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We present a quantitative approach to self-dynamics of polymers under steady flow by employing a set of
complementary reference frames and extending the spherical harmonic expansion technique to dynamic density
correlations. Application of this method to nonequilibrium molecular dynamics simulations of polymer melts
reveals a number of universal features. For both unentangled and entangled melts, the center-of-mass (c.m.) mo-
tions in the flow frame are described by superdiffusive, anisotropic Gaussian distributions, whereas the isotropic
component of monomer self-dynamics in the c.m. frame is strongly suppressed. Spatial correlation analysis
shows that the heterogeneity of monomer self-dynamics increases significantly under flow.

Polymeric liquids exhibit complex and fascinating flow
behavior [1]. Despite the remarkable theoretical progress
brought about by the tube model [2–4], understanding the
molecular dynamics of long-chain molecules under flow still
faces formidable challenges. In particular, little is known
about how the tube diameter and number of entanglements
— key theoretical constructs in models of entangled polymers
— change under flow [5–11]. Moreover, characterizations of
these quantities in computer simulations often rely on ad hoc
algorithms [12–20], whose validity cannot be unequivocally
demonstrated in the deformed state. Any direct attack on this
problem must confront the microscopic nature of polymer en-
tanglements, which is yet to be firmly established in the equi-
librium state let alone the nonequilibrium state.

To circumvent this theoretical difficulty and provide a solid
phenomenological basis for understanding nonequilibrium
dynamics of polymers under flow, we turn our attention to
density self-correlation functions, which are fundamental and
well-defined quantities for describing liquid dynamics [21].
Despite numerous attempts in the past to characterize the self-
motions of complex fluids under flow [22–32], an effective
and systematic approach has not emerged. Here, we outline a
quantitative method for analyzing the density self-correlation
of polymers under steady flow by extending the spherical har-
monic expansion technique [33–37] to dynamic density cor-
relation functions. A key idea is to examine the polymer
self-dynamics in two complementary coordinates: the center-
of-mass (c.m.) motions in the flow frame and the segmen-
tal motions in the c.m. frame. Application of this approach
to nonequilibrium molecular dynamics (NEMD) simulations
permits a direct, quantitative analysis of anisotropic self-
correlations, unveiling a number of universal features. First,
the c.m. displacements of polymer melts in the flow frame
follow a superdiffusive anisotropic Gaussian distribution with
the mean-squared displacement (MSD) g̃cm ∼ tγ (1 < γ < 2),
as a result of the interchain interactions in response to the
imposed deformation. Second, the isotropic component of
monomer self-dynamics in the c.m. frame are strongly sup-
pressed under flow. Lastly, flow significantly increases the
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FIG. 1. (a) Illustration of the two reference frames for decompos-
ing polymer self-dynamics under flow. (b) Two-dimensional color
maps of the spherical harmonic expansion coefficients F̃cm

0,0 (Q, t) and
F̃cm

2,0 (Q, t) of the c.m. self-intermediate scattering function F̃cm(Q, t)
in the flow frame. The wave number Q is scaled by the radius of
gyration Rg,0 in the equilibrium state. (c) Coefficients F̂mon

0,0 (Q, t)
and F̂mon

2,0 (Q, t) of the monomer self-intermediate scattering function
F̂mon(Q, t) in the c.m. frame. Dashed lines: cuts of the 2D maps at
fixed correlation times. The results given here are based on NEMD
simulations of the N = 300 system under steady extensional flow of
WiR = ε̇τR = 3, with τR being the Rouse time.

dynamical heterogeneity of monomer self-dynamics, as man-
ifested by enhanced long tails of the self-correlation function.
These observations hold true for both unentangled and entan-
gled polymers, over a broad range of strain rates, correlation
times, and length scales.

Our technical approach comprises three essential ingre-
dients. First, we note that a direct analysis of the self-
intermediate scattering function or self-correlation function
under flow in the laboratory frame is difficult, due to the
position-dependent convection effect [23, 24, 38, 39]. Ad-
ditionally, simple convection correction protocols based on
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a single reference frame [23, 25, 27, 29] (e.g., the “SLLOD
frame” of c.m.) are inadequate for fully addressing the
nonequilibrium dynamics of polymers. To properly decom-
pose the polymer self-dynamics under flow, we introduce
two complementary coordinate systems (Fig. 1) as a gener-
alization of the single reference frame idea. One is the flow
frame, where the c.m. position R̃α

cm(t) of a polymer chain
α relative to the flow field (frame) after an elapsed time t
is described by: R̃α

cm(t) ≡ Rα
cm(t)−

∫ t
0 ∇v ·Rα

cm(t
′) dt ′, with

Rα
cm(t) being the c.m. position in the laboratory frame and ∇v

the average velocity gradient tensor. The other is the poly-
mer c.m. frame, in which the position R̂α

j (t) of segment j of
chain α relative to the c.m. is R̂α

j (t) ≡ Rα
j (t)−Rα

cm(t). The
self-intermediate scattering functions of c.m. motions in the
flow frame F̃cm(Q, t) and monomer motions in the polymer
c.m. frame F̂mon(Q, t) are therefore respectively defined as fol-
lows:

F̃cm(Q, t) =
1
M

M

∑
α=1
〈exp{−iQ · [R̃α

cm(t)− R̃α
cm(0)]}〉, (1)

F̂mon(Q, t) =
1

MN

M

∑
α=1

N

∑
j=1
〈exp{−iQ · [R̂α

j (t)−R̂α
j (0)]}〉, (2)

where M is the number of polymer chains and N the chain
length. For a homogeneous flow ∇v, F̃cm(Q, t) and F̂mon(Q, t)
provide a complete description of polymer self-dynamics in
the nonequilibrium state. In the real space, two comple-
mentary self-correlation functions G̃cm(r, t) and Ĝmon(r, t)
can be defined as: G̃cm(r, t) ≡ (2π)−3 ∫ F̃cm(Q, t)eiQ·rdQ
and Ĝmon(r, t) ≡ (2π)−3 ∫ F̂mon(Q, t)eiQ·rdQ, in the flow and
c.m. frames, respectively. It should be emphasized that this
work focuses on the self-dynamics under steady flow (i.e.,
t = 0 starts from the steady state), as opposed to transient
space-time correlations.

The second major technical ingredient concerns the quan-
tification of anisotropic self-intermediate scattering functions
F̃cm(Q, t) and F̂mon(Q, t). To bypass the difficulty of directly
analyzing these quantities in a high-dimensional space, we
employ the spherical harmonic expansion technique [33–37],
which has so far only been applied to anisotropic static struc-
tural correlations, to decompose the self-intermediate scatter-
ing function Fs(Q, t):

Fs(Q, t) = ∑
l,m

Fl,m(Q, t)Yl,m(θ ,φ), (3)

where Yl,m(θ ,φ) is the spherical harmonic function of de-
gree l and order m, and Fl,m(Q, t) the corresponding ex-
pansion coefficient. Fl,m(Q, t) condenses the information of
anisotropic space-time correlations and is more amenable to
analysis. Similarly, the self-correlation functions G̃cm(r, t)
and Ĝmon(r, t) can also be expanded by spherical harmonics,
and the corresponding coefficients Gl,m(r, t) can be computed
either directly or from the reciprocal space coefficients using
spherical Bessel transform [40].

Lastly, we extend the notion of spatial correlation anal-
ysis of intermediate scattering functions in the equilibrium
state [41] to the nonequilibrium state. Specifically, the spatial
dependence of expansion coefficients Fl,m(Q, t) and Gl,m(r, t)
are explored at fixed correlation times. This is generally a
more fruitful way of analyzing dynamic correlation functions
than the traditional method of examining time correlations at
constant wave numbers [41].

We apply the aforementioned approach to study the self-
dynamics of polymer melts under steady extensional flow
using NEMD simulations of a coarse-grained bead-spring
model [42, 43]. All the beads interact with a purely repulsive
Lennard-Jones potential and the bonded interactions between
neighboring beads along the polymer chain are described by
the FENE potential, UFENE = − 1

2 kR2
0 ln[1− (r/R0)

2], with
R0 = 1.5 and k = 30. The chain stiffness is controlled by a
bond bending potential Ubend(α) = kα(1+ cosα), where α

is the angle between two subsequent bonds and kα = 1.5.
We consider polymer melts of four different chain lengths
N = 20, 40, 300, and 500 at density ρ = 0.85 and temperature
T = 1. The equilibrium entanglement length of the model
under such conditions is Ne ≈ 28 [43]. Homogeneous uni-
axial extensional flow is imposed by integrating the SLLOD
equations [44] with the generalized Kraynik-Reinelt boundary
conditions [45, 46]. The flow rate can be measured by the di-
mensionless Rouse Weissenberg number WiR ≡ ε̇τR, with the
Rouse relaxation time τR = τ0N2 [47]. The self-dynamics of
each system in steady state are examined after Hencky strain
ε = 5. All the simulations were performed with the GPU-
accelerated LAMMPS package [48–50], and additional de-
tails can be found in the Supplemental Material (SM) [51].

To illustrate the basic idea of our technical approach, a rep-
resentative result for the N = 300 melt is given in Fig. 1.
The leading spherical harmonic expansion coefficients of the
self-intermediate scattering functions defined in the flow and
c.m. frames [Eqs. (1) and (2)] are computed and presented as
2D color maps. It is worth noting that for the uniaxial ex-
tension symmetry, only the even-degree and zero-order terms
appear in the spherical harmonic expansion [36]. To further
characterize these expansion coefficients, we perform spa-
tial correlation analysis by focusing on the Q dependence of
Fl,0(Q, t) at constant correlation times t.

The results for the c.m. self-dynamics in the flow frame
are shown in Fig. 2. Before analyzing the behavior of
F̃cm(Q, t), we first examine the c.m. MSD g̃cm in the flow
frame, which is the second moment of G̃cm(r, t) or equiva-
lently −∇2

QF̃cm(Q, t) at Q = 0 [23]:

g̃cm =
1
M

M

∑
α=1
〈[Rα

cm(t)−Rα
cm(0)−

∫ t

0
∇v ·Rα

cm(t
′) dt ′]2〉. (4)

Due to the symmetry of uniaxial extensional flow, g̃cm =

∑β g̃β
cm, where β = x,y,z and g̃β

cm is the MSD in the direc-
tion β . In the long-time limit, g̃cm exhibits normal diffu-
sive behavior, g̃cm ∼ D̃cmt, with the apparent c.m. diffusiv-
ity D̃cm increases with increasing extension rate. The relative
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change of c.m. diffusivity D̃cm/D̃cm,0 is found to be controlled
by the Weissenberg number Wi and the data from different
chain lengths can be collapsed onto a master curve [Fig. 2(b)].
While the Rouse model (with prediction of D̃cm ∼Wi0) un-
doubtedly fails to describe the behavior of the unentangled
chains, it is unclear at this point whether any models for entan-
gled polymers envision the master curve in Fig. 2(b). On the
other hand, superdiffusive behavior is observed on intermedi-
ate time scales: g̃cm ∼ tγ (1 < γ < 2). Most interestingly, the
spherical expansion technique allows a detailed examination
of the functional form of F̃cm(Q, t). We find that the c.m. self-
intermediate scattering function in the flow frame can be de-
scribed by an anisotropic Gaussian function:

F̃cm(Q, t) = exp

(
−1

2 ∑
β

g̃β
cmQ2

β

)
. (5)

Eq. (5) can be verified by examining the spherical harmonic
expansion coefficients of F̃cm(Q, t). Figs. 2(c), 2(d), and ad-
ditional results in the SM [51] confirm that Eq. (5) is valid for
both unentangled and entangled melts, over a wide range of
extension rates, wave numbers, and correlation times.

These findings point to a critical role of interchain interac-
tions in polymer melt dynamics — effects that have not been
adequately addressed in current theoretical models. To qual-
itatively understand our results, let us consider a Langevin
equation for the c.m. motion of chain α: ζ (Ṙα

cm−∇v ·Rα
cm) =

fα + fα
B , where ζ is the friction coefficient, fα is the conserva-

tive force exerted on chain α by other chains, and fα
B is the

stochastic Brownian force. It is easy to see that in the absence
of fα (e.g., the Rouse model) the self-correlation G̃cm(r, t) of
c.m. motions in the flow frame follows an isotropic, diffu-
sive Gaussian function. Furthermore, we note that the simple
convection-diffusion equation for a single particle under flow
yields superdiffusive, anisotropic Gaussian self-dynamics in
the laboratory frame [22, 23, 51–53], as a result of the cou-
pling between normal diffusion and convection. Analyzing
the c.m. self-motions in the flow frame removes the con-
vection contribution ∇v ·Rα

cm. However, an analogous cou-
pling between the displacement due to interchain forces fα

and diffusion should be responsible for the superdiffusive,
anisotropic Gaussian dynamics in the flow frame. Such a
conclusion is further supported by the force analysis and col-
loidal simulations presented in the SM [51]. For equilibrium
dynamics, the lack of a proper treatment of intermolecular
forces, particularly the effective interactions between c.m., in
the classical mean-field theories of polymer dynamics [3] has
long been recognized [54, 55]. The current observations speak
to the necessity of considering this issue for nonequilibrium
dynamics. Conversely, our technical approach provides a di-
rect and quantitative way of examining the effect of interchain
forces on the c.m. dynamics in steady flow.

Having analyzed the c.m. motions in the flow frame, we
now turn attention to the monomer self-dynamics in the c.m.
frame. Our analysis focuses on the isotropic components
F̂mon

0,0 (Q, t) and Ĝmon
0,0 (r, t) of the self-correlations. Fig. 3(a)
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FIG. 2. Center-of-mass motions of the N = 20 and N = 300 melts
in the flow frame. (a) c.m. mean-squared displacements g̃cm(t) rel-
ative to the flow field. (b) Relative change of diffusivity D̃cm/D̃cm,0
with the Weissenberg number Wi. D̃cm,0 is the diffusivity without
flow. Wi≡ ε̇τchain, with τchain being the chain relaxation time. Dash
line: guide for the eye. Dash-dotted line: prediction of the Rouse
model. (c) Spherical harmonic expansion coefficients F̃cm

0,0 (Q, t) and
F̃cm

2,0 (Q, t) of the c.m. self-intermediate scattering function F̃cm(Q, t)
of the N = 20 system at different correlation times t and Rouse Weis-
senberg numbers WiR. The results of the same WiR are represented
by the same symbol. Furthermore, the data of the same normalized
correlation time WiRt are shown in the same color. Dashed lines:
anisotropic Gaussian fits of the expansion coefficients according to
Eq. (5) with no adjustable parameters. (d) Results for the N = 300
melts.

displays representative 2D color maps of F̂mon
0,0 (Q, t) of the

N = 300 melt. With increasing extension rate, the contour
lines of F̂mon

0,0 (Q, t) systematically shift towards higher Q, im-
plying a suppression of isotropic monomer self-dynamics by
the flow. To better portray this trend, the contour lines of
F̂mon

0,0 (Q∗, t) = e−1 are shown in Fig. 3(b) for the N = 20 and
N = 300 melts at various extension rates. Q∗ defines a char-
acteristic length scale ξ (t) ≡ 1/Q∗ for the segmental fluc-
tuations within the c.m. frame at a given correlation time,
which is approximately Rg,0/

√
3 for t → ∞ in the quiescent

state [3]. It is evident from Fig. 3(b) that the monomer self-
dynamics of both unentangled and entangled melts are sup-
pressed by flow over a wide range of correlation times. To
further quantify this effect, we present the limiting character-
istic length scale at long time, ξL ≡ limt→∞ ξ (t), as a func-
tion of the Rouse Weissenberg number WiR and steady-state
tensile stress σ ≡ σzz− (σxx +σyy)/2 in Figs. 3(c) and 3(d),
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FIG. 3. Monomer motions in the c.m. frame. (a) Two-dimensional
color maps of the isotropic expansion coefficient F̂mon

0,0 (Q, t) of
the self-intermediate scattering function F̂mon(Q, t) at equilibrium,
WiR = 0.3, and WiR = 30. Dashed lines: contour lines of
F̂mon

0,0 (Q∗, t) = e−1. (b) Characteristic wave number Q∗Rg,0 at var-
ious Rouse Weissenberg numbers for the N = 20 and N = 300 melts.
(c) Rate dependence of characteristic length scale in the long-time
limit ξL. (d) Dependence of ξL on the steady-state tensile stress σ .

respectively. ξL decreases monotonically with increasing WiR
and σ and exhibits asymptotic behavior of ξL ∼WiR−1/2 and
ξL ∼ σ−2/3 at high strain rates.

It is interesting to ask whether changes of polymer entan-
glements under flow can be inferred from the monomer self-
dynamics in the c.m. frame. The observed suppression of
isotropic segmental fluctuations (Fig. 3) is consistent with the
general theoretical expectation of reduction of tube diameter
under deformation [5, 9, 10]. Incidentally, the scaling relation
ξL ∼ σ−2/3 coincides with the dependence of tube diameter
on tension force predicted in Ref. [9]. However, the suppres-
sion effect revealed by our analysis is present in both unentan-
gled and entangled melts, and involves a broad range of time
scales. In other words, the underlying physics here appears to
be more generic. To understand the origin of the suppressed
fluctuations, we performed Brownian dynamics simulations
of both free and constrained Rouse chains [51]. Our calcula-
tions show that chain orientation and stretching is not the di-
rect cause for the fluctuation suppression, suggesting that the
driving force behind this phenomenon is also intermolecular
in nature. Similar to the c.m. self-dynamics discussed pre-
viously, addressing the observed suppressed monomer self-
dynamics under flow requires a proper treatment of the col-
lective dynamics of polymers.

Lastly, our approach permits a quantitative analysis of the
heterogeneity of polymer self-dynamics, which in the equilib-
rium state manifests as a long tail in the self-correlation func-
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FIG. 4. (a) Isotropic component Ĝmon
0,0 (r, t) of the c.m. frame self-

correlation function Ĝmon(r, t) of the N = 300 melt at equilibrium.
(b) Ĝmon

0,0 (r, t) at WiR = 10. Solid lines: approximations of the long
tails of Ĝmon

0,0 (r, t) by an exponent function exp(−r/λ ). (c) Change of
characteristic length λ under steady extensional flow for the N = 20
melt. (d) Results for the N = 300 melt.

tion [56]. Fig. 4 compares the isotropic component Ĝmon
0,0 (r, t)

of the c.m. frame self-correlation function Ĝmon(r, t) of the
N = 300 melt at equilibrium and WiR = 10. In both cases, the
tail of the spatial correlation deviates from the Gaussian dis-
tribution and displays an exponential-like long tail at large r:
Ĝmon

0,0 (r, t)∼ exp[−r/λ (t)]. The presence of flow significantly
prolongs the tail of the distribution, leading to enhanced dy-
namical heterogeneity. The changes of λ (t) of the N = 20
and N = 300 melts under flow are shown in Figs. 4(c) and
4(d) (additional results for N = 40 and N = 500 can be found
in the SM [51]). While the flow increases the heterogeneity
of self-dynamics in both cases, the effect is much more pro-
nounced for the entangled system (N = 300). At this point,
we are unaware of any theoretical models that qualitatively
capture the behavior depicted in Figs. 4(c) and 4(d). Never-
theless, the physical origin of the observed heterogeneity en-
hancement can be intuitively appreciated: for entangled poly-
mers λ (t) can be interpreted as a characteristic dynamic length
scale associated with the distribution of entanglements along
the chain [57]. It follows that λ should increase under flow,
as a result of disentanglements, and approach the size of the
polymer chain at high strain rates (Fig. 4).

In summary, we propose a framework for quantitative
analysis of polymer self-dynamics under flow, which over-
comes the inherent difficulties encountered in the previous at-
tempts [23, 25, 27, 29]. Our method is based on the use of two
complementary observation frames and an extension of the
spherical harmonic expansion technique to dynamic density
correlations. It permits a direct examination of microscopic
dynamics of polymers in steady flow via well-defined space-
time correlation functions, without recourse to ad hoc algo-
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rithms. Application of this approach to NEMD simulations of
coarse-grained polymer melts reveals a number of universal
features. Lastly, our method is not limited to self-dynamics
under uniaxial extension, and should be useful for analysis
of shear flows and nonequilibrium single-chain collective dy-
namics as well.
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