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Abstract

Dense suspensions can exhibit shear thickening in response to large deformation.

A consensus has emerged over the past few years on the formation of force net-

works, that span the entire system size, that lead to increased resistance to motion.

Nonetheless, the characteristics of these networks are to a large extent poorly under-

stood. Here, force networks formed in continuous and discontinuous shear thickening

dense suspensions (CST and DST respectively) are studied. We first show the evolu-

tion of the network formation and its topological heterogeneities as the applied stress

increases. Subsequently we identify force communities and coarse-grain the suspen-

sion into a cluster network, and show that cluster-level dynamics are responsible for

stark differences between the CST and DST behavior. Our results suggest that the

force clusters formed in the DST regime are considerably more constrained in their

motion, while CST clusters are loosely connected to their surrounding clusters.

Dense suspensions of particles are ubiquitous in many industrial, natural, and biological

problems [1,2]. These dense suspensions can exhibit a rich set of rheological signatures that in-

clude yielding, shear thinning or thickening, and shear jamming [1,3–5]. These non-Newtonian

rheological features often find their underpinnings in the interfacial and surface properties of the

individual particles and the way they interact with one another [5–14]. The increase in the sus-

pension viscosity at a given volume fraction, φ, can be smooth or abrupt, termed as continuous

shear thickening (CST) and discontinuous shear thickening (DST), respectively. In particular,

DST has recently been related to the stress-activated transition from an unconstrained lubri-

cated state to a constrained state where relative motion of particles in the tangential pairwise

direction is significantly hindered beyond an “onset stress” [5–7, 15]. This constrain on the

motion of particles can be caused by frictional contacts [16, 17] or lubrication forces at the

particle roughness level [9]. Nonetheless, this constraint-based picture of the suspension rhe-

ology through mean-field approaches have been successful in describing both simulation and

experimental data [15, 18–20]. What is clear is that these particle-level interactions in turn re-

sult in large scale force and contact networks that resist large deformations and hence increase

the viscosity of the suspension [21]. However, how this force/contact network emerges and its
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characteristics are unexplored. An important fundamental question is the difference in the force

network when the suspension undergoes continuous or discontinuous shear thickening. Some

recent works have shown that there exists a connection between the underlying network struc-

ture and the rheology of shear thickening suspensions rheology [22–24]. In particular, the work

of Sedes et al. [24] showed that a K -core analysis can be used for clustering particles in contact

within a percolated network. On the other hand, several well-established methodologies exist for

clustering different components of a complex network. Network science studies the network of

interacting constituents through their patterns of connection [25,26]. This provides us with the

opportunity of applying network science techniques on the force networks in dense suspensions,

where characteristics of the particle-level dynamics cannot provide enough explanation to the

emergence of shear-thickening [17]. Network science techniques have been employed in a wide

variety of scientific studies from the world wide web, to biological systems, neuroscience, and

structured materials [27–31]. In many cases, complex behavior of the interaction networks origi-

nates not only from the interactions between individual parts of the network, but also formation

of communities of individuals that interact with one another, and unveil hidden characteristics

of the network [32,33]. Community detection algorithms are applicable in the context of dense

suspensions because the rate-dependent viscosity of such materials are shown to originate from

the resistance of clusters of particles against fluid flow [34]. Application of network science tools

in the study of granular matter is demonstrated by Papadopoulos et al. [31] where community

structure detection algorithms have been shown to successfully identify mesoscale structures

from the network of frictional contacts. In this work, we employ a series of network science

techniques to explore formation and evolution of frictional contact networks using simulations

of dense suspensions. First, we investigate the force network as a whole as the applied stress is

increased and with respect to the shear-thickening behavior. Then we adapt a Gaussian Mix-

ture Model (GMM) algorithm to detect force clusters and use these communities to distinguish

between CST and DST suspensions.

Although real-world ST systems are 3D, the main rheological features of 2D suspensions are

found to be very similar to these real systems [23]. As the system evolves in all three dimensions,

additional contacts are made between particles. Nonetheless, dynamics of force contacts and

clusters can be more easily conceptualized and studied with respect to their constraints in a

lower dimensional flow. As such, and for the sake of clarity and simplicity here we use 2D

simulation of dense suspensions, performed in a series of stress-controlled simple shear flows

for two area fractions of particles, φA = 0.72, 0.78 with N = 2000 bidisperse (radii a and

1.4a) spherical rigid non-Brownian particles. Here, the equation of motion is the force balance

between hydrodynamics (FH) and contact (FC) forces on each particle. Rate dependence is

introduced by employing a Critical Load Model (CLM) where the normal force must exceed force

threshold F0 to activate friction between particles [16,17]. Further details about the simulation

scheme are available in Supplemental Material [35]. For the lower area fraction, φA = 0.72, the

shear viscosity increases gradually with increase of the applied shear stress indicating a CST

behavior. On the other hand, at higher area fraction of φA = 0.78 there is a discontinuous

jump in viscosity, and a S -shaped flow curve indicative of the DST behavior [18, 19]. A series

of computational and experimental studies [8–10, 16, 17, 34, 36–39] have shown emergence of

a percolated network of contacts between the particles in the shear thickened state (STS).

Here the focus is on characterization of these networks formed by the interparticle frictional

contacts. We convert the physical system of particles and interparticle force contacts to a
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network, where particles and inter-particle forces/contacts are represented by nodes and edges

respectively. Networks of stress-induced frictional contacts before ST, at the onset of ST, and

deep into the shear-thickened state, for both CST (φA = 0.72), and DST (φA = 0.78) are shown

in the snapshots of Fig.1, where the frictional bonds between contacting particles are colored

in red. Clearly, as the shear stress increases, we go from a frictionless, low viscosity regime, to

emergence of frictional contacts leading to shear thickening, and eventually to a high viscosity

rate-independent contact-dominated regime. Hence, the evolution of those networks seems be

providing the constraints leading to ST. From a visual inspection, the force networks at the

higher area fraction appear to be denser both at the onset of ST, and in the shear-thickened

state.
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f

Figure 1: (a) Relative viscosity versus shear rate for two different area fractions, showing CST
and DST. Snapshots of the network of frictional contacts for φA = 0.72 (a,b,c) and φA = 0.78
(d,e,f) at applied stresses of 0.1 (a,d), 1 (b,e), and 100 (c,f).

We employ various network measures to quantify the density of contacts and also their

patterns of connections. Fig. 2.a shows the average number of contacts per particle versus shear

stress. In both CST and DST, increasing the applied stress increases the number of frictional

contacts at the onset of ST, although the rate by which contacts are added is significantly less

at higher stresses, and the average coordination number becomes nearly constant in the shear-

thickened state. This is consistent with the measurements of 3D systems in [24]. On average,

and deep into the STS, each particle in the DST regime has ∼ 0.8 compared to the CST system,

< ZSTS
DST >=< ZSTS

CST > +0.8. Although particle-level contacts provide some insight into the

state of suspension, the force chains will need to become significant compared to the system

size for the suspension viscosity to rise. As clearly visible in Fig.1.c/f these contacts can be

disconnected and interspersed within the suspension, but eventually percolate to span the entire

system. As such, the essential load-bearing component to the viscosity is the largest connected

component (LCC) of particles. The largest connected component of the network, normalized by

the total number of particles within the system is shown in Fig. 2.b. LCC of both CST and DST

networks grow with stress, with %80-90 of the particles belonging to one percolated network

at the largest stresses applied. Nonetheless, there are no significant differences in the evolution

or the size of the LCC in CST compared to the DST networks. Sedes et al. [24] showed that
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the network susceptibility shows a divergence at the percolation point, and a network homology

study [23] on shear thickening suspension suggested that long-lived contact loops emerge at the

onset of shear thickening as well. The longest path connecting any two components within a

system can be used as an alternative measure of the network heterogeneity. This is commonly

referred to as the diameter of the network [27]. For a percolated network, generally a shorter

network diameter would result in enhanced connectivity of the system. As such, in addition to

a significant LCC, diameter can be used as a measure of network’s ability to transmit stresses

more effectively. This argument is valid from a physical perspective as well: Consider a cluster

of particles that are closely connected to one another in a dense packing, with relatively short

paths to travel from one node to another.
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Figure 2: (a) Average number of contacts per particle, (b) Normalized largest connected com-
ponent, and (c) Normalized network diameter against imposed shear stress.

In this scenario, restriction of a particle highly affects the motion of the other particles.

Alternatively, particles connected in a chain-like packing require longer walks to go from one

node to another. The latter structure, geometrically poses less restrictions on the motion of other

particles, when any of the cluster’s components are constrained. Fig.2.c shows the diameter

of force networks for the two systems studied normalized by the size of the calculation box,

indicating that for both CST and DST, the network diameter grows before the onset of shear

thickening and shortly after percolation. Note that the largest diameter of the DST network

measured grows larger than the calculation box, suggesting an elongated chain-like network of

contacts at the early stages of shear thickening. However, as more contacts form and loops

emerge, additional edges will provide shorter node to node paths for the same particles that

were already connected through longer path(s). While both of the networks show similar trends,

this is more clear/significant for the DST suspension. Wang et al. [10] showed that stresses in

shear-thickening suspensions are heterogeneous at the onset and early stages of shear thickening,

and become increasingly homogeneous in the STS. This is consistent with the diameter of the

network measured in Fig.2.c.

While characteristics of the force networks in CST and DST show differences in the density

of contacts and the rate by which they grow during ST, these differences cannot describe stark

differences in the stress response of these two systems. It is plausible to assume formation of

particle clusters that are the primary units for resistance to motion [2, 40, 41]. For attractive

colloidal gels, these particle clusters have been shown to be responsible for the emergence

of rigidity [42]. Therefore, it is appropriate to identify force clusters within the percolated

network of ST suspensions. This in network analysis is commonly referred to as “community”

detection, which involves identification of nodes within a larger network that share similar

modularity. There are many different methods of community detection in general [43], and
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different methods that can be applied to particulate and granular systems are reviewed in [44].

In this work, we employ a Gaussian Mixture Model (GMM) algorithm in order to robustly

identify the force/contact clusters. For details of the GMM algorithm and how it identifies the

number and constituents of particle clusters refer to the Supplemental Materials. Snapshots of

the particle clusters are shown for both CST and DST systems in Fig.3.a,b respectively, where

particles that belong to one cluster are colored similarly for visual purposes. The CST clusters

are seemingly relatively more elongated compared to the DST clusters. The GMM recovers a

growing number of clusters as the stress is increased for both systems, with a quasi-steady value

in the STS (Fig.3.c). Having the clusters clearly identified, we further characterize the clusters

in each system and under different stresses applied. The number of particles per cluster is

measured as the cluster mass, MCluster, and plotted for different stresses in Fig.3.d. For the CST

system, the cluster sizes gradually grow as the stress is increased (although viscosity remains

constant); however, for the DST system the cluster size immediately finds a well-defined and

steady distribution in the STS whose mean value is significantly larger than the CST clusters.

The diameter of the cluster, DCluster, defined as the diameter of a single circle to encompass all

nodes within a cluster, however shows a rather similar and steady distribution for both CST

and DST (Fig.3.e). These two measures together enable calculation of an internal area fraction

of clusters. We find that DST clusters are more densely packed and locally have higher area

fractions (Fig.3.f). Note that these are elongated clusters whose individual area fractions are

significantly less than the overall area fraction of the system, and thus the total area fraction of

the clusters sum up to more than φTotal
Clusters > 3, as shown in Fig.3.g. These locally more packed

DST clusters also can be quantified through higher fractal dimensions (Fig.3.h), where fractal

dimension is defined as log(MCluster)/log(DCluster).
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Figure 3: Snapshots of the system after clustering for suspensions showing (a) CST, and (b)
DST behavior (particles of the same cluster are colored similarly). (c) Number of clusters versus
shear stress, (d) Distribution of cluster mass, (e) Distribution of cluster diameters, (f) Internal
local area fraction of clusters, (g) Total area fraction of all clusters, and (h) The internal fractal
dimension of clusters for two different area fractions in the CST and DST regime.

Regardless of how dense clusters are, or how many clusters exist within a network, it is
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their connectivity that ultimately controls the rheological response of the entire suspension.

Here, we consider clusters i and j to be in contact, if there exists at least one particle-level

contact connecting their constituents. For instance, in Fig. 4.a,b, individual black circles

represent the clusters’ center of mass, and an edge is added between two clusters if there exists

at least one particle-particle contact between two clusters. This provides a coarse-grained view

of the particulate network. Although CST suspensions yield more number of clusters, the total

number of contacting neighbours, < Zclusters >, for the DST is clearly larger as plotted in

Fig.4.c. This suggests that clusters in DST are significantly more inter-connected compared to

the CST clusters.

We also hypothesize that if two clusters are connected through a single particle-particle

contact, their relative motion is constrained only with respect to the sliding friction. However,

when two adjacent clusters are connected via multiple particle-level contacts, their rolling motion

also becomes significantly hindered, since relative motion of clusters will require multiple two

contacts to be made mobile. This is sketched in Fig.4.d/e for the two cases, to better illustrate

the hindered motion of particle clusters. Thus the total number of contacts [at the particle level]

that each cluster makes with its surrounding clusters can bring an insight into their dynamics.

The average number of total contacts between clusters, and their normalized values per cluster

neighbor versus stress are plotted in Fig. 4.f. Deep into the STS, each cluster for the CST

suspension is connected to its neighbors through a single force contact, i.e. constrained sliding

motion. On the other hand, on average each DST cluster is connected with more than two

contacts to a neighbour, i.e. sliding and rolling constraints. This suggests that although nature

of the contacts at the particle-level is exactly the same for the two system, one where particle

clusters are over-constrained in their relative motion will exhibit DST whereas the single-mode

hindrance to motion of clusters only results in CST behavior.

In summary, results presented here strongly suggest that a rigorous interrogation of the

force networks in flowing suspensions can bring insight into their micro- and meso-mechanics.

Emergence of a percolated contact network of a highly heterogeneous nature is responsible for

the onset of ST. These heterogeneities however diminish by increasing the applied stress and into

the STS, through formation of alternative paths within the network, until virtually all particles

within the suspension belong to a single network. We find that the characteristics of particle-

level contacts however cannot help authoritatively distinguish the CST and DST. Thus, using

a GMM algorithm we identified larger scale force clusters. These clusters in DST were found to

be denser and more interconnected, suggesting that not only the individual load-bearing units

are of more rigid nature in DST compared to CST, but also that denser connections between the

clusters provide higher resistance to large deformations. Finally, a coarse-grained description

of the contact network showed that multiple particle-level connections between neighboring

force clusters in the DST regime effectively constrain the sliding and rolling motion of these

meso-scale structures, while single connection between the CST clusters suggest only a sliding

motion hindrance. This clearly indicated that although the microdynamics of the two system

are identical, the larger mesoscale structures formed as a result of these contacts can significantly

differ, leading to drastic changes in macroscopic rheological measures of a complex system.
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Figure 4: Snapshots of clusters and their contacts for (a) CST and (b) DST suspensions. (c) The
average number of neighbors per cluster versus shear stress. The schematic depiction of con-
strained cluster motion based on (d) single or (e) multiple particle-level contacts connecting two
neighboring clusters. Straight arrows show the relative sliding motion, and the curved arrows
show the relative rolling motion of clusters, where red and green colors indicate constrained,
and unconstrained motion respectively. (f) Average total number of contacts per cluster (solid
lines), and contacts per neighbor (dashed lines) for each cluster versus applied shear stress for
two different area fractions exhibiting CST and DST behavior.)

Acknowledgements

The research in the Jamali group at Northeastern University is partially supported by the

National Science Foundation’s Awards 2104869 and 2118962. A.S. acknowledges support from

the Center for Hierarchical Materials Design (CHiMaD) under award number 70NANB19H005

(US Dept. Commerce), and from the Army Research Office under grants W911NF-19-1-0245,

W911NF-20-2-0044, and W911NF-21-1-0038. The authors would also like to acknowledge fruit-

ful discussions with J. Morris, L. Hsiao, and E. Del Gado.

References

[1] J. Mewis and N. J. Wagner. Colloidal Suspension Rheology. Cambridge University Press,

2011.

[2] Norman J Wagner and John F Brady. Shear thickening in colloidal dispersions. Physics

Today, 62(10):27–32, 2009.
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