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Simulating quantum dynamics on classical computers is challenging for large systems due to the
significant memory requirements. Simulation on quantum computers is a promising alternative, but
fully optimizing quantum circuits to minimize limited quantum resources remains an open problem.
We tackle this problem presenting a constructive algorithm, based on Cartan decomposition of the
Lie algebra generated by the Hamiltonian, that generates quantum circuits with time-independent
depth. We highlight our algorithm for special classes of models, including Anderson localization in
one dimensional transverse field XY model, where aO(n2)-gate circuits naturally emerge. Compared
to product formulas with significantly larger gate counts, our algorithm drastically improves simula-
tion precision. In addition to providing exact circuits for a broad set of spin and fermionic models,
our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.

Constructing arbitrary unitary operations as a se-
quence of one and two-qubit gates is the task of uni-
tary synthesis which has applications from quantum state
preparation (e.g. via the unitary coupled cluster formal-
ism [1, 2]) to quantum arithmetic logic. A paradigmatic
problem [3, 4] is the unitary synthesis of time evolution
under a time-independent Hamiltonian H. Hamiltonian
evolution plays a key role in simulating quantum sys-
tems on quantum computers [5–9] and thus has spurred
recent interest in order to solve difficult problems be-
yond the scope of classical computing. It involves solving
i ddt |ψ(t)〉 = H |ψ(t)〉via the unitary U(t) = e−iHt, which
yields |ψ(t)〉 = U(t) |ψ(t = 0)〉. While the circuit com-
plexity for an arbitrary unitary grows exponentially with
the number of qubits, there are efficient product formulas
[6, 10, 11], series expansions [12], and other techniques
[13–15] for Hamiltonian simulation.

Despite these algorithms’ efficient asymptotic perfor-
mance, the fast fidelity decay with respect to circuit
depth before error correction prevents useful Hamiltonian
simulation in near term hardware [16]. Reducing the cir-
cuit depth required for simulations remains of interest
and recent works have begun to incorporate additional
problem information such as algebraic properties, system
symmetries [17], and initial state properties [18] to fur-
ther improve Hamiltonian time-evolution. Orthogonally,
variational approaches have been used to approximate
the time evolution [19], but the approximation worsens
with increasing time.

Concurrent with the above synthesis techniques, Car-
tan decomposition emerged as a useful tool in the areas
of quantum control [20, 21] and time evolution [22]. An
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optimal unitary synthesis of arbitrary two-qubit opera-
tions based on the Cartan decomposition has emerged
as the state-of-the-art technique [23]. For larger uni-
taries, Refs. 24–27, have formally laid out how any el-
ement in SU(2n) can be decomposed, although these
methods generically require exponential circuit depth for
arbitrary unitaries and recursive algorithms[24, 26, 27].
The product factorization works as follows: consider a
generic time-independent Hamiltonian for n qubits (or n
spin-1⁄2 particles)

H =
∑
j

Hjσ
j , (1)

where Hj are real coefficients and σj are Pauli string op-
erators: i.e., elements of the n-site Pauli group Pn =
{I,X, Y, Z}⊗n. Ref. 24 recursively obtains a factoriza-
tion of the time-evolution unitary as

U(t) = e−iHt =
∏

σ̄i∈su(2n)

eiκiσ̄
i

, (2)

with, in the general case, O(4n) angles κi for the Pauli
strings σ̄i that form a basis for the Lie algebra su(2n).

We now provide a constructive decomposition algo-
rithm for Hamiltonian simulation with depth indepen-
dent of simulation time. We begin by applying Car-
tan decomposition on a subalgebra of su(2n) generated
from the Hamiltonian.We further simplify the subsequent
problem of finding the parameters κi to locating a local
extremum, rather than global minimum, of a cost func-
tion by extending the method given in Refs. [28, 29]. This
extension allows us to directly generate a circuit, calcu-
late the cost function and its gradient. The algorithm is
applicable to any model without limitations of locality,
although the scaling varies depending on the model, and
we provide software to do so[30].

For certain classes of models (termed “fast-
forwardable[31]”) such as spin models which can
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be mapped to non-interacting fermion models [32], the
circuit complexity and calculation of the cost function
scales polynomially in the system size. To illustrate our
algorithm, we use it to time evolve a 10-site random
transverse field XY (TFXY) model and compare the
result to a Trotter approach to illustrate the dramatic
improvements obtained.

Hamiltonian Algebra—For a given Hamiltonian, we de-
termine whether the entirety of su(2n) is necessary for
the expansion in Eq. (2), or whether a subset suffices.
The Baker-Campbell-Hausdorff theorem states that only
nested commutators of the individual terms in the Hamil-
tonian appear in the final exponent. This leads us to the
first step of our algorithm: Using the expansion of
the Hamiltonian in terms of the Pauli terms σj in Eq. (1),
find the closure (under commutation) of the set of those
Pauli terms. This closure forms a basis for the Hamilto-
nian algebra, which we denote as g(H), and which is a
subalgebra of su(2n) [21]. We can now restrict the ex-
pansion in Eq. (2) to only the elements of g(H).

We now provide some examples on the scope and limi-
tations of our resource cost across selected spin Hamilto-
nians. Fig. 1 illustrates the dimension of the Hamiltonian
algebra |g(H)| for various models of interest as a func-
tion of system size n, where | · | denotes the dimension of
the algebra. The dimensions of the Hamiltonian algebra
for the n-site nearest-neighbor XY, transverse field Ising
(TFIM) and TFXY models are |g(XY)| = n(n − 1) and
|g(TFIM)| = |g(TFXY)| = n(2n−1); these scale quadrat-
ically with the number of qubits n. On the other hand,
|g(H)| for the nearest-neighbor Heisenberg model scales
exponentially, |g(Heisenberg)| = 4n−1 − 4. We observe a
similar exponential growth in TFXY and TFIM models
with longer range interactions. However, even in these
cases, |g(H)| is a constant factor smaller than |su(2n)|,
providing a commensurate improvement in circuit depth
over the generic case studied in Ref. [24].

Cartan Decomposition — We must now determine the
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FIG. 1. Hamiltonian algebra dimensions of the nearest-
neighbor Heisenberg, XY, TFIM and TFXY models, and di-
mension of full su(2n) for comparison to the generic case. The
dimensions can exactly be calculated as |g(Heisenberg)| =
4n−1−4, |g(TFIM)| = |g(TFXY)| = n(2n−1) and |g(XY)| =
n(n− 1).

parameters κi in the g(H)-restriction of Eq. (2). The
Cartan decomposition and related methods in Ref. 24,
28, and 29 provide the necessary tools to do so. We
briefly review the Cartan decomposition and the “KHK
theorem”.

Definition 1 A Cartan decomposition of a Lie alge-
bra g is defined as an orthogonal split g = k⊕m satisfying

[k, k] ⊂ k, [m,m] ⊂ k, [k,m] = m, (3)

and denoted by (g, k). A Cartan subalgebra denoted by
h refers to a maximal Abelian algebra within m.

We will replace g in Def. 1 above with g(H) ⊆ su(2n) for
a given n-spin Hamiltonian.

In practice finding a Cartan decomposition by directly
using Def. 1 and picking basis elements one by one is
difficult. Instead the Lie subalgebra is partitioned into k
and m by an involution: i.e. a Lie algebra homomorphism
taking θ : g → g, which satisfies θ(θ(g)) = g for any
g ∈ g and preserves all commutators. Then by using
the involution, one can split the algebra by defining sub-
spaces via θ(k) = k and θ(m) = −m, which is equivalent
to Def. 1. We discuss further details of involutions in the
SI.

A consequence of Cartan decomposition, which we will
use to synthesize Hamiltonian evolution unitaries, is an
extension of the “KHK” theorem:

Theorem 1 Given a Cartan decomposition g = k ⊕ m
and a non-degenerate invariant bilinear form 〈., .〉 on g
then for any m ∈ m there exists a K ∈ eik and an h ∈ h,
such that

m = KhK†, (4)

where we have generalized the KHK theorem to any Lie
algebra that has a non-degenerate invariant bilinear form.
This statement is proven by construction via Thm. 2 [33].
We use 〈A,B〉 = tr(AB), which is proportional to the
Killing form in su(2n) ⊃ g(H), and is therefore guar-
anteed to be non-degenerate due to semi-simplicity of
su(2n). Moreover, it is invariant and symmetric due to
the cyclic property of the trace.

We can now describe the second step of our algo-
rithm: Find a Cartan decomposition of g(H) such that
H ∈ m (in practice, one finds an involution), and find a
Cartan subalgebra h ⊆ m. A direct application of Theo-
rem 1 with H = KhK† then leads to the desired unitary
for time-evolution

U(t) = e−iHt = Ke−ihtK†. (5)

Since h is Abelian, each Pauli string in h ∈ h commutes,
and therefore a quantum circuit for e−ith can easily be
constructed. This reduces the circuit construction prob-
lem to finding K, which we address below.
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FIG. 2. (a) Schematic relationship of the Hamiltonian algebra g(H) and its partitioning into a subalgebra k, its compliment
m, and the Cartan subalgebra h. (b) KHK decomposition (Theorem 1) applied to a time evolution operator generated by an
element of m. (c) Hamiltonian algebra g(H) for the 2 site TFIM and the Cartan decomposition generated by the involution
θ(g) = −gT . Here we list the bases that span g(H) and its Cartan decomposition. (d) Decomposed time evolution for the 2-site
TFIM model.

As long as an involution is found such that θ(H) = −H,
this method is applicable to any Hamiltonian H. Specif-
ically, for the models discussed in Fig. 1, this step is
achieved by using the involution θ(g) = −gT which is
an AI type Cartan decomposition for su(2n). This in-
volution works because the listed models have time re-
versal symmetry [25]. We then construct h by choosing
an element of m randomly (or with certain symmetries if
desired) and finding all the elements in m that are mu-
tually commutative with the chosen element and each
other. We discuss further details of finding involutions
and Cartan subalgebras in [33].

Note that the simulation time t in Eq. (5) enters as an
independent parameter, and does not alter the structure
of K or h. This means that new parameters do not need
to be found for different simulation times (although this
situation may change for time-dependent Hamiltonians).

Determining Parameters — We provide the following
theorem to determine the group element K in Eq. (5),
which is an improved version of Lemma 6.3 (iii) in [28]
and Eq. 18 in [29]:

Theorem 2 Assume a set of coordinates ~θ in a chart of
the Lie group eik. For H ∈ m, define the function f

f(~θ) = 〈K(~θ)vK(~θ)†,H〉, (6)

where 〈., .〉 denotes a non-degenerate invariant bilinear
form on g, and v ∈ h is an element whose exponential

map is dense in eih. Then for any local extremum of f(~θ)

denoted by ~θc, and defining the critical group element

Kc = K(~θc), we have

K(~θc)
†HK(~θc) = K†cHKc ∈ h. (7)

According to the theorem, we only need to find a local

extremum of f(~θ), without determining the resulting h ∈
h. This is achieved by using v such that eitv is dense in

eih; this is sufficient to represent the entirety of h. This
reduces the number parameters from |k|+ |h| to |k|. Since
we consider single Pauli strings as basis elements, we can
choose v =

∑
i γihi where the hi are basis elements of h,

and the γi are mutually irrational[29]. After determining
Kc, the h ∈ h in Eq. (5) is then obtained via Eq. (7).
Further details and the proof of the theorem are discussed
in [33].

Because the parametrization does not need to cover
the entire eik, there is a choice in how to represent the
group element K in Thm. 2. While Refs. 24 and 29 use
K = exp(i

∑
i αiki), we express it as a factorized product

K =
∏
i

eiaiki , (8)

where ki is an element of the Pauli string basis for k. The
representation Eq. (8) does not always cover eik fully,
except in some specific cases [34, 35], but this is not
necessary[33]. However, using Eq. (8) has three benefits.
First, the gradient of Eq. (6) can be obtained analyti-
cally at any point in contrast to the complicated deriva-
tive of the exponential map exp(i

∑
i αiki); second, this

allows us to apply K on v and H exactly [33]; and third,
since a circuit implementation for exponentiated individ-
ual Pauli strings is known [36, 37], we avoid the need for
further decomposition of K.

We now reach the third step of our algorithm:
Minimize Eq. (6) over the parameters ai in K in Eq. (8)
to find K ∈ eik. In this work, we use a standard BFGS
optimization routine. Calculating Eq. (6), its gradient
and obtaining h ∈ h by using Eq. (8) require O(|k||m|),
O(|k|2|m|) and O(|k||m|) operations, respectively. For
models where |g(H)| is quadratic in the number of spins,
these become O(n4), O(n6) and O(n4) [33].

In summary, our algorithm can be listed as the follow-
ing three steps:

1. Construct Hamiltonian algebra g(H)
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FIG. 3. (a) Circuit implementation of the given exponentials of Pauli strings, and the compact arrow notation. The R gate
shown here is Rx(π/2). (b/c) Unoptimized/optimized circuit for K in an n = 5 site TFXY model (this system size is chosen
for illustrative purposes). The circuits have O(n3) (80) and O(n2) (20) CNOT gates, respectively.

2. Find a suitable Cartan decomposition (or involu-
tion) such that H ∈ m, and construct a Cartan
subalgebra h.

3. Find a local extremum of f(~θ) by representing K
as in Eq. (8), obtain h ∈ h via Eq. (7), and then
construct the circuit.

Fig. 2 is a schematic illustration of the algorithm.
Panel (a) shows the relationships between su(2n), the
Hamiltonian H, the Hamiltonian algebra g(H), and its
Cartan decomposition. Panel (b) shows the resulting fac-
torization of the time-evolution operator. Panels (c) and
(d) demonstrate steps one and two of our algorithm for a
simple two-site Ising model. In this case, the Hamiltonian
terms {ZZ, IX,XI} generate a six dimensional Hamil-
tonian algebra g(H), which is partitioned into k and m
via the involution θ. Among infinitely many possibilities,
there are two maximal Abelian subalgebras h of m that
have single Pauli strings as basis elements (rather than a
linear combination of them), namely span{ZZ, Y Y } and
span{XI, IX}; we choose the latter without loss of gen-
erality. The resulting factored time-evolution operator
is shown in panel (d). This factorization is clearly sub-
optimal for the Hamiltonian evolution unitary in SU(4),
where a minimal 3-CNOT circuit is known [23]; however,
our decomposition algorithm is applicable to any system
size.

Application — To demonstrate the flexibility of our
method, we simulate 10-site TFXY spin chain with ran-
dom magnetic field with open boundary conditions:, with
the Hamiltonian

H =

n−1∑
i=1

(XiXi+1 + YiYi+1) +

n∑
i=1

biZi, (9)

where n = 10 is the number of qubits and the bi coef-
ficients are chosen via a normal distribution with zero
mean and σ2 variance; we use standard notation for the
Pauli spin matrices. We consider a single spin-flip initial
state |ψ〉 = |↓↑↑↑↑↑↑↑↑↑〉. In the absence of the ran-
dom magnetic field, this excitation diffuses throughout
the system. By increasing the random magnetic field

strength, the excitation is prevented from diffusing by
amplitude cancellation due to random phases acquired
via probing the random magnetic field, which is called
the Anderson localization mechanism [38]. Specifically
in one dimension it was shown that any p-th moment
of the displacement of the excitation has a time inde-
pendent upper bound

〈
|N̂ |p

〉
t
< C, where C is a time

independent constant, and the position operator for the
excitation is N̂ =

∑n
r=1(r − 1) 1−Zr

2 [39].
We first perform steps one and two of our algorithm.

The Cartan decomposition and subalgebra for this model
are

k = span{X̂iY j , ŶiXj

∣∣ i, j = 1, 2, .., n, i < j},

m = span{Zj , X̂iXj , ŶiY j
∣∣ i, j = 1, 2, .., n, i < j},

h = span{Zi
∣∣ i = 1, 2, .., n},

(10)

with dimensions |k| = n(n − 1), |m| = n2 and |h| = n,
and

ÂiBj = AiZi+1Zi+2...Zj−1Bj . (11)

We then perform step three of our algorithm and find the
parameters minimizing Eq. (6).

Using Eq. (8) generates the circuit shown in Fig. 3(b),
which has 2n(n2 − 1)/3 CNOT gates (1320 CNOTs for
n = 10). As illustrated in Fig. 3(c), this circuit can
be further simplified to a circuit with n(n − 1) CNOT
gates (180 CNOTs for n = 10) [33] We compare the sim-
ulation results conducted via our algorithm to Trotter
evolutions with varying time steps and fixed depth (fixed
number of CNOTs) that is equal to the optimized (10
steps/180 CNOTS) and the un-optimized Cartan circuits
(74 steps/1332 CNOTS).

Fig. 4 shows N =
√〈

N̂2
〉
, the RMS position of the

single-spin excitation for various values of σ, as simulated
with our algorithm and with Trotter time evolution. We
renormalized the Hamiltonian for each standard devia-
tion of the transverse field; i.e., H → H√

tr(H2)
to elimi-

nate any norm dependence of the time evolution.
As expected, the Trotter evolution diverges from the

exact result after some time τ , which occurs later if there
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FIG. 4. Displacement of the spin excitation N =
√〈

N̂2
〉

and

its absolute difference from the exact result |N−Nexact| in the
TFXY model with a random Z field, for standard deviation
σ = 0 in panel (a) and σ = 4 in panel (b). The excitation
becomes trapped around its original position as σ increases.
The localization is captured to within a small constant er-
ror by our Cartan algorithm (solid curves). The two Trotter
decompositions use 180 (dotted) and 1332 (dashed) CNOTs,
which correspond to the CNOT counts of the optimized and
non-optimized Cartan circuits, respectively.

are more Trotter steps. τ depends on the standard devi-
ation of disorder σ in the magnetic field; the results im-
prove with increasing randomness because this decreases
the relative diffusion probability for the excitation to hop
to another site. Nevertheless, for any value of σ and
any number of steps, the Trotter evolution eventually di-
verges from the exact result.

On the other hand, the result from the Cartan de-
composition is indistinguishable from the exact solution.
We show the error (absolute deviation from the exact
result) for the two methods in Fig. 4. Except for the ear-
liest times, there are 3-5 orders of magnitude less error
for the Cartan decomposition approach compared to the
Trotter-based approach. The error of the Cartan-based
method stems from the non-zero gradient tolerance used
in the optimization step of the algorithm (which was cho-
sen to be 10−6), and does not increase with simulation
time, which shows the suitability of this constant-depth
circuit for long-time simulations. While this particular
application is for a free-fermionic model, the minimal er-
ror does not follow from this property. Rather, it stems
from the precise factorization via Cartan decomposition,
which is equally applicable to interacting fermion models.
However, a similar tolerance may lead to larger errors
simply due to the larger number of terms required for
the decomposition (Eq. 8). Data for Fig. 4 is provided
at [40].

Discussion and Applications — We have introduced an
algorithm based on the Cartan decomposition for synthe-
sizing Hamiltonian time evolution unitaries and provided
software to do so [30]. In contrast to previous related
approaches [24, 26, 27, 29], the current work develops
explicit digital quantum circuit constructions for K via

a implementable factorized form (Eq. 8 and Fig. 3). An
analytic cost function and its derivatives, straightforward
circuit construction, and only needing a single optimiza-
tion for any time t are several improvements with respect
to previous algorithms. We have discussed illustrative
and paradigmatic examples where our algorithm’s com-
plexity grows polynomially, as in TFIM and TFXY spin-
models. Here the polynomial complexity follows a map-
ping from the spin representation to a non-interacting
(free) fermionic representation. In this sense, the Hamil-
tonian algebra reveals the existence of such a map and is
complementary to a recent graph-theoretic approach to
identify spin models solvable by fermionization [32]. This
idea has already formed the basis for related compres-
sion algorithms[41]. Our work also provides an intuition
to understanding heuristic “variational fast-forwarding”
methods[19, 42, 43]; the scaling of the Hamiltonian al-
gebra indicates an upper bound on the required circuit
depth.

In addition to the applications demonstrated here, we
expect our algorithm and its components to find broader
use in more quantum computing application areas. First,
our method can be applied directly to simulating both
free and interacting theories and directly deployed on
quantum computers. Although the algebra does not
scale favorably in the latter case, circuits for interact-
ing fermionic problems can be composed via our tech-
nique nevertheless. Given that near term devices scale
poorly with circuit depth, and consequently simulation
time, employing our algorithm to small systems yields
results which we are not aware of other methods achiev-
ing [44]. Next, a generalization to the unitary cou-
pled cluster (UCC) formalism[1, 2, 45] is also straight-
forward. In order to represent the wave function, UCC
applies excitations on an ansatz wave function. The usual
Trotter-based approach to construct circuits to do so does
not respect the symmetries inherent in the problem —
this is true for UCC excitations[46] as well as Hamil-
tonian evolution[17] — this issue can be addressed ei-
ther by adding additional symmetry-restoring terms[17]
or constructing explicit symmetry-preserving circuits[46].
Since the Cartan decomposition is exact, it preserves all
of the symmetries without further effort, even though the
individual terms may break symmetries. We will detail
this application area in a future work. This concept of
using Cartan decomposition to generate a subcircuit for
symmetrized UCC factors — a portion of a larger prob-
lem — could be applied as a generic quantum compilation
routine.

Looking forward, we expect that perturbative ap-
proaches beginning from either the free or only interact-
ing algebras will enable further progress in the develop-
ment of Hamiltonian evolution algorithms. Symmetries
and other problem structure are naturally expressed in
the language of Lie algebras and further developments
are required to fully utilize problem structure. Interest-
ingly, preliminary findings indicate that imposing sym-
metry complicates quantum circuit construction while it
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reduces the dimension of the Hamiltonian algebra; this
interplay between physical symmetry and algebraic anal-
ysis for quantum circuits has been recently investigated
within the contexts of quantum control theory[47–50] and
symmetry-preserving circuits[51, 52], and could be com-
bined with the methods presented here in future work.
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