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We show that spatial resolved dissipation can act on d-dimensional spin systems in the Ising
universality class by qualitatively modifying the nature of their critical points. We consider power-
law decaying spin losses with a Lindbladian spectrum closing at small momenta as ∝ qα, with α a
positive tunable exponent directly related to the power-law decay of the spatial profile of losses at
long distances, 1/r(α+d). This yields a class of soft modes asymptotically decoupled from dissipation
at small momenta, which are responsible for the emergence of a critical scaling regime ascribable
to the non-unitary counterpart of the universality class of long-range interacting Ising models. For
α < 1 we find a non-equilibrium critical point ruled by a dynamical field theory described by a
Langevin model with coexisting inertial (∼ ∂2

t ) and frictional (∼ ∂t) kinetic coefficients, and driven
by a gapless Markovian noise with variance ∝ qα at small momenta. This effective field theory
is beyond the Halperin-Hohenberg description of dynamical criticality, and its critical exponents
differ from their unitary long-range counterparts. Our work lays out perspectives for a revision of
universality in driven-open systems by employing dark states taylored by programmable dissipation.

Introduction – The search for non-equilibrium criti-
cality in driven open quantum systems has become an
exciting research frontier, both for its fundamental rel-
evance in statistical mechanics, and for the variety of
AMO platforms where it can be concretely explored [1–
19]. The aim is the discovery of universality classes which
cannot be encompassed by established classifications of
dynamical criticality [20–23] nor can be related to out-of-
equilibrium scaling in isolated systems [24–36], where, in
sharp contrast, both energy and total number of particles
are conserved. A common obstruction against the real-
ization of this program is the occurrence of an effective
thermal behaviour for the soft modes relevant at the criti-
cal points of driven-dissipative systems [37–42]: although
the full momentum distribution of the non-equilibrium
steady state manifestly breaks detailed balance, low mo-
menta can thermalize at an effective temperature set by
the interplay of drive, noise and losses. This forces sev-
eral instances of driven-open criticality to fall into known
equilibrium universality classes [20, 43], with few excep-
tions represented by the appearance of novel independent
anomalous exponents associated to decoherence [44–46],
or by exotic features as non-equilibrium multi-critical
points [47].

The culprit for effective thermalization is a noise vari-
ance (dictated by dissipation) with a non-vanishing gap
at small momenta and/or frequencies, which sets the
temperature of infrared modes in several circumstances
of interest [37–41, 43, 44, 48]. Softening such gap and
allowing the noise to scale down to zero at small mo-
menta, is the route for instances of driven-open critical-
ity without thermal counterpart. In quadratic fermionic
models [49, 50] or interacting quantum wires [51–53], dis-
sipation with non-local support in real space acting on
neighboring sites in a correlated fashion [54], has been
employed to achieve non-equilibrium quantum criticality.

In these cases the noise variance vanishes at infrared mo-
menta, and it exposes a set of modes asymptotically de-
coupled for q → 0 from the decohering and thermalizing
effect of the environment. These forms of non-local dissi-
pation can steer a system into a many-particle dark state
with non-trivial quantum correlations – a state prepara-
tion protocol with interesting perspectives for applica-
tions in quantum information and technology [55–66].

In this work, we consider spin losses with a con-
trollable spatial profile decaying algebraically at long
distances [67–70]. Their Lindbladian spectrum scales
with momentum softly as ∝ qα in the infrared; the tun-
ability of α allows us to explore a dissipative analogue of
the universality class of long-range interacting quantum
magnets. Our results are based on renormalization
group (RG) and therefore pertinent to a whole family of
spin models distinct by RG irrelevant perturbations at
the Ising critical point. Modern cavity QED quantum
simulators [68, 71–73] in the regime of strong cavity
loss, have the potential to expose uncoventional forms
of dynamical criticality, since they can imprint on
atomic ensemble decay channels with tunable spatial
profiles [70]. This is in sharp contrast with previous
contributions on driven open criticality where the
structure of dissipation supporting dark modes is not
flexible and given by the specific implementation at
hand [52, 55, 57, 59]. In particular, we discuss here the
instance of critical spin ensembles subject to long-range
spatial emission, whose universal properties are ruled
by a Langevin theory [20, 46] where inertial (∝ ∂2t ) and
frictional (∝ ∂t) kinetic coefficients coexist and with a
gapless driving noise scaling proportionally to qα in the
infrared. Upon tuning α, one can control the degree of
RG relevance of the operators necessary for a consistent
description of these novel critical states, and interpolate
among different universality classes.
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Ising criticality with non-local losses – We consider
a quantum Ising chain in d dimensions

H = −
∑
〈i,j〉

σxi σ
x
j + h

∑
i

σzi , (1)

subject to a spin loss Lindblad channel which is non-local
and shaped by a spatial structure factor γi,j :

ρ̇ = i[ρ,H] +
∑
i,j γi,j

(
σ−i ρσ

+
j − 1

2

{
σ+
j σ
−
i , ρ

})
. (2)

The open quantum system in (1) and (2) is not exactly
solvable and, even with state-of-art numerics, dynamics
could be extracted only for small system sizes and inter-
mediate times. Instead, here we rely on non-equilibrium
RG to inspect the long-distance/long-time scaling prop-
erties of the system at criticality. In this regard, any RG
irrelevant perturbation at the Ising critical point in (1)
(e.g. short-range spin-spin interactions along the ẑ direc-
tion) will not affect our results, which are therefore perti-
nent to the whole set of spin models belonging to the Ising
universality class. Correlated spin losses as in Eq.(2) can
be realized in cavity QED [70] or photonic crystal waveg-
uides [67, 68], where tunable interactions and losses be-
tween pairs of spins at arbitrary distances can be con-
trolled through a combination of spatial-dependent en-
ergy level shifts and external pump fields [70]. The for-
mer typically result from a background magnetic field
gradient coupling to levels in hyperfine manifold, and
they gives spatial resolution to dissipation, while a Ra-
man drive with several sidebands enables control on the
functional form of γi,j , which can be made translational
invariant, γ(r) with r = |i− j|.

In the following we analyze the impact of a class of
γ(r), which scales asymptotically as an inverse power
law of r, on Ising critical systems (i.e. γ(r) ∝ 1/rα+d for
large r, cf. with Fig. 1). The details of the implemen-
tation of γ(r) are contained in Refs. [68, 70] (see also
note [74]). Diagonalizing Eq. (2) in Fourier space with
this shape of γ(r), we obtain for the decay rate of the
infrared modes the expression Γq ∼ Γ1q

α. These infrared
modes are dark, i.e. asymptotically decoupled from
dissipative effects (Γq vanishes as q → 0). Following the
analogy with criticality in long-range interacting spin

Figure 1. Schematic portrait of a spin lattice subject to non-
local losses, γi,j , acting on pairs of spins at positions i and
j.

systems where instead the Hamiltonian spectral gap
scales as m ∼ qα [75–77], we can interpret the instance
of criticality inspected in this work as a non-unitary
counterpart of critical long-range interacting Ising sys-
tems. This analogy is further supported by the fact that
the anti-commutator in the Lindblad equation (2) can
be regarded as a non-hermitian long-range interaction
term [70]. We notice that the shape of γ(r) at short or
intermediate distances is inconsequential for our results
which are relevant for soft, infrared modes at criticality.
Therefore, our analysis applies to a broad class of spatial
profiles γ(r), provided they entail the infrared scaling of
the Lindbladian spectrum mentioned above, Γq ∼ Γ1q

α

(cf. with the inset in Fig. 1). In this respect, our setup
also extends previous instances on preparation and criti-
cality of open quantum systems with dark states in cold
atoms or quantum optics platforms, where, in contrast,
the shape of non-local losses is not tunable [49–52, 57].
For the case discussed in this work, the exponent α can
be flexibly varied by a proper choice of the amplitudes of
the Raman sidebands (see note [73], or for more details
Ref. [70]). Notice that the α = 0 case will not display
any interesting instance of dissipative criticality since it
does not support dark states (Γq constant for q → 0).

Canonical scaling with long-range losses – We now
map the lattice model in Eq. (2) into a long wavelength
non-equilibrium field theory [43, 78]. In particular, we
will discuss how the effective field theory governing non-
equilibrium critical behaviour for α < 1 is ascribable to
a Langevin model [20, 46] with coexisting inertial and
frictional terms, driven by a gapless noise ∝ qα at small
momenta. Following the usual prescription [79–81] we
map the spin operators in terms of bosons σ−i → ai and

σzi → 2a†iai, and we implement the hard-core constraint

with a large on site non-linearity a†ia
†
iaiai. By taking

the continuum limit and coarse graining over short wave-
lengths [40, 79–81], the Ising interaction in Eq. (1) yields
a second derivative in space within a leading order deriva-
tive expansion (Kq2 in momentum space), while the non-
linearity yields the usual ϕ4 potential. As detailed in
Refs. [40, 43, 82], the quantum master equation for an
Ising model with losses (2) can be mapped into a Keldysh
path integral in terms of the classical and quantum com-
ponents of the real field, ϕc/q(Q), which in Fourier space,
Q = (q, ω), reads

SG =

∫
Q

(ϕc(−Q), ϕq(−Q))

(
0 PA

PR PK

)(
ϕc(Q)
ϕq(Q)

)
(3)

with

PR/A = −ω2 − 2Kq2 ∓ 2iΓqω +m− Γ2
q/2,

PK = iΓq ≡ i(Γ0 + Γ1q
α),

(4)
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the retarded/advanced and Keldysh inverse Green’s func-
tions [78]. The former contain spectral information on
the excitations: in our case, the distance from the criti-
cal point, m, and the decay rate of the infrared modes,
Γq. The Keldysh component of the quadratic action,
PK , is instead directly related to the momentum Fourier
transform of the noise variance [43].

In Γq we have included a constant term Γ0 which
takes into account the spontaneous emission of the spins
into free space and which is often the main adversary in
schemes implementing dissipative engineering with dark
states [83, 84]. Its detrimental role is to locally measure
the atoms and therefore suppress the entangling effect
of non-local dissipation at long times (or small wave-
vectors). We will inspect the critical properties of our
model in the regime where Γ1q

α � Γ0 and therefore PK

scales effectively as qα, and, at the same time, also the
retarded/advanced sectors become gapless, PR/A ∼ q2α,
since we tune the spectral mass to zero as well. The
former can be implemented in the RG scheme via the
scaling ansatz Γ0 ∼ Γ1q

α (see also Ref. [85]). As pointed
out in [86–88] weak dissipation can expose novel critical
behaviour for a long temporal window before thermaliz-
ing effects set it. In our setup, this is mirrored by the fact
that for q � (Γ0/Γ1)1/α incoherent emission takes over,
and the Gaussian action in (3) reduces to a Langevin ac-
tion with Γq ' Γ0 and no ω2 term which notoriously ther-
malizes [20, 89]. This crossover is analogous to the sup-
pression of equilibrium quantum criticality at distances
larger than the de Broglie thermal length [21–23].

Approaching criticality (m → 0) and for Γ0 → 0, we
can adopt the following canonical scaling ansatz [46, 90]
for the dynamical critical exponent z controlling the rel-
ative scaling of frequency and momentum [89]: ω ∼ qz,
with z = α. This results in the terms ∝ ωΓq and ∝ ω2

both equally scaling like ∼ q2α in the infrared. This is
contrast to relaxational Langevin models, where the in-
ertial term proportional to the second derivative in time
(∼ ω2) is subleading compared to the frictional first or-
der time derivative (∼ ω). Therefore, we recover a scalar
dynamical field theory with coexisting inertial and fric-
tional kinetic coefficients, driven by a gapless Markovian
noise, which is a model beyond the Halperin-Hohenberg
classification [20]. An effective field theory resembling
some of these features has recently appeared in [86, 88].
As non-trivial extension here we encompass a family of
RG fixed points upon tuning the exponent α of the soft
Langevin noise. This results in corrections not only to
dynamical critical exponents as in [86, 88] but also to
static ones, as we discuss in the following.

We now focus on kinetic coefficients proportional
to spatial derivatives. At the level of canonical power
counting, there is a threshold value α < 1 at which the
second derivative in space (∝ Kq2 term) is subleading in
the infrared compared to the Γ2

1q
2α fractional derivative

resulting from ’long-range’ losses in the spectral sector

(PR/A). This should be contrasted with critical long-
range interacting Ising models where such threshold
is set at α = 2 [75–77, 91] besides small corrections
resulting from anomalous dimensions [92–98]. These
different thresholds occur because hermitian long-range
interactions compete with Kq2 through a qα term in the
R/A sector (see [75–77, 91]), while non-hermitian ones
through q2α terms resulting from ωΓq and Γ2

q (cf. with
Eq. (4)). We notice that the RG procedure generates
only analytical terms and thus cannot renormalize the
terms scaling with the exponent α (see also [75–77]). The
only term which can acquire an anomalous dimension
is the kinetic coefficient of the inertial term (∼ ω2), as
we will further discuss below. This makes unviable a
fine compensation of the anomalous dimensions of the
retarded and Keldysh sectors, which would signal, when-
ever occurring, effective infrared thermalization [44, 85].
Therefore, the RG fixed point discussed in the following
explicitly breaks fluctuation-dissipation relations and
cannot have an equilibrium counterpart, distinctly from
other instances of non-equilibrium open criticality [37–
42]. We now study the critical regime m→ 0 for α < 1.

RG fixed point and criticality for α < 1 – We will
now complement the Gaussian action in Eq. (3) with
non-linear terms following the canonical power counting
just discussed. For α < 1, we have PR/A ∼ q2α and
PK ∼ qα, with canonical scaling dimensions for the clas-
sical and quantum fields ϕc ∼ qd/2−α, ϕq ∼ qd/2, and
accordingly a lower critical dimension of dl = 2α. Below
the upper critical dimension du = 4α the classical non-
linear term (uc/4!)ϕ3

cϕq is relevant. The next RG leading
non-linearity appears at d < 3α where the additive noise
term i(κ/2)ϕ2

cϕ
2
q and the sextic term (λ/5!)ϕ5

cϕq are both
RG relevant. Quantum vertices with higher powers of
quantum fields are always irrelevant hinting at the semi-
classical nature of the fixed point, and marking a differ-
ence with previous studies on quantum criticality induced
by dark states [49–52]. Notice that similarly to the long-
range interacting model A of the Halperin-Hohenberg
classification [99] we have a dynamical critical exponent
z = α, but different lower and upper critical dimensions
due to the gapless nature of the noise, suggesting that the
scaling regime studied here belongs to a different univer-
sality class. Similarly there are neat differences with the
canonical power counting of the zero-temperature critical
long-range Ising model, where z = α/2.

In order to find the interacting fixed point, we run a
one-loop resummed RG on the effective potential includ-
ing relevant non-linearities [43, 80, 100]. Technical details
are reported in [101]. We employ a sharp cutoff in mo-
mentum space k < q < Λ where k is the running RG scale
and Λ an UV regulator. In the following we parametrize
the flow of the couplings in terms of the RG time t = ln k.
We first consider a leading order ε-expansion, right be-
low the upper critical dimension ε ≡ du − d � 1 (where
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Critical exponent dl < d < du Effective field theory

LR losses with α < 1 ν = 1/(2α) + ε/(12α2) 2α < d < 4α coexisting inertial/frictional derivatives + soft noise

LR losses with α > 1 ν = 1/2 + ε/12 3− α < d < 5− α short-range Ising model + soft noise

LR losses and interactions (α < 2) ν = 1/α+ ε/(3α2) α/2 < d < 3α/2 long-range Ising model + soft noise

Table I. Non-equilibrium criticality with long-range (LR) losses. The third column displays the lower (dl) and upper (du)
critical dimensions, while the fourth one summarizes the effective dynamical field theory valid at criticality. Below the lower
critical dimension separate scaling and RG analyses are required, and an Ising-type field theory description does not apply.
The thresholds dl and du implicitly bounds the values of α compatible with the universality class discussed in this work.

du = 4α). We follow the canonical rescaling discussed
above, m̃ ∼ m/k2α, Γ̃0 ∼ Γ0/(Γ1k

α) and ũc ∼ uc/k4α−d,
and we find from the following rescaled beta functions

∂tm̃ = −2αm̃+
ũc(−2m̃+ (1 + Γ̃0)2)

4(1 + Γ̃0)6
,

∂tũc = −εũc −
3ũ2c

2(1 + Γ̃0)6
, ∂tΓ̃0 = −αΓ̃0,

(5)

a Wilson-Fisher (WF) fixed point at (m̃∗, Γ̃∗0, ũ
∗
c) =

(−ε/(12α), 0,−2ε/3), with a correlation length critical
exponent ξ ∼ m−ν , ν = 1/(2α) + ε/(12α2). This fixed
point has an additional unstable RG direction corre-
sponding to perturbations around the fixed point value
Γ̃∗0 = 0, in agreement with the requirement to fine tune
the Lindbladian gap (Γ0 → 0) in addition to the closing
of the spectral one (m→ 0). This is in full analogy with
the RG relevance of temperature at equilibrium quantum
critical points, which is as well responsible for the onset
of an additional RG unstable direction [21–23]. At O(ε2)
we find z ' α+ ε2/(24(1 + 4α2)) following similar calcu-
lations performed for critical Langevin models [46, 77].

In Eqs. (5) the flow of Γ̃0 is solely governed by
its canonical dimension. To find a non-trivial WF
fixed point for Γ0, we need the multiplicative noise
i(κ/2)ϕ2

cϕ
2
q to be RG relevant. As discussed above,

this occurs for α > d/3, giving to the Gaussian
noise sector, PK , a one-loop dressing proportional to
∼ κ

∫
Q
GK(Q). For consistency with RG relevance we

have also to include the sextic vertex ∝ λ (see [101]
for details). By evaluating the one-loop resummed RG
flow at d = 2 and α = 0.7, we find a WF fixed point
(m̃∗, Γ̃∗0, ũ

∗
c , κ̃
∗, λ̃∗) = (0.04, 0.23, 2.53,−1.98,−0.93)

with still two unstable directions; the one associated
to the spectral mass yields ν ' 0.71. Loop corrections
to Γ0 in vicinity to this fixed point, renormalize the
condition Γ0(k) ' Γ1k

α for suppression of the dark
mode from incoherent spontaneous emission. Following
a calculation contained in Ref. [85] (summarized also
in [101]), we find that at distances larger than the inverse
of k∗ ' 10−6ΛG, the novel scaling is superseded by a
conventional non-critical thermal Ising theory (as also
mentioned above). Here ΛG is the so called Ginzburg
scale [80]: at distances larger than Λ−1G , correlation
functions scale universally with the critical exponents

of the WF fixed point. For distances smaller than
Λ−1G correlation functions are instead dominated by
non-universal corrections (lattice effects, RG irrelevant
spin interactions, etc). From the side of dynamics,
upon initializing the spin model (1)-(2) sufficiently away
from the eventual steady state, it will enter, after a
transient (t . Λ−1G ), into a self-similar scaling regime
where spatial- and time-resolved spin correlations are
governed by the critical exponents of the WF fixed
point. Such dynamical scaling regime persists until
spontaneous emission will ’heat’ the dark modes at times
larger than the inverse of k∗; at these times, the critical
long-wavelength theory will crossover into a conventional
Langevin theory.

Fixed point for α > 1 – By inspection of Eqs. (4) we
notice that for α > 1 the kinetic coefficient ∼ Kq2 in the
advanced/retarded sector dominates over the ∝ Γ2

1q
2α

term resulting from non-local dissipation. This leads to a
dynamical critical exponent z = 1, with the term ∝ ωΓq
now negligible in the infrared; in other words, we have an
Ising model with short range interactions and a ∝ Γ1q

α

Markovian noise. This changes the critical properties of
the theory as summarized in Table I. At this WF fixed
point quantum terms such as the quartic uqϕ

3
qϕc are

irrelevant, unless α > 2. However, as α increases the
spatial support of losses quickly shrinks [70], retrieving
uninteresting local dissipation effects similar to Γ0.

Competing long-range interactions and losses – Fi-
nally, we consider the scenario where long-range Ising
interactions,

∑
〈i,j〉

J
|i−j|1+ασ

x
i σ

x
j , compete with ’long-

range’ losses. Such term adds a Jqα contribution to
PR/A [75–77, 91]. By inspection of Eqs. (4), we re-
alize that for α > 2 we recover the same scaling dis-
cussed above for ’long-range’ losses with α > 1. For
α < 2, instead, we find a leading scaling PR/A ∼ Jqα,
since long-range interactions suppress at small momenta
the contribution of non-local losses in the spectral sec-
tor (z = α/2). This is equivalent to the critical scal-
ing of a long-range interacting Ising model driven by a
∝ Γ1q

α Markovian noise, and it is a limit where clas-
sical and quantum vertices scale alike, uc,q ∼ q3α/2−d.
Such quantum scaling regime is formally equivalent to
a critical zero-temperature long-range interacting Ising
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model [75, 76]. The associated critical dimensions and
exponents are summarized in Table I (they do not hold
for d = 3).

Perspectives – A recent cavity QED experiment [73]
demonstrates the tunability of non-local spin couplings,
suggesting that the exploration of programmable non-
unitary interactions [70] in critical spin systems may
belong to near-term implementations. An interest-
ing follow-up research direction would consist in fo-
cusing on richer driven-open platforms, where incoher-
ent losses/pumps and dephasing channels with non-local
spatial character can compete. For instance, revising
driven-open condensates with an O(2) order parame-
ter [44, 45, 52, 102, 103] appears a natural perspective.
In the same spirit, the effective field theory derived in
this work can be considered as a natural starting point
for an extension to models with different symmetries or
equipped with global conservation laws, in the pursuit of
an Halperin-Hoenberg [20] classification of critical theo-
ries with tunable dark states. It also appears important
to access quantitatively the value of the critical exponents
(and the radius of convergence of the ε-expansion) using
methods, like functional-RG, which are technically suited
to perform loop resummations in models with long-range
interactions [95]. However, the ε-expansion of our work
is expected to describe critical properties at least qual-
itatively, as it also occurs in hermitian long-range Ising
models [76, 77, 95], or as it would be for the large-N ver-
sion [104] of the field theory (3). In all these respects, our
findings can be regarded as a seed for technically richer
explorations.

Finally, we believe it would be extremely interesting to
study the effect of long-range losses on the paramagnet
and ferromagnet separated by the critical point. This
appears, however, as a technically challenging task
since it requires to solve the non-diagonal Liouvillian
in (2) beyond semi-classical limits where its many-body
dynamics have been efficiently simulated so far [105].
Quantum kinetic equations based on Majorana fermions
representation of spins [106] could represent a possible
avenue to find correlations in this case.
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[26] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Lin-
nemann, C.-M. Schmied, J. Berges, T. Gasenzer, and
M. K. Oberthaler, Nature 563, 217 (2018).
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