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We present a general approach to derive Lindblad master equations for a subsystem whose dynamics is cou-
pled to dissipative bosonic modes. The derivation relies on a Schrieffer-Wolff transformation which allows to
eliminate the bosonic degrees of freedom after self-consistently determining their state as a function of the cou-
pled quantum system. We apply this formalism to the dissipative Dicke model and derive a Lindblad master
equation for the atomic spins, which includes the coherent and dissipative interactions mediated by the bosonic
mode. This master equation accurately predicts the Dicke phase transition and gives the correct steady state. In
addition, we compare the dynamics using exact diagonalization and numerical integration of the master equation
with the predictions of semiclassical trajectories. We finally test the performance of our formalism by studying
the relaxation of a NOON state and show that the dynamics captures quantum metastability.

Introduction.— The description of open many-body quan-
tum systems dynamics is a formidable challenge for mod-
ern physics. Typical out-of-equilibrium scenarios are a quan-
tum system (QS) interacting with an environment of bosonic
modes (BM) [1] [see Fig. 1(a)]. This is the common setup of
quantum electrodynamics, where the BM are the electromag-
netic field [2, 3]. Furthermore, it is the basis of prominent im-
plementations of quantum simulators because it allows to tai-
lor the interactions between the constituents of the QS [4–7].
Examples include quantum gases in optical cavities [7–11],
optomechanical arrays [12], phonon-mediated interactions of
trapped ions [4–6, 13], polaritons or nitrogen-vancancy cen-
ters in diamond coupled to microcavities or mechanical ele-
ments [14–16], and photonic crystals [17].

A powerful tool to analyze open many-body QS is the
Keldysh approach [18, 19], which employs methods of quan-
tum field theory and is very successful in predicting their
asymptotic behavior. The dynamics and metastability are in-
stead accessed by full simulations or so-called effective mas-
ter equations. The latter dispose of a large part of the Hilbert
space by eliminating the BM [20–23] and include interac-
tions, noise, and dissipation they mediate. The derivation
of effective master equations is an active field [24, 25] with
various emphases, such as high-precision metrology [26, 27],
exact solutions and validity [28–31], multi-mode configura-
tions [32–35], and coherent many-body QS [21–23].

Recently, in cavity quantum electrodynamics, effective
Redfield master equations were derived [21, 22]. While de-
scribing the correct low-frequency behavior, they are not nec-
essarily positive. Attempts to make them positive, e.g., by
bringing them into Lindblad form, resulted in incorrect pre-
dictions of the asymptotics. Other effective descriptions add
fluctuations around a mean-field treatment of the BM [23].
Here, the problem of positiveness was resolved by assuming a
thermalization of the QS, which is questionable regarding the
existence of non-thermal metastable states [36]. This high-
lights the need to identify general effective descriptions that
preserve positivity. With such, one could determine the spec-

FIG. 1. (a) The general model includes coupled dissipative bosonic
modes âk interacting with a quantum system described by ĤS . (b)
Example: a dissipative optical cavity mode couples to a cloud of
driven atoms.

trum of the open system or simulate the master equation using
quantum state diffusion models [37]. This can then be used to
analyze critical properties of driven-dissipative QS [38–40],
study prethermalization and metastability [36, 41, 42], and
shed light on aspects that cannot be accessed easily otherwise,
including measurement-induced phase transitions [43–45].

In this Letter, we identify a general procedure which allows
derivation of effective master equations for an arbitrary QS
that is coupled to dissipative BM. We use a specific type of
Schrieffer-Wolff transformation [46] to reduce the coupling
between the QS and the BM such that we can eliminate the
latter. This transformation is a displacement that depends, in
general, on the eigenstates and eigenenergies of the decoupled
QS. The resulting master equation has the Lindblad form and
the specific procedure allows us to systematically include re-
tardation effects between the QS and BM. As an example, we
derive an effective master equation for the dissipative Dicke
model and benchmark our results by comparing the spectrum
and dynamics with the one of the composite system.

Derivation of the effective master equation.— We start by
considering a set of BM, described by the annihilation (cre-
ation) operators âk (â†k), with eigenenergies ωk, that exchange
energy at the finite rate κk with an external thermal bath at
temperature 1/β. The dynamics for the density matrix ρ̂ is de-
scribed by Ldρ̂ =

∑
k{κk(nk + 1)D[âk]ρ̂+ κknkD[â†k]ρ̂},

where we introduced D[Ô]ρ̂ = 2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô.
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In this Letter, we consider the case where nk = [exp(βωk)−
1]−1 ≈ 0, which is valid if the ωk are optical frequencies.
On a timescale that is longer than the typical relaxation time
1/κk, the BM couple coherently to a QS described by the
Hamiltonian (~ = 1)

Ĥ = ĤS +
∑
k

(∑
k′

â†k′Ω̂
k′,k
S âk + â†kŜk + Ŝ†kâk

)
. (1)

The Hamiltonian in absence of the BM is denoted by ĤS . The
term proportional to Ω̂k′,k

S = (Ω̂k,k′

S )† denotes the frequen-
cies and mode-mode coupling that may depend on the QS’s
degrees of freedom. The last term in Eq. (1) represents the
coupling of the BM to QS operators Ŝk. The dynamics of the
density matrix ρ̂ is then described by the master equation

∂ρ̂

∂t
= Lρ̂ := −i[Ĥ, ρ̂] + Ldρ̂. (2)

We want to eliminate the BM degrees of freedom and
derive an effective master equation describing the dynam-
ics of the QS. The steps for the derivation are as follows:
(i) We derive the master equation for ρ̃ = D̂†ρ̂D̂ where
D̂ = exp[

∑
k(â†kα̂k − α̂†kâk)] is a displacement operator that

correlates the BM to the QS by establishing an effective-field
operator α̂k. We assume ‖α̂k‖ ∼ ε� 1 and apply a perturba-
tion theory where we discard all terms that are of third order
in ε or higher. (ii) In the displaced picture, we project the BM
onto the thermal state. Here, we assume that the displaced BM
are to good approximation in a thermal state, whereas they are
not necessarily thermal in the original picture due to the inter-
action with the QS. For the parameter regime considered here
the thermal state is essentially the vacuum state |vac〉 and we
can define ρ̂sys = 〈vac|ρ̃|vac〉. We systematically include the
coupling of ρ̂sys to higher Fock states in the displaced BM and
optimize the operators α̂k, such that ρ̂sys is decoupled up to
third order in ε. This decoupling procedure is reminiscent to a
Schrieffer-Wolf transformation. In the Supplemental Material
(SM) [47] we show that these steps result in solving

∂α̂k

∂t
= −i[ĤS , α̂k]− i

∑
k′

Ω̂k,k′

S α̂k′ − iŜk − κkα̂k. (3)

With the solution α̂k of the above equation, we obtain a master
equation for the density matrix ρ̂sys that reads

∂ρ̂sys

∂t
= Leffρ̂sys := −i[Ĥeff, ρ̂sys] +

∑
k

κkD[α̂k]ρ̂sys (4)

and the effective Hamiltonian

Ĥeff = ĤS +
1

2

∑
k

(α̂†kŜk + Ŝ†kα̂k). (5)

This master equation is the main result of this Letter that we
now discuss in greater depth. We first observe that Eq. (4) is of
the Lindblad form, thereby it describes a completely positive

divisible quantum process if the α̂k are bounded operators.
This is usually fulfilled since we require ‖α̂k‖ � 1, which is
physically the case if κk exceeds the coupling ‖Ŝk‖. In the
discussion below, we will focus on the single-mode case [48]
but we provide a multi-mode example in the SM [47]. The
terms proportional to κ and Ω̂S in Eq. (3) describe the relax-
ation of the BM to the thermal state in absence of Ŝ. Dur-
ing this relaxation, the QS evolves according to ĤS such that
the BM sees a retardation effect determined by [ĤS , α̂]. This
term is a principal finding because it shows that the BM car-
ries information about the evolution of the QS. In fact, solving
Eq. (3) for the steady state, assuming that [ĤS , α̂] can be ig-
nored, results in the adiabatic elimination [49–51] given by
α̂ = −iŜ/(iΩ̂S + κ) and includes quantum noise due to κ,
visible by the proportional incoherent part in Eq. (4). For
‖Ω̂S‖ � κ, it also recovers the dispersive limit, where the
QS evolves coherently with Ĥeff . Using Eqs. (3) and (4), we
can systematically take retardation and noise effects into ac-
count by treating [ĤS , α̂] and κ either in arbitrary order, or
as a perturbation. We remark, that first-order perturbation in
retardation effects has been studied in semiclassical descrip-
tions, giving rise to collective cavity cooling and dissipation-
assisted prethermalization [20, 34–36, 52, 53]. However, the
effective master equation (4) is a full quantum description and
therefore complementary to the results of Refs. [21–23] that
derive effective quantum descriptions. Similar to Ref. [23],
we use a displacement operation to eliminate the BM, how-
ever, our “displacement” is not based on a mean-field assump-
tion. Instead, “α̂” is an operator that intrinsically includes
fluctuations. Our approach requires thermalization of the dis-
placed BM, but no thermalization of the QS, allowing Eq. (4)
to describe metastable dynamics. To show the potential of
Eq. (4) we will analyze an example, namely the dissipative
Dicke model.

Application to the dissipative Dicke model.— The dissipa-
tive Dicke model describes a single mode coupled to N two-
level atoms. It can be realized with driven atoms interacting
with an optical cavity [8, 54] [see Fig. 1(b)]. We therefore
denote the QS by atoms and the BM by cavity mode. With
our definitions in Eq. (1) we use ĤS = ω0Ŝ

z , the cavity
frequency Ω̂S = ωc, and coupling Ŝ = 2gŜx/

√
N . We

have introduced the spin operators Ŝa =
∑N

j=1 σ̂
a
j /2 with

a ∈ {x, y, z}, where σ̂a
j denote the Pauli matrices of the jth

atom. The dissipative Dicke model exhibits a phase transition
in the thermodynamic limit N → ∞ from a normal (g < gc)
to a superradiant phase (g > gc) [18, 54–56], with a critical
value g2

c = ω0(ω2
c + κ2)/(4ωc). In contrast to the quantum

phase transition of the Dicke model [55, 56], the dissipative
Dicke model exhibits different critical exponents and a damp-
ing rate at steady state [18, 57, 58].

In Ref. [21], it was shown that an atom-only Redfield mas-
ter equation for this model gives the correct low-frequency be-
havior. On the other hand, this cannot be achieved by a Lind-
blad master equation derived after making a large-detuning or
a secularization approximation, which are obtained assuming
ω0/ωc = 0 or dropping the co-rotating and off-resonant â†Ŝ+
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FIG. 2. Eigenvalues λ in units of κ of Eq. (2) (gray “o”) and Eq. (4)
(red “x”) for the dissipative Dicke model. The parameters are N =
10, ωc = κ, ω0 = 0.1κ, and (a) g = 0.5gc, (b) g = 2gc.

and âŜ− terms (Ŝ± = Ŝx± iŜy), respectively. Based on this,
it was conjectured that correct, atom-only master equations
for the dissipative Dicke model require a non-Lindblad form.
We will show that the Lindblad master equation (4) goes be-
yond the large-detuning and secularization approximation and
is a counter example for this conjecture.

We determine α̂ using Eq. (3) whose steady state is

α̂ = α+Ŝ
+ + α−Ŝ

−, (6)

with α± = −g/[
√
N(ωc ± ω0 − iκ)]. As a result of the com-

mutator [ĤS , α̂] the effective cavity field α̂ has two sidebands
shifted by ±ω0 from ωc, corresponding to the excitation or
de-excitation of the atoms. If we impose ω0 = 0 in Eq. (6)
we recover the large-detuning result as in Ref. [21] where the
Redfield master equation becomes of Lindblad form and Her-
mitian. Using Eq. (6) in Eq. (4) we also find co-rotating terms
[Ŝ±]2, dropping the latter results in the secularization approx-
imation with the same result as in Ref. [21]. This shows that
Eq. (4) is of the Lindblad form, recovers two limiting cases
of the Redfield master equation [21], and does, in general,
not require the large-detuning or secularization approxima-
tion which are insufficient to correctly describe the dissipa-
tive Dicke model. We now compare the spectra of Eq. (4) and
the full master equation (2) for small N by diagonalizing Leff

and L using the symmetric states |m〉, with Ŝz|m〉 = m|m〉
for m = −N/2,−N/2 + 1, . . . , N/2.

In Fig. 2, we show the complex eigenvalues λ of L and Leff
as gray circles and red crosses, respectively. Below thresh-
old, g < gc, Fig. 2(a) shows an excellent agreement of the
full and effective descriptions for the eigenvalues with the

FIG. 3. (a) Photon number 〈â†â〉 and (b) inversion 〈Ŝz〉 as a func-
tion of g in units of the critical coupling strength gc. Dashed lines
are the mean-field results for N → ∞ and solid lines are obtained
by finding the steady-state of Eq. (4) for the dissipative Dicke model
with various atom numbers N (see inset). Red crosses are obtained
by finding the steady state of the full master equation (2) forN = 40.
The remaining parameters are ωc = κ, ω0 = 0.1κ.

largest real parts. This emphasizes that Leff correctly de-
scribes long timescales and discards faster timescales with
Re(λ) < −κ, thereby describing the dynamics of metastable
states. Figure 2(b) shows the spectrum in the superradiant
phase, g > gc. Again, we find great agreement, which is
remarkable since the gap between the “correctly” described
modes and Re(λ) ≈ −κ is much smaller. This direct compar-
ison suggests that the effective description is valid across the
phase transition.

To further support this claim, we use Eq. (4) to make ana-
lytical predictions in the limit ωc, κ� ω0, i.e., the limit when
the cavity evolves much faster than the atoms [21]. For this
case, the commutator term [ĤS , α̂̂] can be treated perturba-
tively and the coefficients in Eq. (6) can be expanded accord-
ing toα± = −g/[

√
N(ωc−iκ)]±gω0/[

√
N(ωc−iκ)2]. In the

large N limit, we can derive mean-field equations for Sa =
〈Ŝa〉 with a ∈ {x, y, z} that are reported in the SM [47]. The
resulting equations are the same as the ones given in Ref. [21].
Consequently, we find the correct threshold, oscillation and
damping rates, and critical exponents in the thermodynamic
limit (see SM [47]). The steady-state values of I = 〈â†â〉
and Sz in the thermodynamic limit are given by I0 = 0 and
Sz

0 = −N/2 for g < gc and I0 = Ng2(1−g4
c/g

4)/(ω2
c +κ2)

and Sz
0 = −Ng2

c/(2g
2) for g > gc. In Fig. 3(a) and (b),

we show I0 and Sz
0 as functions of g as black dashed lines.

Furthermore, we present the values I and 〈Ŝz〉 by numeri-
cally finding the steady state of Eq. (4) and then calculating
〈â†â〉 = Tr[α̂†α̂ρ̂sys] and 〈Ŝz〉 = Tr[Ŝz ρ̂sys]. Since Leff does
not include the cavity degrees of freedom, we are able to diag-
onalize it for larger atom numbers. As can be seen in Fig. 3(a)
and (b), the analytical result and the numerical results are in
better agreement for larger atom numbersN . ForN = 40, we
were able to find the steady state of L, depicted for two values
of g/gc as red crosses. This agreement indicates that Eq. (4)
is also valid for finite atom numbers. Altogether, these results
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FIG. 4. The value of 〈[Ŝx]2〉 as function of time in units of 1/κ for
(a) g = 0.5gc and (b) g = 2gc. The gray (black) lines are obtained
by simulating the effective master equation (4) with N = 50 (N =
200). The red dashed (yellow dashed-dotted) lines are simulated with
the stochastic method reported in the SM [47] and averaged over
20000 simulations with N = 50 (N = 200). (c) Eigenvalues λ in
units of κ of Eq. (4) for N = 25 (“x”), N = 50 (“+”), and N = 100
(“o”). The red symbols mark the eigenvalues discussed in the text.
(d) Fidelity F = 〈Ψ|ρ̂sys(t)|Ψ〉 as function of time in units of 1/κ
simulated using Eq. (4) initialized with the state |Ψ〉 discussed in the
text for N = 25 (light gray dashed), N = 50 (gray dashed-dotted),
and N = 100 (black solid) with ωc = κ, ω0 = 0.1κ.

show that Leff predicts the correct steady state, low-frequency
behavior, and critical exponents.

In the remainder, we focus on out-of-equilibrium dynamics,
i.e., scenarios where the system is initialized “far” away from
the steady state. The dynamics and relaxation in such situa-
tions require the correct description of high and low frequency
modes. Since it is difficult to simulate the full master equa-
tion (2) for large N , we use a semiclassical stochastic method
to compare with simulations of Eq, (4). The stochastic method
simulates the coupled dynamics of the c-number equivalents
of spin components Sx, Sy , and Sz coupled to the noisy real
part x and imaginary part p of the field amplitude. Details
are reported in the SM [47]. In a benchmark, we initialize the
system with all atoms in the ground state, 〈Ŝz〉 = −N/2, and
evolve it according to Eq. (4). Figure 4(a) and (b) show the
time evolution of 〈[Ŝx]2〉 for g = 0.5gc and g = 2gc, respec-
tively. Both simulations are in excellent agreement. Since the
stochastic simulations evolve the coupled atom-cavity dynam-
ics on equal footing, we conclude that Eq. (4) incorporates the
correct retarded interaction between atoms and cavity, and is
well suited for out-of-equilibrium dynamics.

Finally, we analyze a scenario with quantum features that
cannot be described by semiclassical stochastic methods [47].
To achieve this we first analyze the spectrum of Eq. (4) for
g = 2gc, shown in Fig. 4(c). We find a mode with a growing
imaginary part for increasingN (marked red). The underlying
mode is related to the coherence ĉ = |N/2〉〈−N/2| that os-
cillates with a frequency ∼ Nω0. Remarkably, its frequency
exceeds the cavity resonance and linewidth while its damp-
ing is far less than κ. Therefore, it can be seen as a metastable
high-frequency oscillation with a number of periods diverging
with N . To find this oscillation dynamically, we initialize the
system in the NOON state |Ψ〉 = (|N/2〉 + | − N/2〉)/

√
2

such that the coherence ĉ is present at t = 0. We then
evolve |Ψ〉 according to Eq. (4) and calculate the fidelity
F = 〈Ψ|ρ̂sys(t)|Ψ〉, visible in Fig. 4(d). We find an oscil-
lation frequency that increases with N , while the damping is
nearly independent of N . This agrees with the behavior of the
red-marked modes in Fig. 4(c) and further highlights the abil-
ity of Eq. (4) to describe out-of-equilibrium situations with
entangled quantum states.

Conclusion.—We have developed a formalism for the
derivation of effective master equations that describe the re-
duced dynamics of a QS coupled to dissipative BM. These
master equations are of Lindblad form, thereby ensuring that
the positivity is preserved. Furthermore, our approach in-
cludes the retarded interaction between the QS and the BM.
We demonstrated this by applying the formalism to the dis-
sipative Dicke model, where it correctly describes the steady
state and dynamics for small to large atom numbers.

The method presented here may be extended to nonzero
thermal occupation of the bosonic modes which would also
allow the study of transport [59]. We also expect that a gen-
eralization to include higher coupling strengths is possible by
modifying the displacement transformation. This might be in-
teresting for systems with a vanishing gap, e.g., atom-cavity
systems with U(1) symmetry [22]. In future, it will be inter-
esting to apply the Lindblad master equation to multi-mode
systems to study many-body cooling, the formation of coher-
ent states in the presence of dissipation, and reservoir engi-
neering [60–62].
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[33] V. Torggler, S. Krämer, and H. Ritsch, “Quantum annealing
with ultracold atoms in a multimode optical resonator,” Phys.
Rev. A 95, 032310 (2017).
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