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Fluctuations of synaptic-weights, among many other physical, biological and ecological quantities,
are driven by coincident events of two ‘parent’ processes. We propose a multiplicative shot-noise
model that can capture the behaviors of a broad range of such natural phenomena, and analytically
derive an approximation that accurately predicts its statistics. We apply our results to study the
effects of a multiplicative synaptic plasticity rule that was recently extracted from measurements in
physiological conditions. Using mean-field theory analysis and network simulations we investigate
how this rule shapes the connectivity and dynamics of recurrent spiking neural networks. The
multiplicative plasticity rule is shown to support efficient learning of input stimuli, and gives a stable,
unimodal synaptic-weight distribution with a large fraction of strong synapses. The strong synapses
remain stable over long times but do not ‘run away’. Our results suggest that the multiplicative
shot-noise offers a new route to understand the tradeoff between flexibility and stability in neural
circuits and other dynamic networks.
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Introduction.—Many natural processes are triggered
by coincidences of two ‘parent’ events. Examples include
firefly flash synchronization [1]; effects of simultaneous
environmental stressors [2]; applications of two-photon
microscopy [3]; and stimulus-reward associations in rein-
forcement learning [4, 5]. In neuroscience, co-activation
of pre- and postsynaptic neurons plays a crucial role in
inducing synaptic plasticity [6, 7], a primary mechanism
underlying learning and memory.

The parent processes are often described by event-
based models [8], among which the Poisson process is an
appealing starting point owing to its memory-less prop-
erty. Experimental studies show that the aforementioned
coincidence-based phenomena often cannot be accurately
described as sums over the parent shot-noise (Poisson)
processes [2, 7]. Specifically, induction of long-term plas-
ticity was shown to depend strongly on the calcium flux
into the postsynaptic neuron [9, 10]. This flux, in turn,
depends on coincident spiking activity of pre- and post-
synaptic neurons, and is well described by the product
of two shot-noise processes [7, 11, 12]. In contrast, most
network-level studies of spike-timing dependent plastic-
ity (STDP) typically assume that the synaptic strength
change is the sum over contributions of spike-pairs, ig-
noring cooperative effects between spikes [13–17]. These
models often cannot reproduce realistic spiking activities
observed in vivo [18].

Motivated by the converging theoretical and experi-
mental evidence, we propose a stochastic process whose
fluctuations are triggered by multiplicative interactions
between two parent shot-noise processes [cα(t), α = 1, 2].
The rates of parent events are λα, and their amplitudes
aα,i are exponentially-distributed with mean Aα. Events

are referred to as “spikes”, adopting the neuroscience ter-
minology, but they may correspond to events in other do-
mains. Spike-times are denoted {tα,i} and may be tem-
porally correlated. We then have,

dcα(t)

dt
= −

cα(t)

τα
+
∑

i

aα,iδ(t− tα,i). (1)

The decay timescales τα define a window during which
coincidences can occur.
Our primary interest is a multiplicative shot-noise pro-

cess (denoted C(t) and henceforth referred to as the
coincidence detector), whose transient deviations from
baseline are driven by the product c1 × c2, with decay
timescale τC (Fig. 1A),

dC(t)

dt
= −

C(t)

τC
+ ηc1(t)c2(t). (2)

The stochastic calculus of Poisson processes makes it dif-
ficult to analyze their products [19]. In contrast, exist-
ing nonlinear shot-noise models [20–23] are equivalent to
transformations of a single Poisson process, and are not
suitable for studying statistics of coincidences.
We analyze the statistics of the coincidence detector

and apply these results to gain insights to a longstand-
ing problem in neuroscience: the stability of recurrent
neuronal networks subject to STDP [24]. Here, c1, c2
are calcium transients induced by pre- and postsynaptic
spikes; and C is the total calcium flux, which triggers plas-
ticity [7]. Based on spiking network simulations and the-
oretical analysis of a reduced model, we show that when
individual synapses in a recurrent network are subject
to a nonlinear calcium-based plasticity rule, the empiri-
cal macroscopic network properties are reproduced (e.g.,
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FIG. 1. Analytical approximation of multiplicative shot-noise
statistics. (A) An illustration of the process C, driven by the
product c1 × c2. (B) The cumulative distribution function
(CDF) of C calculated through method of moments (MM)
[Eq. (4)] matches simulations well at high firing-rates. (C) Re-
lationship between the log-expectation, mean and variance of
C [Eq. (5)]. Data collapses on a line for a range of firing-rates
and spike-time correlations (ρ). (D) At low firing-rates, the
CDF given by MM matches simulations well for C & ητCA1A2

but poorly for C → 0. The heuristic MM matches the simula-
tion over the entire range of C. (E) Performance of heuristic
MM for uncorrelated spike trains. The errors, measured by
KS distance, are ≤ 0.2 for all firing-rates. See [27] for defini-
tion of ρ and KS distances for other parameters.

stable activity patterns, unimodal heavy-tailed synaptic-
weight distributions [25]. Further, our results suggest
that STDP in itself can support representations that re-
main stable over timescale of hours, making an important
step towards understanding prolonged retention of spa-
tial memories in the face of plasticity and noise [26].
Statistics of multiplicative shot-noise.—For simplicity,

we assume that the decay timescales of the parent pro-
cesses are identical, τ1 = τ2 ≡ τ . This is consistent with
calcium-induced plasticity [7, 28] and cases where the
parent processes are generated by similar agents (e.g.,
firefly flashes [1]).
Solving Eq. (1) gives filtered spike-trains (Fig. 1A). Us-

ing these solutions, we evaluate C(t) [Eq. (2)] at steady-
state. When the parent processes are uncorrelated,

C d= ητC
∑

i,j

a1,ia2,j × e−
|t1,i−t2,j |

τ ×
R(min(t1,i, t2,j))

2δ − 1
.

(3)
Here, δ = τC

τ is the ratio between timescales [Eqs. (1, 2)],

and d= means “equal in distribution”. The natural inter-
pretations of the three factors in Eq. (3) are the stochas-
tic amplitudes of synaptic transmission; the temporal
window for coincident spikes; and R(x) = e

− x
τC − e−

2x
τ

describes firing-rate dependent accumulation of multiple
coincidences. Notably, R represents a departure from

summation over spike-pairs [13–16]. Similar expressions
for temporally correlated spike-trains appear in [27].
We begin by formulating an analytical approximation

of PC , the distribution of C. At steady-state, the shot-
noise process [e.g., cα in Eq. (1)] follows a Gamma distri-
bution [29, 30] with shape and scale parameters λατ, Aα.
We think of the coincidences of the parent processes as
events which drive fluctuations of C. Therefore, we as-
sume PC can be approximated by a Gamma distribution
whose shape (k) and scale (σ) parameters measure the
effective rate and amplitude of the coincident spikes.
We used the method of moments (MM), i.e., match-

ing the first and second moments of PC to a Gamma
distribution, to analytically estimate k, σ. We find for
uncorrelated spike-trains,

k =
〈C〉

2

Var(C)
=

λ1λ2τ
2

λ1+λ2

δ+1 τ + 1
2δ+1

,

σ =
Var(C)

〈C〉
= ητCA1A2

(

λ1 + λ2

δ + 1
τ +

1

2δ + 1

)

. (4)

See [27] for expressions including correlations.
We show that MM [Eq. (4)] is highly accurate in the

high firing-rate regime (〈C〉 > ητCA1A2) by comparing
it to numerical simulations (Fig. 1E, above blue line).
However, for low firing-rates (i.e., λ1τ, λ2τ < 1 which
implies 〈C〉 < ητCA1A2) and particularly at C → 0, the
MM is inaccurate (Fig. 1D). The reason is that for low
firing-rates (and k < 1), the Gamma probability density
diverges at 0. Such a singularity cannot be captured by
the mean and variance of PC . Notably, either of λ1, λ2

being high suffices for the MM to be accurate, because
the high-rate process provides a “background” on top of
which the low-rate process can trigger coincidences.
In some applications of our theory, it may be important

to accurately estimate PC at C → 0, in the low firing-rate
regime. We obtain such an estimate by first noticing
that in this regime, the maximum-likelihood estimate of
the Gamma distribution parameters (k, σ) yields a good
approximation of PC . This estimate relies on the log-
expectation variable s = ln〈C〉 − 〈ln C〉, which is indeed
sensitive to the singularity at C → 0. Next we show that
the log-expectation, the mean and variance of C obey a
simple relationship, irrespective of the firing-rates and
correlation (Fig. 1C),

ln

(

s

Var(C)

)

= − ln 2− 2 ln 〈C〉+ b(δ)[− ln 〈C〉]2+, (5)

where [x]+ = max(x, 0) and b(δ) was fit directly to sim-
ulations. We found corrected shape and scale param-
eters k̃, σ̃ by computing s via Eq. (5) and using stan-
dard maximum-likelihood formulae [27]. We call this the
“heuristic MM”, and use it when coincidences are rare
k < 1, and both firing-rates are small max(λ1τ, λ2τ) < 1.
This approximation is accurate for all values of C, in the
entire parameter space we explored (Fig. 1E).
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FIG. 2. Reduced model of synaptic-weight dynamics. Synaptic-weight change [dw
dt

, Eq. (6)] arising from independent (A) and
equal (B) pre- and postsynaptic firing-rates. In (A), the temporal correlation ρ = 0. The green line indicates λ1 + λ2 = 50Hz.
(C) Example synaptic-weight trajectory, illustrating the memory-time T and the maximum weight wmax. (D) Synaptic-weight
distribution, including analytical result for the tail behavior in the weak-synapse scenario. (Inset) Memory-time distribution
of a synapse. In the feedforward (strong-synapse) scenario, the synaptic-weight (E) and memory-time (F) distributions have
heavier tails. Also shown in (E) is the potentiation-depression ratio α(w). (G) Joint distribution of (wmax, T ). Strong synapses
are preferentially protected from forgetting. (H) Average memory-time increases linearly with 〈Lp〉 / 〈Ld〉 in the independent
case, and nonlinearly in the feedforward case. See [27] for parameter values.

Network stabilization by multiplicative synaptic

plasticity.—We now leverage our results to study effects
of a multiplicative plasticity on network structure. In
this context, C represents the calcium influx into a
neuron, triggered by coincident pre- and post-synaptic
spikes. Large influx induces long-term potentiation
(LTP; when C > θp), intermediate influx induces long-
term depression (LTD; θp > C > θd) [7, 9, 10]. Given the
potentiation and depression rates γp,d and thresholds
θp,d, the synaptic-weight dynamics are,

τw
dw

dt
= γpΘ(C(t)− θp)− γdΘ(C(t)− θd) ≡ Γp − Γd.

(6)

Note that w has lower bound at 0, and typically τw ≫
τC . Based on our analytical approximation of PC , we
computed the total potentiation/depression rates Γp,d ≃
γp,d

Γ(k̃)

∫∞

θp,d
C k̃−1e−C/σ̃dC, which depend on the spike-train

properties and the plasticity rule [Eqs. (4, 5)].
Neuronal activity in vivo undergoes substantial firing-

rate fluctuations, generated by external input variability
or intrinsic dynamics [31]. Below we formulate a mean-
field approximation, reducing the joint dynamics of neu-
rons and synapses and accounting for network structure,
to the effective dynamics of a pair of pre- and postsy-
naptic neurons and the synapse connecting them. The
statistical properties of the reduced system recapitulate
the network behavior.
In the reduced model, we assume that the neurons’

firing-rates (λ1, λ2) are sampled from Pλ, and have cor-

relation time Tλ ∼ 0.1−1s. Pλ may depend on the synap-
tic strength, and will be determined self-consistently, ac-
counting for network interactions. During an interval
Tλ, the rates (λ1, λ2) are approximately constant, so the
weight change is ∆w = Tλ/τw × (Γp − Γd). Its distri-
bution Pstep(∆w) is calculated from Pλ through Eq. (6)
(Fig. 2A,B). Thus, the synaptic dynamics are reduced
to a 1D random walk on w ≥ 0 (Fig. 2C) with weight-
dependent step-size distribution Pstep. We identify its
steady-state distribution Pw with the synaptic-weight
distribution of the network. Importantly, for Tλ ∼ 1s,
∆w is not infinitesimal, so the small step-size approxi-
mation [13, 14, 32] is invalid. Next we use the mean-field
approach to study representative network architectures.

Weak synapses. In this limit, the pre- and postsy-
naptic firing-rates (λ1, λ2) are sampled independently

of the synaptic-weight w. Pstep is further assumed
to be discrete, such that a synapse can be un-
changed/potentiated/depressed by fixed amounts ∆w =
0, Lp, −Ld with probabilities α0, αp, αd. Equivalently,
Pstep(∆w) = α0δ(∆w)+αdδ(∆w+Ld)+αpδ(∆w−Lp).
Such a scenario would be expected in a network switching
between “high” and “low” states. For illustration, we as-
sume that Lp/Ld is an integer (see [27] for more general
analysis). We define the potentiation-depression ratio
α ≡ αpLp/αdLd. When depression dominates (α < 1),
using results for random walks [33, 34], Pw is unimodal,

and its tail follows Pw ∼ h(β)e
− βw

Ld , w ≫ Lp. The factors
β, h(β) were determined by analyzing the moment gen-
erating function of w [27]. We find that the tail becomes
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heavier as overall potentiation and depression are more
closely balanced (αdLd & αpLp); or as Lp/Ld is larger
with fixed α. Generally, when weight changes (∆w) are
non-negligible relative to the mean, the distribution Pw

is unimodal, and its tail behavior is sensitive to the high-
order statistics of the step-size distribution Pstep, in con-
trast to the case of infinitesimal ∆w [14].
To study the process of forgetting in the reduced

model, we envision a potentiated synapse with initial
weight w0 representing a certain memory. The memory-
time T (w0) is that synapse’s first-passage time to 0.
Analysis of the random walk statistics [27] gives the av-
erage and tail behavior of T (w0),

〈T (w0)〉 =
w0

αdLd − αpLp
and PT (t) ∼ w0t

− 3

2 e−
t
κ .

(7)
See [27] for expressions of κ. Similarly to Pw, the aver-
age memory-time becomes longer and the tail becomes
heavier as Lp/Ld increases, with fixed α (Fig. 2E).
Strong synapses. When synapses are strong [35, 36],

Pλ becomes weight-dependent. The postsynaptic neuron
receives feedforward weighted presynaptic input (firing-
rate λ1, weight w) and background input from the rest
of the network. Both inputs switch between high and
low firing-rates. Here, using the heuristic MM to com-
pute Pstep(∆w) requires knowing how spike-time corre-
lations depend on w and the background input. This
relationship was determined by matching the postsynap-
tic neuron with a leaky-integrate-and-fire neuron driven
by presynaptic shot-noise and background Gaussian noise
[27]. We then numerically evaluated Pw, PT at steady-
state, showing a substantially heavier tail when com-
pared to the independent case (while fixing the overall
potentiation-depression ratio 〈α(w)〉Pw

, Fig. 2E,F).
Inspection of the joint distribution of the synaptic-

weight running maximum and the memory-time
(wmax, T ) suggests that strong synapses are specifically
resistant to forgetting (Fig. 2G). Moreover, the average
memory-time increases nonlinearly with the LTP-LTD
amplitude ratio (Fig. 2H), compared to an approximately
linear increase in the independent case [Eq. (7), again
matching 〈α(w)〉Pw

]. Similar results were observed in a
reduced clustered recurrent network model [27].
Taken together, in the regime where a small number

of inputs is sufficient to trigger a postsynaptic response,
the multiplicative plasticity rule supports a unimodal
synaptic-weight distribution in which strong synapses are
preferentially protected from turnover.
Spiking network simulations.—We tested our results

by simulating a network of leaky-integrate-and-fire neu-
rons. The network consists of two excitatory (E) clus-
ters which mutually inhibit each other indirectly via in-
hibitory clusters (Fig. 3A, see [27] for networks with > 2
clusters). Initially, intra-cluster E → E connections are
strong while inter-cluster connections are weak. Cru-
cially, the probability that an E → E connection ex-

ists is independent of the cluster assignment. The initial
structure may represent two mutually exclusive memo-
ries stored in the network that spontaneously switch on
timescale of ∼ 0.2s (Fig. 3A). Structured inhibition is
consistent with experiments showing inhibitory stimulus-
specific ensembles, and may arise from inhibitory plas-
ticity [37–39]. We investigated memory retention when
E → E synapses undergo multiplicative plasticity, by
examining the steady-state statistics of C, network struc-
ture, and dynamics.
In this network, potentiation is more likely in intra-

cluster relative to inter-cluster synapses, so the tail of
Pw for intra-cluster synapses is heavier (Fig. 3B). Yet,
notably, Pw is unimodal with only minimal saturation
to the upper bound. To examine stability of network
structure, we plotted the steady-state E → E weight
matrix spectrum (Fig. 3C). The spectral distribution’s
bulk follows the circular law for a network with indepen-
dent, random weights, sampled from cluster-specific dis-
tributions [27, 40]. Additionally, there are two outlying
eigenvalues. The fact that the larger eigenvalue (corre-
sponding to the “DC” eigenvector) does not saturate to
its maximum possible value, together with the stability
of the switching dynamics, suggests that there is no run-
away potentiation of either cluster. The smaller eigen-
value corresponds to an eigenvector that follows from
the clustered connectivity. Angles between the plastic
network’s eigenvectors and those of a network with per-
fect cluster structure are stable and much smaller than
angles computed for a network with shuffled connections,
indicating that network structure is preserved despite on-
going plasticity. As predicted by the mean-field analysis,
strong synapses are protected from rapid turnover. The
dynamics of the plastic network also retain the cluster
properties, exhibiting larger intra-cluster spike-time cor-
relations and larger avalanches, than a shuffled network.
Intriguingly, avalanche statistics are closely related to the
synaptic-weight distribution [41].

To understand the implications of the multiplicative
rule beyond stability, we extended the results in [42] and
analytically computed the memory capacity of Hopfield-
like network, defined such that the variance of the
synaptic-weight distribution is independent of the mem-
ory load [27]. Fig. 3H shows that a heavier tail of the dis-
tribution, similarly to Pw in Fig. 2E, leads to a marked
increase in capacity. Furthermore, we demonstrate in
[27] that the multiplicative plasticity rule supports ef-
ficent learning of structured connectivity (akin to Fig.
3A), reflecting the structure of an external input.

In [27] we explored the sensitivity of the spiking-
network stability results to changes of two key param-
eters, the potentiation/depression thresholds [θp, d in
Eq. (6)] and the structure of inhibition.

We additionally showed that networks with intrinsi-
cally bistable synapses [10] are also stable, but do not
exhibit realistic synaptic-weight distributions or activity-
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FIG. 3. Recurrent spiking neural network simulations with synapses subject to the multiplicative plasticity rule. (A) Initial
network structure, and steady-state spiking activity. (B) Calcium influx and synaptic-weight (inset) distributions at steady-
state, for inter- and intra-cluster connections. (C) Eigenvalues (top) and eigenvectors (bottom) of the E → E steady-state
synaptic-weight matrix. The second outlier suggests that the network’s cluster structure is preserved at steady-state. (D) The
first two subspace angles between the plastic network and a network with perfect cluster structure as a function of time. The
second angle in the plastic network remains far from π/2 compared to the shuffled network. (E) Joint distribution of (wmax, T )
for intra-cluster E → E connections at steady-state. Similarly to the reduced model (Fig. 2C), strong synapses are preferentially
protected. (F,G) The plastic network exhibits larger avalanches and stronger intra-cluster spike-timing correlations, compared
to the shuffled network. (H) Memory capacity of a Hopfield-like network versus synaptic-weight variability. Synaptic-weights
are normalized such that the variance is independent of the memory load α. See [27] for simulation and calculation details.

dependent protection of strong synapses. Highlighting
the importance of the multiplicative rule’s statistics, we
found that an additive plasticity rule with C = c1 + c2
[instead of Eq. (2)] rapidly leads to instability, and is un-
able to efficiently learn the structure of an external input
[27].

Our analysis offers insights to the two-timescale prob-
lem, where synaptic interactions determine network dy-
namics on short timescales, and undergo neural activity-
dependent modifications on longer timescales. Impor-
tantly, we analyze the network in a regime where strict
separation of timescales does not hold. Previous stud-
ies utilizing plasticity rules where modifications depend
(possibly nonlinearly) on sums over pre- and postsynaptic
activity, typically resulted in unrealistic synaptic-weight
or firing-rate distributions, or required fast homeostatic
mechanisms for stability [13–16, 43–46]. The multiplica-
tive structure of the plasticity rule analyzed here effec-
tively eliminates modifications due to ‘spurious’ activ-
ity, while specific patterns of activity are responsible for
potentiation and learning. The general structure of the
multiplicative process introduced here suggests that our
results could be applied to understand nonlinear and
adaptive interacting systems in a broad range of scientific
fields.
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