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High-order topological phases, such as those with nontrivial quadrupole moments[1, 2], protect
edge states that are themselves topological insulators in lower dimensions. So far, most quadrupole
phases of light are explored in linear optical systems, which are protected by spatial symmetries [3]
or synthetic symmetries [1, 2, 4–7]. Here we present Floquet quadrupole phases in driven nonlin-
ear photonic crystals (PhCs) that are protected by space-time screw symmetries[8]. We start by
illustrating space-time symmetries by tracking the trajectory of instantaneous optical axes of the
driven media. Our Floquet quadrupole phase is then confirmed in two independent ways: sym-
metry indices at high-symmetry momentum points and calculations of the nested Wannier bands.
Our work presents a general framework to analyze symmetries in driven optical materials and paves
the way to further exploring symmetry-protected topological phases in Floquet systems and their
optoelectronic applications.

Symmetry plays an important role in topological
phases [9–14]. Examples include topological insulators
that are protected by time-reversal symmetry [15, 16],
Chern insulators that require breaking time-reversal sym-
metry [17–20], and topological crystalline insulators [21]
that are protected by spatial symmetries such as rota-
tion and reflection. One important class of topologi-
cal crystalline insulators is high-order topological insu-
lators [1, 6, 7, 22–27], where the interesting physical
consequences appear in spaces two or more dimensions
lower than the bulk. For example, quadrupole topolog-
ical insulators in two dimensions, characterized by their
quantized and non-trivial second-order moments, pro-
tect zero-dimensional corner states with fractional oc-
cupations. So far, most studied quadrupole phases of
light are protected by synthetic symmetries in the lat-
tice model - such as the notion of π-fluxes [1, 5, 7] -
or spatial symmetries such as the four-fold rotation [3].
Moving beyond linear optics, a different class of Floquet
topological phases can be found in nonlinear materials
driven by time-varying fields. While some examples of
Floquet topological phases have been explored [4, 28–30],
detailed symmetry analysis, in both space and time, and
the general recipe to achieve symmetry-protected topo-
logical phases in driven nonlinear optical systems remain
largely unexplored.
Here we present Floquet quadrupole phases in driven

nonlinear PhCs, where the quadruple moments are quan-
tized and protected by a space-time screw symmetry, in-
volving both rotation in space and translation in time.
This differs from previous studies, which are based on
purely spatial symmetry [3, 31] or the tight-binding ap-
proximation. While space-time screw symmetry also ex-
ists in other systems (e.g., circularly shaken cold atom
lattices [32–34] and light irradiated graphene [35–37]),
previous studies mostly focus on Chern insulators, which
do not rely on the space-time symmetries, leaving them
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largely unexplored. Differently, our Floquet quadrupole
phase here is protected by space-time symmetry. We
define and analyze this space-time symmetry in a spe-
cific example of driven GaAs before presenting the de-
tailed design of a Floquet quadrupole PhC. The nontriv-
ial quadrupole moment is then confirmed with the nu-
merical calculations of the nested Wilson loops. Finally,
we demonstrate key features associated with quadrupole
phases, including fractional corner occupations and filling
anomalies[3, 22].
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FIG. 1. Space-time screw symmetry in a driven nonlin-

ear medium. a) Schematic of a uniform slab of GaAs driven
by a circularly-polarized field Ed incident from the normal di-
rection. b) All three instantaneous optical axes of the driven
medium, ê1−3, spin around the z axis. c) Screw symmetry
can be found in each of the optical axes, defined through a
combination of rotation in space (x,y) and translation in time
(t).

We first define the space-time screw symmetry in
a driven nonlinear medium. As shown in Fig. 1a, a
circularly-polarized field Ed = Ed cos(Ωt)x̂+Ed sin(Ωt)ŷ
periodically drives a uniform slab of GaAs. This driving
field couples to the second-order nonlinear susceptibility

of GaAs, χ
(2)
xyz and its permutations, and gives rise to a

time-dependent permittivity:

¯̄ε(t) =





ε 0 α sin(Ωt)
0 ε α cos(Ωt)

α sin(Ωt) α cos(Ωt) ε



 . (1)

Here, ε is the linear permittivity of GaAs that is isotropic

and α = 2χ
(2)
xyzEd is the nonlinear perturbation. Higher-
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FIG. 2. Space-time symmetry indices of photonic bands dressed by optical nonlinearity. a) Schematic drawing of
a square GaAs PhC unit cell with periodicty Na (N = 8), consisting of veins of width w and spacing a as well as 4 disks of

diameter d. b) The PhC band structure, including both TE (blue lines) and TM bands (red). The S̃4 symmetry indices are
labeled at the high-symmetry momentum points (Γ and M) of each band. If driven by an external field, Floquet basis sharing

the same S̃4 index, such as |4,−1〉 and |2, 0〉 at Γ, will couple to each other, which leads to an energy splitting of ∆ω and opens
a new gap in the Floquet spectrum. c) The energy splitting ∆ω increases linearly with the driving field strength E.

order perturbations are ignored here under the assump-
tion of a weak driving field. To determine the symmetry
of this driven medium, we analyze the temporal evolution
of its three optical axes:

ê1 = cos(Ωt)x̂− sin(Ωt)ŷ

ê2 =
1√
2
(sin(Ωt)x̂+ cos(Ωt)ŷ − ẑ)

ê3 =
1√
2
(sin(Ωt)x̂+ cos(Ωt)ŷ + ẑ) (2)

As shown in Fig. 1b, all three optical axes spin around
the z axis at the driving frequency Ω. We can further
trace out the trajectory of the optical axes in both space
(x, y) and time (t). An example for ê1 is shown in Fig. 1c,
which evolves along a helix. This provides the foundation
for our symmetry analysis below.
First, we note that the driving field breaks the continu-

ous rotation symmetry of the isotropic linear permittivity
of GaAs; namely, the helix in Fig. 1c does not return to
itself if it is rotated by some general angle in the xy plane
(e.g. 90 degrees). Instead, it has a symmetry involving a
compound operation with a rotation in space and a shift
in time. For example, one can first rotate the helix by
90 degrees along the counterclockwise direction in the xy
plane (C4) and then translate it by T/4 in time (T̂T/4).
Here T = 2π/Ω is the periodicity of the driving field. For
convenience, we denote this space-time screw operation
as:

S̃4 = ÔC4 × T̂T/4. (3)

Naturally, if one repeats this S̃4 operation four times,
the whole system evolves in time by a full periodicity T

and, thus, remains unchanged. Under this requirement of
(S̃4)

4 = 1, the four allowed S̃4 symmetry indices are ±1
and ±i. The symmetry of this driven medium can also be
derived by checking the commutation rules between var-
ious symmetry operations and the time-dependent non-
linear permittivity, reaching the same conclusions. See
Section I of the Supplementary Information[38] for more
details.
We stress that, as the symmetry analysis is on the effec-

tive permittivity, it is not uniquely defined by the driving
field; instead, it also depends on the exact form of optical
nonlinearity provided by the material. For example, an
x-cut LiNbO3 driven by a z-polarized field will have not
a space-time symmetry but a purely spatial symmetry of
Cx

2 [31].
Next, we present a concrete example of Floquet

quadrupole photonic crystal (PhC) that is protected by

this space-time symmetry of S̃4. The 2D PhC consists
of veins and disks made from GaAs in the air, and one
unit cell with periodic boundaries is presented in Fig. 2a.
Veins of width w = 50 nm form a square lattice of pe-
riodicity a = 500 nm. Four disks of diameter d = 348
nm are arranged in a C4 symmetric way in each unit cell.
The calculated PhC band structure, eigen-frequencies ω
as functions of momentum k, is shown in Fig. 2b, where
TE modes (Ex, Ey, Hz) and TM modes (Hx, Hy, Ez) are
colored in blue and red, respectively. By engineering the
location and size of the disks, four of the bands are well
isolated from the rest, each residing inside a TE or TM
band gap that is shaded in blue or red.
A circularly-polarized driving field Ed is applied on

the PhC and the topology is further explored by study-
ing the Floquet eigenstates. These Floquet eigenstates
can be probed by a weak probe beam in a potential
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experimental demonstration using a pump-probe setup.
The pump field Ed is non-depletable, which solely de-
fines the time-dependent permittivity. Thus, similar to
our previous analysis, the spatial rotation symmetry C4

is broken in this PhC. Instead, the PhC now has a space-
time screw symmetry S̃4, which quantizes bulk dipole
and quadrupole moments. See Section II in the Supple-
mentary Information [38] for detailed derivations. The
bulk quadrupole moment qxy of two isolated bands can

be evaluated using the S̃4 symmetry indices at their high-
symmetry momentum points as:

ei2πqxy = S̃+
4 (Γ)S̃+∗

4 (M) = S̃−4 (Γ)S̃−∗4 (M). (4)

Since four applications of S̃4 restore the system, we have
(S̃4)

4 = 1 and (S̃4)
2 = ±1. Here in Eq. 4, S̃±4 refers to

the S̃4 eigenvalue of a mode with an (S̃4)
2 eigenvalue of

±1. Naturally, S̃+
4 = ±1 and S̃−4 = ±i. Based on these

symmetry indices at high-symmetry momentum points,
we observe that ei2πqxy = ±1 give rise to trivial (non-
trivial) quadrupole moment qxy = 0 (1/2). Based on
this formalism, we later show how to achieve nontrivial
quadrupole moments through driving fields.
To find the Floquet eigenstates of this driven PhC

and their relevant S̃4 indices, we solve the Floquet
eigenvalue problem of Maxwell’s equations, following
our previous theoretical framework [29]. We note that
since the Floquet eigenstates are free to exchange en-
ergy with the non-depletable pump by emitting or ab-
sorbing a pump photon the Floquet eigenvalue prob-
lem is generically non-Hermitian[39]. In short, we ex-
pand the Floquet eigenstates using the Floquet basis as
Φ(t) = e−iλt

∑

jm cjm |j,m〉 and then compute the Flo-
quet eigenvalues λ and coefficients cjm. Floquet basis
states |j,m〉 = |j〉 eimΩt are essentially copies of the static
PhC eigenstate |j〉, but shifted in frequency by mΩ. One
example is the Floquet basis |4,−1〉 shown in Fig. 2b,
which is shifted down by Ω from |4, 0〉.
To understand the S̃4 indices of the Floquet eigen-

states, we start by comparing the symmetries under C4

and the compound operation S̃4.

ÔS̃4
|j,m〉 = (ζj × im) |j,m〉 , (5)

ÔS̃4
|j, 0〉 = ζj |j, 0〉 . (6)

Here ÔS̃4
refers to the space-time screw operation on a

time-dependent vector field. One example of the ÔS̃4
op-

eration is shown in Section II in the Supplementary Infor-
mation [38]. Namely, the S̃4 index depends on the band
information j and the Floquet order m. For example, for
m = 0, the S̃4 index reduces to C4 index ζj of |j〉; for
m = ±1, the S̃4 index is changed by ±i. This dressing
process can also be understood intuitively without the
Floquet basis by checking the spatial symmetry indices
of the nonlinear dipoles of sum/difference frequency gen-
eration. Our detailed derivations can be found in Section
III of the Supplementary Information [38]. Naturally, the

S̃4 index of a Floquet eigenstate is the same as that of
all of its constituting Floquet basis.

We now apply this symmetry analysis to our specific
setup and compute the quadrupole moment. When the
Floquet basis |4, 0〉 shifts down in frequency to |4,−1〉,
its S̃4 index at Γ changes from −1 to +i, which is now the
same as the S̃4 index of |2, 0〉. Naturally, the two Floquet
basis, |4,−1〉 and |2, 0〉, will couple to each other under a
driving field, resulting in an energy splitting ∆ω between
them. This energy splitting increases linearly with the
driving field strength (Fig. 2c), lifts the degeneracy be-
tween static states |2, 0〉 and |3, 0〉, and opens a new (Flo-
quet) energy gap. Using Eq. 4, the quadrupole moment
of the two bands below the Floquet gap, |1, 0〉 and |2, 0〉,
can be evaluated as: ei2πqxy = −1 and qxy = 1/2; namely,
we have now achieved a Floquet quadrupole phase.
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FIG. 3. Confirmation of quadrupole phases through

Wannier band calculations. a) Calculated Wannier bands
and nested Wannier bands for the first two Floquet bands.
The results confirm the vanishing dipole moments px = py =
0 and the nontrivial quadrupole moment qxy = 1/2. b) The
gap between the two Wannier bands is opened by the external
driving field.

Next, we confirm the Floquet quadrupole phase
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through direct calculations of the nested Wannier bands.
To this end, we first compute the Wannier bands νx,y
of the two Floquet bands of interest, |1, 0〉 and |2, 0〉,
which are the phases of the eigenvalues of the Wilson loop
Wx(y),ki+2πx̂(ŷ)←ki

. The Wilson loop is defined based on
the inner product of adjacent Floquet states in a period-
averaged way. We note that due to the non-Hermitian
form of our formula, the inner product is defined with left
and right eigenvectors. Our results, shown in the upper
panel of Fig. 3a, confirm that we have vanishing dipole
moments in both directions: px = py = 0. Besides an en-
ergy gap (Fig. 2c), the driving field also opens a Wannier
gap between the two Wannier bands (Fig. 3b), which are
gapless without a driving field. This Wannier gap allows
one to separate the Wannier bands into two sectors, ν±,

and obtain the nested Wannier bands p
ν±

y(x)

x(y) by computing

the nested Wilson loop. The nested Wilson loop is de-
fined with Wannier band basis, which are eigenvectors of
the Wilson loops. Our results, shown in the lower panel
of Fig. 3a, confirm that our driven PhC indeed has a

nontrivial quadrupole moment of qxy = 2p
ν−
y

x p
ν−
x

y = 1/2.
Details of the calculation are presented in the Section IV
of the Supplementary Information[38].
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FIG. 4. Physical consequences of corner states and

filling anomaly. a) Schematic of a 10 × 10 super-cell of
Floquet quadrupole PhCs. One unit cell is presented in the
inset. b) The eigenvalue spectrum confirms the existence of
corner states and the filling anomaly in our system. c) Accu-
mulative time-averaged energy density profile of the first 200
eigenstates, showing fractional occupations (2 ± 0.5) at the
four corners.

Finally, we present the physical consequences of Flo-
quet quadrupole PhCs in the contexts of corner states
and filling anomalies. We start by computing the eigen-
states in a N ×N super-cell of Floquet quadrupole PhCs
surrounded by perfect electric conductors (PECs). Our

specific setup with N = 10 is shown in Fig. 4a. There
is a thin gap between the super-cell and the PECs. The
eigenstates are labeled in the order of their Floquet eigen-
values. Similar to other quadrupole phases [3, 5], we also
observe 4 degenerate states in energy gap (states 199 -
202 in Fig. 4b), which are localized at the 4 super-cell
corners. Due to the lack of chiral symmetry expanded
around a nonzero frequency in Maxwell’s equations, these
corner states are not pinned to the center of the energy
gap; instead, they can shift up or down in frequency or
even merge into the bulk continuum. A filling anomaly is
also confirmed in our system by noting the incompatibil-
ity between the number of eigenstates below the Floquet
gap (2N2 − 2 = 198) and the number of unit cells in the
super-cell (N2 = 100). Our quadrupole phase is further
confirmed by the fractional occupations at the corners,
which is an integral of the mode density over the occupied
bands, as shown in Fig. 4c. In these calculations, the disk
diameter d is tuned to place the corner-state frequency
in the middle of the Floquet gap. Details of the calcu-
lation are presented in Section V of the Supplementary
Information[38].
In summary, we present Floquet quadrupole phases

that are protected by the space-time screw symmetry
in a driven nonlinear PhC. The parameters used in our
calculations are practical, and the proposed system can
be readily studied in nonlinear optical experiments. Fur-
thermore, while our example focuses on GaAs, the space-
time symmetry analysis applies to the vast range of non-
linear materials, opening the door to further explorations
into new topological phases and consequences in driven
systems, such as symmetry-protected topological classi-
fication [40] and topological quantum chemistry [41]. Fi-
nally, our general formalism of understanding Floquet
topological phases in driven systems can extend beyond
photonics into other nonlinear wave systems, including
phononics, piezoelectrics, piezomagnetics, and polariton-
ics.
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