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Twisted bilayer graphene (TBG) is remarkable for its topological flat bands, which drive strongly-
interacting physics at integer fillings, and its simple theoretical description facilitated by the
Bistritzer-MacDonald Hamiltonian, a continuum model coupling two Dirac fermions. Due to the
large moiré unit cell, TBG offers the unprecedented opportunity to observe reentrant Hofstadter
phases in laboratory-strength magnetic fields near 25T. This Letter is devoted to magic-angle TBG
at 2π flux where the magnetic translation group commutes. We use a newly developed gauge-
invariant formalism to determine the exact single-particle band structure and topology. We find
that the characteristic TBG flat bands reemerge at 2π flux, but, due to the magnetic field break-
ing C2zT , they split and acquire Chern number ±1. We show that reentrant correlated insulating
states appear at 2π flux driven by the Coulomb interaction at integer fillings, and we predict the
characteristic Landau fans from their excitation spectrum.

Introduction. Twisted bilayer graphene (TBG) is the
prototypical moiré material obtained from rotating two
graphene layers by an angle θ. Near the magic-angle
θ = 1.05◦, the two bands near charge neutrality flat-
ten to a few meV, pushing the system into the strong-
coupling regime featuring correlated insulators and su-
perconductors [1–7]. Due to the large moiré unit cell,
magnetic fluxes of 2π are achieved at only 25T. In Hofs-
tadter tight-binding models with the Peierls substitution,
e.g. the square lattice, the 2π-flux and zero-flux models
are equivalent, although the situation is more compli-
cated in TBG [8]. This begs the question: do insulating
and superconducting phases of TBG repeat at 25T?

We study the Bistritzer-MacDonald (BM) Hamiltonian
[9], describing the interlayer moiré-scale coupling of the
graphene Dirac fermions within a single valley. We write
the BM Hamiltonian (neglecting O(θ) terms) as

HBM (r) =

(
−i~vF∇∇∇ · σσσ h.c.∑3
j=1 Tje

2πiqj ·r −i~vF∇∇∇ · σσσ

)
. (1)

Here qj = Cj−13z q1 are the inter-layer momentum hop-

pings, q1 = (0, 4 sin( θ2 )/3ag), and ag = .246nm is the
graphene lattice constant. The BM couplings T1 =
w0σ0 + w1σ1, Tj+1 = exp( 2πi

3 jσ3)T1 exp(− 2πi
3 jσ3) act

on the sublattice indices of the Dirac fermions, and σj
are the Pauli matrices. The lattice potential scale is
w1 = 110meV with w0/w1 = .6 - .8 [10, 11] and the ki-
netic energy scale is 2π~vF |q1| = 190meV. The spectrum
of HBM (r) has been thoroughly investigated [12–17].

The salient feature of the BM model from the Hofs-
tadter perspective is the size of the moiré unit cell. After
a unitary transform by diag(eiπq1·r, e−iπq1·r), HBM (r) is
put into Bloch form and is periodic under translations
by ai, the moiré lattice vectors [18]. Near the magic-
angle, the moiré unit cell area Ω = |a1×a2| is a factor of
θ−2 ∼ 3000 times larger than the graphene unit cell. This

dramatic increase in size brings the Hofstadter regime

φ = eBΩ/~ ∼ 2π (2)

within reach, showcasing physics which is only possible
in strong flux [8, 19–24]. Here e/2π~ is the flux quantum
(henceforth e= ~ = 1) and the magnetic field B is near
25T at φ = 2π and θ = 1.05◦. Although there is not an
exact 2π periodicity in flux, we will show that the flat
bands and correlated insulators are revived at φ = 2π.

A constant magnetic field εij∂iAj = B > 0 (repeated
indices are summed) is incorporated into Eq. (1) via the
canonical substitution −i∇∇∇ → πππ = −i∇∇∇−A(r) yielding

Hφ
BM . Because A(r) breaks translation symmetry, the

spectrum in flux cannot be solved using Bloch’s theorem.
This problem has a long history with many approaches
[25–38], most frequently relying on the Landau gauge.
However, an understanding of TBG in flux requires more
than just the spectrum. To rigorously derive expressions
for the Wilson loop and many-body form factors at 2π
flux, we employ a newly developed gauge-invariant for-
malism [39] built from the magnetic translation group.
We apply the theory here to study the single-particle
and many-body physics of TBG at 2π flux. Accompa-
nying this paper, Ref. [40] experimentally confirms our
prediction of re-entrant correlated insulators at 2π flux.

Magnetic Bloch Theorem. In zero flux, the translation
group of a crystal allows one to construct an orthonormal
basis of momentum eigenstates labeled by k in the Bril-
louin zone (BZ) and the spectrum is given by the Bloch
Hamiltonian at each k. A similar construction can be
followed at 2π flux where the magnetic translation group
commutes and is isomorphic to the zero-flux translation
group. As detailed in Ref. [39], we construct irreps at
φ = 2π, valid in any gauge, in the form

|k, n, α, l〉 =
1√
N (k)

∑
R

e−ik·RTR·b1
a1

TR·b2
a2

|n, α, l〉 (3)
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FIG. 1. TBG in flux. (a) The band structure and density of states at φ = 2π, w0/w1 = 0.8, and θ = 1.05◦ reveal ∼ 1.5meV
flat bands with a 40meV gap. (b) The Hofstadter spectrum shows the flat bands remain gapped at all flux. (c) The Wilson
loop of the two flat bands is trivial due to C2T breaking when particle-hole symmetry is intact. (d) The flat bands at 2π flux.

where R is the moiré Bravais lattice, α = 1, . . . , 4 is
the composite sublattice/layer index, and n is the Lan-

dau level defined by |n, α〉 = a†n√
n!
|0, α〉 , a |0, α〉 = 0

with a, a† the Landau level operators [41]. The states in
Eq. (3) are orthogonal, periodic, and obey Tai |k, n, α〉 =
eik·ai |k, n, α〉 where Tai are the magnetic translation op-
erators at 2π flux. The normalization N (k) can be ex-
pressed in terms of theta functions [41] and is responsible
for encoding the topology of the underlying Landau levels
in momentum space. With the basis states in Eq. (3), we
can diagonalize the Hamiltonian at each k to produce a
band structure. As computed in Fig. 1a, the famous flat
bands of magic-angle TBG reappear at 2π flux. We use
the open momentum space technique [38] to obtain the
Hofstadter spectrum (Fig. 1b) which shows the evolution
of the higher energy passive bands. Despite splitting into
Hofstadter bands at rational flux, the density of states re-
mains strongly confined all the way up to 2π flux where
full density Bloch-like flat bands reemerge.

Topology of the Flat bands. Similar to the zero flux
TBG flat bands, the reentrant flat bands at 2π flux have
a very small bandwidth of ∼ 1 meV. However, their
topology is quite different due to the breaking of crys-
talline symmetries by magnetic field. Let us review the
zero flux model. Ref. [12] showed that the space group
p6′2′2 of the BM Hamiltonian (Eq. (1)) was generated
by C3z, C2x, and C2zT and also featured an approximate
unitary particle-hole operator P . Notably, C2zT alone is
sufficient to protect the gapless Dirac points and fragile
topology of the flat bands [12]. Because a perpendicular
magnetic field is reversed by time-reversal and C2x (while
it is invariant under in-plane rotations), C2x and C2zT
are broken for all nonzero flux [8]. Thus, the space group

of Hφ
BM is reduced to p31m′ which is generated by C3z

and MT ≡ C2xC2zT . P also remains a symmetry.

Without C2zT , the system changes substantially. The
most direct way to assess the topology at 2π flux is to
calculate the non-Abelian Wilson loop. To do so, we need
an expression for the Berry connection AMN (k) where
M,N index the occupied bands. At 2π flux, the Berry

connection Ai = bi · A contains new contributions [39]:

AMN
i (k) = [U†(k)(i∂ki − εijZ̃j)U(k)]MN

− δMN εij∂kj log
√
N (k)

(4)

where U(k) is a matrix whose columns are the flat band
eigenvectors. The Abelian term in the second line of
Eq. (4) is an exact expression for the Berry connection of
a Landau level and accounts for the Chern number of the
basis states [39]. The non-Abelian term Z̃j acts on the
Landau level indices [41]. We numerically calculate the
Wilson loop [42] over the flat bands in Fig. 1(c) which
shows no winding (see [41] for the Wilson loops of the
dispersive bands). Hence the fragile topology of the flat
bands is trivialized by flux. This is possible without a gap
closing because the fragile topology of TBG is reliant on
C2zT [12, 15, 43–45], which is broken by flux. The total
Chern number of the flat bands is zero, so they cannot
be modeled as Landau levels despite the strong flux.

To gain a deeper understanding of the topology at 2π
flux, we study the band representation B with topological
quantum chemistry [46–48]. First, Fig. 1b demonstrates
that the flat bands remain gapped from all other bands
in flux (despite the fragile topology of TBG [8]). Thus B
can be obtained by reducing the band representation of
TBG in zero flux derived in Ref. [12] to p31m′. We find

B = 2Γ1 +K2 +K3 +K ′2 +K ′3 = A2b ↑ p31m′ (5)

which is an elementary band representation and is not
topological. The irreps are defined by

3m′ 1 C3z

Γ1 1 1
,

3 1 C3z

K2 1 e
2πi
3

K3 1 e−
2πi
3

,

3 1 C3z

K ′3 1 e
2πi
3

K ′2 1 e−
2πi
3

(6)

and A2b denotes two irreps of s orbitals at the corners
of the moiré unit cell, matching the charge centers at
zero flux [10, 12, 49]. Consulting the Bilbao Crystallo-
graphic Server, we observe that Eq. (5) is decomposable
in momentum space [50–52]. Hence the reduced symme-
try group in flux permits the flat bands to be split into

https://www.cryst.ehu.es/cgi-bin/cryst/programs/mbandrep.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/mbandrep.pl
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disconnected Chern bands given by

B = B+ + B− = (Γ1+K2+K ′3) + (Γ1+K3+K ′2) (7)

where B± carries Chern number C = ±1 mod 3 [53].
The irreps of B± at the K and K ′ points are related by
the anti-unitary operator MT which obeys C3zMT =

MT C†3z, so Eq. (7) is the only allowed decomposition.
We show below that the addition of P , which is not part
of the irrep classification (it is not a crystallographic sym-
metry), forbids this splitting. To split the flat bands, we
incorporate the exact θ dependence into the kinetic terms
of Eq. (1), breaking P [12, 15] and opening a ∼ .5meV
gap at K and K ′. We verify the Chern number decom-
position in Eq. (7) from the Wilson loop [41].

Eq. (7) suggests a remarkable similarity to the topol-
ogy of the flat bands at zero flux, where C2zT en-
forces connected bands with opposite Chern numbers
[12, 15, 43, 44]. We have shown that flux breaks C2zT
and allows the bands to split, yielding strong topology.
The flat bands at 2π flux carry opposite Chern numbers,
but they cannot annihilate with each other: MT sym-
metry ensures any band touching come in pairs so the
Chern numbers can only change in multiples of two.

The particle-hole approximation in Eq. (1) prevents
the Chern decomposition in Eq. (7) because P and C3z

enforce gapless points at K and K ′ as we now show. Ob-
serve that the K and K ′ points are symmetric under the
anti-commuting symmetry P = PMT because P takes
k → −k and MT takes (kx, ky) → (kx,−ky) [12]. P is

anti-unitary and obeys C3zP = PC†3z. As such, a state
|ω〉 of energy E 6= 0 and C3z eigenvalue ω ensures a dis-
tinct state P |ω〉 with C3z eigenvalue ω and energy −E.
Thus all states at E 6= 0 come in P-related pairs with the
same C3z eigenvalue. Hence if P is unbroken, the irreps
of B at K and K ′ are pinned together at E = 0 because
they have different C3z eigenvalues.

Coulomb Groundstates. Flat bands provide a tractable
many-body problem because exact ground states can be
obtained for the interaction term while reliably neglecting
the competing effects of the kinetic energy after projec-
tion [63]. Band topology plays an essential role in this
setting. The un-projected Coulomb interaction consists
of commuting local operators, but projecting into the flat
bands introduces non-triviality due to the wavefunction
form factors with a profound effect on the charge excita-
tions [64]. The preceding sections have established TBG
at 2π flux as a flat band system with different topology
in its wavefunctions due to the breaking of C2zT , serving
as a useful comparison to TBG at zero flux.

We now study many-body states where the spin and
valley degrees of freedom are important. The low energy
states come from the two graphene valleys which we index
by η = ±1. The valleys are interchanged by C2z which is
unbroken by flux, and hence the flat bands are each four-
fold degenerate. To split the degeneracy, we consider

adding the interaction

Hint =
1

2Ωtot

∑
q

V (q)ρ̄−qρ̄q, ρ̄q =

∫
d2r e−iq·rn̄(r)

(8)
where V (q) > 0 is the screened Coulomb potential
[54, 55], n̄(r) is the total electron density (summed over
valley and spin) measured from charge neutrality, and
Ωtot is the area of the sample. In zero flux, the Hamil-
tonian conserves spin, charge, and valley, so there is an
exact U(2) × U(2) symmetry. It is natural to work in a
strong coupling expansion where we projectHint onto the
two flat bands and neglect their kinetic energy (including
particle-hole breaking terms) entirely. This is a very re-
liable approximation because the bandwidth is ∼ 1 meV
and the interaction strength is ∼ 20meV. In this limit,
C2zP commutes with the projected Hint operator and
the symmetry group is promoted to U(4)[54, 56].

We now discuss the fate of the U(4) symmetry in flux.
At B ∼ 25T, the Zeeman effect shifts the energy of the
spin ±1/2 electrons by ±µBB = ±1.4meV where µB
is the Bohr magneton. This shift is comparable to the
bandwidth, so it is consistent to neglect both at leading
order. (The Zeeman term will choose the spin-polarized
states out of the U(4) manifold.) We should also consider
twist angle homogeneity which has recently come under
scrutiny [57–59]. Experiments indicate that even in high
quality devices, the moiré twist angle θ varies locally up
to .1◦ [60–62], leading to local variations in the unit cell
and hence the flux. In a realistic sample with domains
of varying θ at constant B, we expect deviations from
the 2π flux flat band wavefunctions. However, the large
interaction strength and gap to the passive bands still
makes the strong coupling expansion appropriate.

An analytic study of the strong-coupling problem is
possible because Hint is positive semi-definite [63]. Fol-
lowing Ref. [64], we study exact eigenstates at fillings
ν = 0, 2, 4 (−ν follows from many-body particle-hole
symmetry [54]) and derive the excitation spectrum, ef-
fectively determining the complete renormalization of the
flat bands by the Coulomb interaction. Ref. [64] was also
able to study odd ν perturbatively using the chiral sym-
metry at w0 = 0 [13, 14, 16, 65]. The chiral limit at 2π
flux is topologically distinct [65] from the physical regime
w0/w1 = .6 - .8 (unlike at zero flux) so this approach is
inapplicable. Odd fillings are left to future work.

The many-body calculation at 2π flux is tractable us-
ing a gauge-invariant expression for Hint and the form
factors. Following Ref. [66], we produce exact many-body
insulator eigenstates of the projected Hint at even ν:

|Ψν〉 =
∏
k

(4+ν)/2∏
j

γ†k,+,ηj ,sjγ
†
k,−,ηj ,sj |0〉 (9)

where γ†k,M,η,s creates a state at momentum k, valley η,

and spin s in the M = ±1 band. The states |Ψν〉 fully
occupy the two flat bands for arbitrary ηj , sj forming a
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U(4) multiplet. Including valley and spin, there are 8 flat
bands; |Ψν〉 fills (4 + ν)/2 of them. At ν = 0, |Ψ0〉 must
be a groundstate because Hint is positive semi-definite
and Hint |Ψ0〉 = 0. At ν = ±4 where the system is a
band insulator, |Ψ±4〉 are trivially groundstates because
they are completely empty/occupied. The |Ψ±2〉 states
are exact eigenstates, and we argue they are groundstates
using the flat metric condition (FMC) [66] which assumes
the Hartree potential of the flat bands is trivial. Ref. [54]
found that the FMC holds reliably at zero flux, and we
check that the FMC is similarly reliable at 2π flux [39].
Like at zero flux, |Ψν〉 has Chern number zero, but with-
out C2zT there is no fragile topology.

The exact eigenstates |Ψν〉 enable us to compute the
charge excitation spectrum at filling ν. The Hamiltonian
Rη+(k) governing the +1 charge spectrum is defined

[Hint−µN, γ†k,M,s,η] |Ψν〉 ≡
1

2

∑
N

γ†k,N,s,η[Rη+(k)]NM |Ψν〉

(10)
where η, s are unoccupied indices in |Ψν〉 and µ is the
chemical potential [41]. Counting the flavors in Eq. (9),
at filling ν the charge ±1 excitations come in multiples of
(4∓ ν)/2. A direct calculation of Rη±(k), the ±1 charge
excitation Hamiltonian, is possible thanks to our gauge-
invariant expression for the form factors in flux. Per-
forming the commutators at ν = 0 in Eq. (10) gives [41]

R+(k) =
∑
q

V (q)

Ωtot
M†(k,q)M(k,q) (11)

and the form factor matrices in the flat bands are

M(k,q) = eiξq(k)U†(k− q)Hq U(k) (12)

where Hq = eiεijqiZ̃j is a unitary matrix acting on the
Landau level indices like in the Berry connection (see
Eq. (4)) and eiξq(k) can be expressed in terms of Siegel
theta functions [41]. Eq. (11) demonstrates that the ex-
citations at ν = 0 are governed by the wavefunctions
U(k) (like at zero flux) as well as Hq, a new factor in-
trinsic to magnetic flux. The phase factor eiξq(k) can-
cels in Eq. (11) at ν = 0, but contributes nontrivially
at ν = ±2 [41]. Next, because V (q) > 0 and M†M is
a positive definite matrix, we see that R±(k) is positive
definite and thus describes gapped excitations (an insula-
tor). Lastly, we observe that all k dependence in R±(k)
comes from the wavefunctions, so the dispersion of the
excitation bands depends the non-triviality of U(k). For
example, in the decoupled Landau limit where U(k) is
independent of k and nonzero only for a single Landau
level n, R±(k) has exactly flat bands. We plot the exci-
tation spectrum at ν = 0 and ν = 2 in Fig. 2, observing
significant dispersion since, as shown by irreps Eq. (5),
TBG at 2π flux is far from the Landau level regime.

The dispersion of the excitations leaves distinctive sig-
natures in the Landau fans emanating from the |Ψν〉 in-
sulators [11, 29, 67]. At ν = 0, the ±1 charge excitations

FIG. 2. 1
2
Rη±(k) spectra at w0/w1 = .71. (a) At ν = 0, the

charge ±1 excitations are identical and feature a quadratic
(massive) dispersion at the Γ point. (b) At ν = 2, the charge
−1 excitation (red) has a large mass, strongly suppressing the
Landau fans pointing towards charge neutrality, while the +1
excitation (blue) is lighter by a factor of 3. The +1 charge
gap at ν = 2 is ∼ .5meV or roughly 5K.

are identical and their dispersion features a charge gap
to a band with a quadratic minima at the Γ point. Hence
at low densities, there are (4 ∓ 0)/2 = 2 massive quasi-
particles, counting the degenerate charge excitations in
different spin-valley flavors. As the flux is increased, the
massive quadratic excitations form Landau levels (quan-
tum Hall states), leading to Landau fans away from ν = 0
in multiples of 2 — half the Landau level degeneracy of
TBG near B = 0. The gap between the two excitation
bands at Γ depends on w0/w1. Fig. 2a shows the generic
case at w0/w1 = .71, but at w0/w1 = .8 the two bands
are nearly degenerate at Γ [41]. At ν = 2, the −1 excita-
tion (towards charge neutrality) has a large mass which
reduces the gap between Landau levels and masks would-
be insulating states. However, the +1 excitation has a
smaller effective mass and will create Landau levels in
multiples of (4− 2)/2 = 1. We do not discuss excitations
above ν = 4 here because they fill the passive bands,
and we check that the charge −1 excitation below ν = 4
(not shown) is gapped with a very large mass. We note
that at zero flux with C2zT , the excitation bands must
be degenerate at the Γ point [64, 68]. Based on the U(4)
symmetry which determines the (4∓ ν)/2 degeneracy of
the excitations, the breaking of C2zT which allows the
bands to be gapped at Γ, and the large mass of excita-
tions towards charge neutrality, we predict the Landau
fans emerging from ν = 0 and ν = 2 away from charge
neutrality to have degeneracies 2 and 1 respectively.

Discussion. We used an exact method to study TBG
at 2π flux, yielding comprehensive results for the single-
particle and many-body physics. Recently, interest in
reentrant superconductivity and correlated phases in
strong flux has invigorated research in moiré materi-
als [69–71]. Our formalism makes it possible to study
such phenomena with the tools of modern band theory
and without recourse to approximate models. We find
that the emblematic topological flat bands and corre-
lated insulators of TBG are re-entrant at φ = 2π, pro-
viding strong evidence that magic-angle physics recurs at
∼ 25T. The excitation spectrum at ν = 2 reveals disper-
sive quasi-particles away from charge neutrality as at zero
flux (but with half the degeneracy due to C2zT break-
ing). This leads us to conjecture that superconductivity,
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which occurs at φ = 0 upon doping correlated insulating
states, may also be reentrant at 2π flux [40].
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Ref. [72] appeared which investigated reentrant single-
particle flat bands in TBG using a tight-binding model
on very large commensurate unit cell. Their findings are
consistent with our continuum approach when both val-
leys are included.
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