
. (9)

These equations can be solved by using electron band
structures, phonon dispersions, and electron-phonon ma-
trix elements from DFT and DFPT, as we show be-
low. Once obtained the Dyson orbital and quasiparticle
eigenvalue by solving Eqs. (5), (8)-(9), we determine the
ground-state energy of the (N+1)-electron system using a
generalized Galitskii-Migdal formula [52] that we derived
in Ref. 45 for the coupled electron-phonon Hamiltonian
in Eq. (1).

The Fan-Migdal self-energy in Eq. (8) is diagonal in
the electron wavevector, therefore this term does not
contribute to electron localization. Thus, the shape of
the polaron quasiparticle is determined by the polaronic
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FIG. 3. (a), (b) Conduction and valence bands of LiF, with energies referred to the conduction band minimum (CBM) and to
the valence band maximum (VBM), respectively. The yellow disks indicate the square moduli of the quasiparticle amplitudes
of the Dyson orbitals, as obtained by solving Eqs. (5), (8), and (9). In each panel we indicate the quasiparticle renormalization
including polaronic effects, ∆E. (c), (d) Expectation values of ΣFM +ΣDW along the bands. (e), (g) Calculated renormalization
of the conduction and valence band extrema, respectively, using two methods: the standard perturbative approach which does
not include polaron localization (gray), and the present approach including localization effects (blue). (f), (h) Calculated
wavefunctions of the electron and hole polarons in LiF, respectively.

term, and in the lowest-order approximation we can eval-
uate Eqs. (8)-(9) using a simplified procedure where we
first solve for the polaron wavefunction with Eq. (9),
and then we include ΣFM using perturbation theory. In
Ref. 45 we show that this procedure leads to the following
expression for the polaronic total energy renormalization
of the system with an excess electron:

∆E =N−1p
∑
nk

|Ank|2
[
ε0nk − ε0CBM+ ΣFM

nk,nk(ω=ε0CBM/h̄)
]

+
1

2
N−1p

∑
nk,n′k′

A∗nk ΣP
nk,n′k′ An′k′ , (10)

where ε0CBM represents the energy of the conduction band
minimum of the periodic, undistorted lattice. This ex-
pression has an appealing physical interpretation. The
first term on the right-hand side is the weighted average
of the conduction band energy and the Fan-Migdal self-
energy, taken over the polaron wavefunction coefficients
in reciprocal space. The last term is the stabilization
energy of the electron wavefunction resulting from the
lattice distortion in the polaronic ground state. There-
fore the total energy renormalization is a combination of
both AH-type and polaronic contributions, with their rel-
ative importance being dictated by the spatial extent of
the wavefunction. To illustrate this point, we apply the
present methodology to the Fröhlich model [31, 53–55].

The Fröhlich model is a standard benchmark for test-
ing theories of coupled electrons and phonons [31]. It
describes a free electron coupled to a dispersionless lon-

gitudinal optical phonon, with the coupling strength con-
trolled by a dimensionless parameter, the Fröhlich cou-
pling constant α. AH-based approaches are successful
in describing the weak-coupling regime (α � 1) of this
model, while polaronic approaches such as the Landau-
Pekar theory [56, 57] are successful at strong coupling
(α � 10) [58], cf. Fig. 2(a). State-of-the-art numeri-
cal results for the ground-state energy of the Fröhlich
polaron come from diagrammatic Monte Carlo methods
[43, 44, 51]. As of today, the only theory that matches di-
agrammatic Monte Carlo results at all coupling strengths
is the variational path integral approach by Feynman
[42, 59].

Figure 2(a) shows the energy of the Fröhlich polaron as
a function of α, as calculated from Eq. (10). The agree-
ment between our present approach and both Feynman’s
solution and diagrammatic Monte Carlo data is very
good at all couplings. In particular, our method correctly
captures the expected linear dependence of the energy on
α at weak coupling, ∆E = −αh̄ω, and its quadratic de-
pendence at strong coupling, ∆E = −α2h̄ω/3π [31], cf.
Fig. 2(a). These limits can be rationalized by examin-
ing the relative contributions to the total energy shown
in Fig. 2(b). At small α, the quasiparticle amplitudes
concentrate near the conduction band bottom (CBM),
thus leading to large polarons in real space [cf. inset
of Fig. 2(a)]. In this limit, the expectation value of ΣP

tends to vanish, and the Fan-Migdal self-energy tends to
ΣFM = −αh̄ω. Conversely, at large α the quasiparti-
cle amplitudes spread across the entire reciprocal space,
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leading to electron localization into a small polaron. In
this limit, ΣP = −α2h̄ω/3π dominates.

To illustrate the use of the present method for real
materials, we calculate the zero-point renormalization of
rocksalt LiF, a prototypical ionic insulator. This sys-
tem hosts both large electron polarons and small hole
polarons [41], therefore it is particularly suited to ana-
lyze the relative magnitude of the various self-energies
in the valence and conduction bands. All calculations
are based on Quantum ESPRESSO [60], wannier90
[61], and EPW [62], and the computational setup is de-
scribed in the companion manuscript [45]. We initialize
the self-consistent solution of the polaron equations with
a Gaussian wavepacket. This step is needed to break
translational symmetry, as discussed in Ref. [45]. We
verified that different initializations lead to equivalent
self-consistent polaron solutions in all cases [45].

Figure 3 summarizes our results. In panels (a) and
(b) we show the renormalization of the conduction band
minimum and of the valence band maximum with re-
spect to the DFT band edges, respectively. The quasi-
particle amplitudes are represented by the solid yellow
circles superimposed to the bands, with the radius be-
ing proportional to the square modulus |Ank|2. In pan-
els (c) and (d) we show how the AH band shift varies
along the conduction and valence bands, respectively. In
these calculations we evaluate the correction by including
both the Fan-Migdal and the Debye-Waller self-energies,
ΣFM + ΣDW [45], to be consistent with previous work
[18]. In both cases we see that this correction is largest
at the zone center, and decreases towards the edges of the
Brillouin zone. The localization of the polaron wavefunc-
tion softens this correction by averaging it over a range
of wavevectors, according to the quasiparticle amplitudes
shown in (a) and (b).

In panels (e) and (g) of Fig. 3 we compare standard cal-
culations of band renormalization using the Fan-Migdal
and Debye-Waller self-energies (FM and DW) with our
present approach. In the conduction band, the FM and
DW corrections (0.43 eV) are seen to yield a similar re-
sult as the total polaronic renormalization (0.60 eV). This
finding is consistent with the observation that an excess
electron in LiF forms a large electron polaron extended
over more than ten unit cells, as shown in panel (d). In
this scenario, the electron wavefunction is so delocalized
that AH-based approaches provide a good description of
the energy renormalization. Conversely, in the valence
bands the polaronic renormalization (2.20 eV) is much
larger than the FM and DW corrections (0.80 eV). This
finding is consistent with the fact that an excess hole in
LiF forms a small polaron, as shown in panel (h).

By combining the above zero-point corrections for the
valence and conduction band edges, we obtain a quan-
tum zero-point quasiparticle band gap renormalization
of −2.8 eV. This value is considerably larger than what
one obtains by using the Fan-Migdal and Debye-Waller

self-energies at the band edges, −1.2 eV. This difference
suggests that AH-based approaches may not be as reli-
able as previously thought in calculations of band gap
renormalization, because they do not take into account
localization effects. We emphasize that this conclusion
holds for systems that host spatially-localized polaronic
states, such as e.g. ionic compounds and oxides. Stan-
dard semiconductors, such as for example silicon and di-
amond [3, 4, 6, 7, 11], do not host localized polarons,
therefore in such cases AH-based approaches remain the
current state-of-the-art.

In summary, we developed a self-consistent many-body
theory of electron-phonon couplings that unifies calcu-
lations of phonon-induced energy band renormalization
and polaron localization. We found that the lowest-
order approximation to our theory matches Feynman’s
results for the Fröhlich polaron. This methodology is
amenable to first-principles implementations, as we have
demonstrated for LiF. Future work will need to system-
atically assess polaronic corrections to the band renor-
malization of semiconductors and insulators, investigate
the present formalism beyond the lowest-order approxi-
mation, and extend this work to calculations of complete
band structures, phonons sidebands in ARPES spectra,
finite-temperature effects, and optical band gaps includ-
ing excitonic effects. We hope that this study will stim-
ulate renewed efforts to understand polarons and their
properties in real materials.
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