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Quantum low-density parity-check (LDPC) codes are a promising avenue to reduce the cost of
constructing scalable quantum circuits. However, it is unclear how to implement these codes in
practice. Seminal results of Bravyi, Poulin & Terhal (PRL 2010) have shown that quantum LDPC
codes implemented through local interactions obey restrictions on their dimension k and distance
d. Here we address the complementary question of how many long-range interactions are required
to implement a quantum LDPC code with parameters k and d. In particular, in 2D we show that
a quantum LDPC code with distance d ∝ n1/2+ε requires Ω(n1/2+ε) interactions of length Ω̃(nε).
Further a code satisfying k ∝ n with distance d ∝ nα requires Ω̃(n) interactions of length Ω̃(nα/2).
As an application of these results, we consider a model called a stacked architecture, which has
previously been considered as a potential way to implement quantum LDPC codes. In this model,
although most interactions are local, a few of them are allowed to be very long. We prove that
limited long-range connectivity implies quantitative bounds on the distance and code dimension.

Introduction – . Finding ways to battle decoherence
is among the foremost challenges on the path to im-
plementing fault-tolerant quantum circuits. Quantum
error correcting codes can address this issue, and their
efficacy is guaranteed by the quantum threshold theo-
rem [1–4]. The code we choose to use will be tailored
to the advantages and disadvantages of the physical ar-
chitecture on which it is implemented. For instance,
we might consider how many qubits we can measure
jointly; how far apart qubits involved in such measure-
ments need to be located; or how many supplementary
qubits will be needed to implement a particular algo-
rithm fault tolerantly [5, 6]. We will want the choice of
code to be efficient and respect the limitations of our
architecture. Consequently, there is a strong interest
in understanding how physical constraints on a system
can impede the efficiency of a quantum code.

Formally, a quantum error correcting code C on n qubits
is the common +1-eigenspace of a set of independent
commuting n-qubit Pauli operators {S1, ...,Sm}, re-
ferred to as stabilizers,

C = {|ψ〉 : Si |ψ〉 = |ψ〉 ∀i ∈ {1, ...,m}} .

Measuring the stabilizers yields information required to
detect and correct errors. Alternatively, the code space
can be thought of as the ground space of a commut-
ing Hamiltonian. For ease of implementation, we may
stipulate that these measurements be local i.e. that the
qubits involved in a stabilizer be contained within a ball
of constant radius. Let k = log2 dim C denote the num-
ber of encoded qubits [7]; we aim to encode as many
qubits as possible with a limited number of available
physical qubits. Furthermore, let d denote the distance;
it is a measure of the number of physical qubits that
need to be corrupted to irreparably damage encoded

information. Seminal works of Bravyi & Terhal, and
Bravyi, Poulin & Terhal [8, 9] demonstrated that there
are sharp tradeoffs between k and d for all local codes.
As a result, locality limits our ability to reduce the re-
source cost of implementing scalable quantum circuits.
This naturally raises the following question—Question
1: to construct an error correcting code with dimension
k and distance d, how much nonlocality is needed to
implement it? How do we even quantify this seemingly
nebulous notion of nonlocality?

Expanding our attention beyond local quantum codes
is a worthwhile endeavor as certain architectures sup-
port interactions between arbitrary qubits. Prominent
examples are silicon-based architectures with photon-
mediated interactions which encode qubits into the spin
states of silicon [10], or photonic architectures where the
qubits are directly encoded in the photons and therefore
not localized [11]. Other architectures include atomic
arrays [12], where atoms are laid out along a single
line, but long-range interactions can be used to simulate
higher dimensions. Ion trap architectures that support
all-to-all connectivity in limited capacity have also been
considered [13–15]. By dropping the restriction of local-
ity, these architectures could eventually circumvent the
limitations of local codes. With this motivation, we con-
sider quantum low-density parity-check (LDPC) codes,
a class that subsumes all known topological codes [2, 16–
18]. The study of these codes is motivated by several re-
sults showing that quantum LDPC codes can drastically
reduce the number of physical qubits required to build a
fault-tolerant quantum computer [19–21]. These results
are theoretical and we need to better understand how to
translate them for realistic implementations. In prac-
tice, we wish to understand how to implement quan-
tum LDPC codes in a 2 or 3-dimensional layout. It is
conceivable that implementing quantum codes where a
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majority of measurements are local, but some limited
amount of long-range connectivity is available. This
then prompts the next question concerning locality—
Question 2: can we implement good quantum LDPC
codes using a setup where a majority of measurements
are local?

In this paper, we address Questions 1 and 2. Through
Theorem 2 we show that quantum LDPC codes require
large amounts of nonlocality between qubits when the
dimension k and the distance d are large. To motivate
how to quantify nonlocality, we repeat an observation
from [? ]. It is not possible to add a limited number
of long-range connections and significantly improve the
performance of a local code. Any code that we consider
will have to have a sufficient number of long-range in-
teractions to work. Our quantification of nonlocality,
therefore, in addition to the length of the long-range
interactions, will also include the number of such inter-
actions.

We highlight codes for which k ∝ n, and d ∝ nα for
α > 0, as these codes underpin the current proposals for
low-overhead quantum computation. Our results state
that to implement these codes in 2D, we require roughly
n interactions of length nα/2. Therefore implementing
these codes will require an architecture able to deal with
a significant amount of nonlocality. Our results are also
of interest for good codes i.e. constant-rate codes for
which α = 1 [22]. They seem to make optimal use of
long-range connectivity. This is because in two dimen-
sions the maximum distance between any two points on
an L× L grid is proportional to L ∝

√
n, which would

saturate our bound. Finally, our results suggest that
it is expensive to improve the distance of a local code.
For example, in 2D, Bravyi & Terhal proved that local
codes cannot do better than d ∝ n1/2; we show that any
code satisfying d ∝ n1/2+ε will require a growing num-
ber of long-range interactions. Together, these results
suggest that architectures limited to local interactions
can only implement topological codes at best.

Next, we consider what we refer to as a stacked layout
[23]. This model is inspired by the schematic for a con-
catenated code shown in fig. 1. In the stacked model,
qubits are placed on the vertices of a 2-dimensional grid.
The measurements required to define the code are par-
titioned into multiple layers as visualized in fig. 1. Each
layer of the stack represents stabilizers of a given inter-
action radius. The interaction radius increases as we
move up the layers of the stack while the number of
stabilizers decreases. The majority of stabilizers in this
model are in the lower layers. Therefore any code im-
plemented by a stack is mostly local. For this reason,
this model has been considered a potential route to im-
plement LDPC codes. However, such an architecture
cannot implement arbitrary quantum LDPC codes. In
Corollary 3, we show that 2-dimensional stacked lay-

Figure 1. (a) A schematic for a concatenated code [24]. The
qubits of the code are themselves encoded in an error cor-
recting code and this gives rise to a hierarchical structure.
(b) A 2-dimensional stacked architecture. Qubits are the
bottom-most layer. Stabilizers, identified with their sup-
port, are assigned to different layers above and are depicted
using blue circles. Stabilizers in a given layer have a radius
of support depending on the layer. This interaction range
increases as we move up the stack or equivalently the radius
of the circles increases. On the other hand, the number of
stabilizers in each layer decreases exponentially.

outs are limited. We show the distance is bounded
by d = Õ(n2/3) and the dimension-distance tradeoff is
k3d4 = Õ(n5). This shows that there are strong lim-
itations to such models; however, it does not prevent
implementations of constant-rate codes with distance
scaling as

√
n.

Background and intuition – . An Jn, k, dK quantum code
C is a 2k-dimensional subspace of the complex Euclidean
space C2n associated with n qubits. The codespace is
specified as the joint +1-eigenspace of a set of commut-
ing Pauli operators S ⊂ {I,X,Y,Z}⊗n called the sta-
bilizer group. The distance d is the minimum number
of qubits that are acted on nontrivially by a Pauli op-
erator to map one element of C to another. Suppose
the group is generated by some elements {Si}n−ki=1 . The
code is said to be a low-density parity-check (LDPC)
code if each generator only acts on a constant number
of qubits, and each qubit is only involved in a constant
number of generators.

We represent a quantum code C on n qubits using a
connectivity graph G = G(C) = (V,E). Here V refers
to the set of vertices of the graph and E ⊆ V ×V the set
of edges. Each vertex v ∈ V of G corresponds to a qubit
of C and two vertices share an edge e ∈ E if both qubits
participate in the same stabilizer generator Si. The con-
nectivity graph of an LDPC code is sparse, i.e. only a
constant number of edges emanate from each vertex. In
[? ], we showed that there is an intimate relationship
between the properties of a quantum code and the corre-
sponding connectivity graph. We build on these results
to show that the properties of quantum LDPC codes
with desired parameters are severely restricted. For an
in-depth discussion of this lemma, including the proof,
we point the interested reader to [? ]. For brevity,
we use the following notation in our inequalities (see
[25] for details): consider two functions f, g : X → Y
with real domain and image, i.e. X,Y ⊆ R. If there
exists an x0 ∈ R such that for all x ≥ x0: (a) there
exists a constant c such that f(x) ≥ cg(x) , we say that
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f = Ω(g); (b) if there exist constants c−, c+ such that
c−g(x) ≤ f(x) ≤ c+g(x), we say that f = Θ(g); and
(c) if there exists a constant c such that f(x) ≤ cg(x),
we say f = O(g). These are modified with tilde when
the bounds hold only up to polylogarithmic factors. For
example, f = Ω̃(g) implies that f = Ω(g(log(x))c) for
some constant c. We use this shorthand because we are
interested in the scaling of resources, and this notation
allows us to highlight the most important features of
this scaling.

Main result: Embedding codes in D-dimensions – . In
this section, we consider how to embed quantum LDPC
codes in RD. This section is inspired by results from
metric geometry that consider the distortion of ex-
pander graphs embedded in RD. Here we show that a
class of graphs called ε-expanders are difficult to embed.
As a consequence, we show that constant-rate quantum
codes require a growing number of long-range interac-
tions between qubits.

Definition 1. For a graph G = (V,E), a map η :
V → RD is called an embedding. η satisfies the follow-
ing condition for all pairs of distinct vertices u, v ∈ V ,
|η(u)− η(v)| ≥ 1. We use | . | : RD → R to denote the
standard Euclidean metric.

In the following sections, we will frequently refer to the
length of an edge. We mean that any embedding η natu-
rally endows an edge (u, v) with a length. Equivalently,
the length of an edge (u, v) is |η(u)− η(v)|. The condi-
tion on the embedding guarantees that two qubits are
not squeezed arbitrarily close together.

Theorem 2 (Main). Let C = {Cn} be a family of
Jn, k, dK quantum LDPC codes Further suppose C is as-
sociated with the nontrivial connectivity graphs G =
{Gn = (Vn, En)}n. For any θ-embedding η : Vn → RD,
there exists some β, n0 such that for code sizes n > n0,
and any α ∈ (0, 1), the following propositions hold: η
induces

1. Ω(d) edges of length Ω̃
(

d
n(D−1)/D

)
.

2. Ω̃

(√
k
nd

)
edges of length Ω̃

(√
k
nd

1/D

)
.

3. Ω̃

(√
(1−α)k
n

1/ logn(d)

αk

)
edges of length

Ω̃

(√
(1−α)k
n d1/D

)
if kd2/D ≥ βn log(n)2/(1−α).

To understand its implications, we proceed to a short
discussion of the theorem and the intuition for the proof.
The proof is presented in Section II of the Supplemen-
tary Material [26]; the proof uses references [27–30]. As
shown in [? ], a quantum LDPC code with good pa-
rameters k and d requires a connectivity graph with a

lot of connectivity. We can measure the distance be-
tween two vertices on the graph using the graph metric,
which is simply the minimum number of edges to tra-
verse between the two vertices. In a tightly-connected
graph, the minimum distance between vertices is small.
For example, in what are known as expander graphs,
there is high degree of connectivity. On an expander
graph of size n, the maximum distance between two
points is O(log(n)). On the other hand, this distance
can be quite large for a poorly-connected graph such as
the grid graph. For example, for the grid graph in 2 di-
mensions, the maximimum distance between two points
can be proportional to

√
n. In general, any embedding

η from the connectivity graph will try to respect the
graph metric. This is to minimize distorting the graph
and make edges longer than necessary. However, there
is only a limited extent to which it can do so as we have
constrained the density of the embedding η. Recall that
η cannot place two qubits in D dimensions closer than
unit distance apart. It is forced to distort the graph
metric for a well-connected graph when embedding in 2
dimensions. This in turn forces some edges of the graph
to be very long.

Discussion: As a reminder, an edge of length l implies
that there exist a stabilizer measurement involving at
least two qubits which are embedded at a distance at
least l from each other. We say that such stabilizer has
range at least l. If an embedding induces m edges of
length l, then, since the codes we consider are LDPC,
there exist at least Θ(m) stabilizers of range at least l.

1. We focus on the case D = 2. The first observa-
tion is that a code of distance Ω(n1/2+ε) will induce
Ω(n1/2+ε) edges of length Ω̃(nε) from Claim 1. This
underlines how hard it is to break free of the nat-
ural restrictions space imposes on the distance: the
case ε = 0 can be obtained readily using topolog-
ical codes and only nearest neighbors interactions,
but ε > 0 will require a significant amount of nonlo-
cality. In particular, implementing a linear distance
code will induce Ω(n) edges of length Ω̃(n1/2). In
that particular case, the length of the edges are tight
up to logarithmic factors, since any code can be im-
plemented on a

√
n×
√
n square lattice such that all

qubits are at a distance at most O(n1/2) from each
other. In D dimensions, this result can also be seen
as complementing the Bravyi-Terhal claim [8]—if we
desire that the code be local, then the longest edges
of its connectivity graph have length O(1), the dis-
tance must obey d = Õ(n(D−1)/D).

2. Similarly, our results yield nontrivial bounds on codes
with constant rate. First, consider the case with
k ∝ n and d ∝ 1. Such a code can be achieved
using Θ(n) disjoint patches of a 2D topological code,
and this implementation requires zero nonlocal in-
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teractions. However, Claim 3 shows that escaping
from this constant distance is challenging. For ex-
ample, achieving d ∝ nα requires Ω̃(n) interactions
of length Ω̃(nα/2): quite a dramatic change.

3. The Panteleev-Kalachev codes [22] seem to make
optimal use of nonlocality, as they almost saturate
Claim 3. For example, we could implement n1−α dis-
joint blocks of good codes, each with size nα. Then
we have k ∝ n, d ∝ nα, and at most O(n) edges of
length nα/2, which minimizes the bound as discussed
in the previous point. This suggests that good quan-
tum codes will likely be essential in decreasing the
experimental cost of quantum error correction.

4. There is a gap between the Bravyi, Poulin & Ter-
hal result and our results with respect to the con-
ditional statement in Claim 3. Recall that they
stated that if quantum LDPC codes are local, then
kd2/(D−1) = O(n). However, we require for Claim 3
that kd2/D is roughly greater than n log(n)2. What
are the classes of codes that lie in the gap? Claim 3
itself cannot be sharpened to yield nontrivial bounds
on codes satisfying kd2/(D−1) = Ω(n). Suppose
we naively substitute the conditional

√
k/nd1/D by√

k/nd1/(D−1). Then in 2 dimensions, for any dis-
tance larger than n1/2+ε and constant rate, we would
find some edges larger than n1/2+ε. However, this
is impossible: we can always place the qubits in a√
n ×
√
n square with edges of length O(

√
n). This

seems to imply that if that substitution worked, there
exists no constant-rate quantum LDPC code with a
distance larger than

√
n. However, we know this to

be false because of the recent result by Panteleev and
Kalachev [22].

Application of Main theorem to the stacked model – .
We return now to the stacked architecture and pro-
vide strong evidence that the properties of any code
implemented this way will be limited. We begin by de-
scribing the model in more detail. Suppose we wish to
design an error correcting code using a stacked layout
in 2-dimensions. Consider the following proposal where
qubits are laid out on a square grid of size n = 2lm×2lm

as shown in fig. 1. In total, there are lm layers in
this stack, where the generators at level l act within
a ball of radius rl = 2l/

√
2. At the very top, we have

a highly nonlocal stabilizer associated with a ball of ra-
dius rlm = 2lm/

√
2. To be clear, while the stabilizer

in the top-most layer has a radius of rlm , it still only
jointly measures some constant number of qubits, and
each qubit is involved in a constant number of genera-
tors. The radius merely constrains where these qubits
are allowed to be located. In the next layer we have 4
stabilizers but these stabilizers are each only supported
within a ball of radius rl−1 = 2l−1/

√
2. This proceeds

until we hit the very last layer—there are 4lm−l such

generators in layer l—until we hit layer 0 which con-
sists of stabilizers supported entirely within a ball of
constant radius. It follows that the majority of the
stabilizers are in the last layer or in other words, the
majority of stabilizers are local with r = O(1) locality.
A natural question then is whether the nonlocal checks
are numerous enough to allow for good codes.

A corollary of our results is that the average length of
the interactions in the implementation of a code limits
code properties. For example, a family of codes with
linear distance requires Ω(n) edges of length Ω̃(n1/2). If
this system is sparse, then the average length is Ω̃(n1/2).
Conversely, if the average length of the interactions is
not Ω̃(n1/2), then the system cannot implement a family
of linear-distance codes.

Extending this idea, we can use a direct edge-counting
argument together with Theorem 2 to bound the dis-
tance, and obtain a tradeoff between k and d.

Corollary 3. The stacked model satisfies d =
n2/3 log(n)2/3, and k3d4 = O(n5 log(n)10).

The proof is presented in Section III of the supplemen-
tary material [26]. The distance bound immediately
implies that this limited amount of nonlocality only
yields a limited amount of leeway. The distance of a 2-
dimensional local code, with this limited nonlocality, is
constrained like that of a 3-dimensional local code. We
do not know if this bound can be saturated, but it does
not readily forbid the implementation of constant rate
codes, with d ∝

√
n. The Panteleev-Kalachev codes [31]

achieve code dimension and distance that scale as Θ(n);
these codes clearly violate the above bounds. However,
it is still not clear whether the codes that do not violate
these bounds can be implemented via a stacked archi-
tecture; our techniques do not rule out this possibility.

Conclusions – . We considered how much nonlocality
is needed to implement quantum LDPC codes. In our
results, this question is addressed by lower bounding
the number of long-range connections between qubits,
and their length. In particular, in 2D we show that a
quantum LDPC code with distance d ∝ n1/2+ε requires
Ω(n1/2+ε) interactions of length Ω̃(nε). We also focus
on constant-rate quantum LDPC codes, as the cost of
encoding a logical qubit in such a code remains fixed.
For such a code to exhibit a distance d ∝ nα, we find
that one requires Ω̃(n) interactions of length Ω̃(nα/2).
We then considered a stacked architecture to implement
quantum LDPC codes. In this model, although most
stabilizers are local, a few are capable of longe-range
connections. We showed that the distance of this ar-
chitecture is bounded. Furthermore, it too witnesses a
sharp tradeoff between k and d. We hope these tools
can be used to understand the difficulty of implement-
ing efficient codes, as well as the limitations of particular
architectures.
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