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Magic-angle (θ = 1.05◦) twisted bilayer graphene (MATBG) has shown two seemingly contradic-
tory characters: the localization and quantum-dot-like behavior in STM experiments, and delocal-
ization in transport experiments. We construct a model, which naturally captures the two aspects,
from the Bistritzer-MacDonald (BM) model in a first principle spirit. A set of local flat-band or-
bitals (f) centered at the AA-stacking regions are responsible to the localization. A set of extended
topological semi-metallic conduction bands (c), which are at small energetic separation from the
local orbitals, are responsible to the delocalization and transport. The topological flat bands of the
BM model appear as a result of the hybridization of f - and c-electrons. This model then provides
a new perspective for the strong correlation physics, which is now described as strongly correlated
f -electrons coupled to nearly free c-electrons - we hence name our model as the topological heavy
fermion model. Using this model, we obtain the U(4) and U(4)×U(4) symmetries of Refs. [1–5] as
well as the correlated insulator phases and their energies. Simple rules for the ground states and
their Chern numbers are derived. Moreover, features such as the large dispersion of the charge ±1
excitations [2, 6, 7], and the minima of the charge gap at the ΓM point can now, for the first time, be
understood both qualitatively and quantitatively in a simple physical picture. Our mapping opens
the prospect of using heavy-fermion physics machinery to the superconducting physics of MATBG.

Introduction — Since the initial experimental discovery
of the correlated insulator phases [8] and superconduc-
tivity [9] in MATBG [10], extensive experimental [11–35]
and theoretical [1–7, 36–113] efforts have been made to
understand the nature of these exotic phases. Theoretical
challenges for understanding the correlation physics come
from both the strong interaction compared to relatively
small band width as well as from the topology [36, 38, 41–
43, 104], which forbids a symmetric lattice description
of the problem. The two flat bands of MATBG posses
strong topology in the presence of C2zT (time-reversal
followed by C2z rotation) and particle-hole (P ) symme-
tries [104], which supersedes the earlier, C2zT symmetry-
protected fragile topology [41, 42]. This strong topology
extends to the entire continuum BM model, and implies
the absence of a lattice model for any number of bands.
The topology is also responsible to exotic phases such as
quantum anomalous Hall states [2, 5, 55, 60, 82, 84] and
fractional Chern states [96, 98, 99, 109].

Two types of complementary strategies have been
proposed to resolve the problem of the lattice descrip-
tion. One is to construct extended Hubbard models
[1, 7, 37, 40, 42, 49, 51, 67, 71], where either C2zT
[1, 7, 40, 49, 67] or P [42] becomes non-local in real space.
The other is to adopt a full momentum-space formalism
[2, 5, 6, 85, 86, 105, 106, 111], where locality becomes hid-
den. (Besides the two strategies, some phenomenological
models are also proposed [39, 48, 63, 64, 90, 92, 97, 100].)
The real and momentum space strong coupling models
elucidated the nature of the correlated insulator states:
they are ferromagnets - sometimes carrying Chern num-
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bers - in a large U(4) or U(4)×U(4) symmetry space that
contains spin, valley and band quantum number [1, 2, 4].
The dispersion of the excitations above the correlated in-
sulators [2, 6, 7] - where superconductivity appears upon
doping - is, despite being exact - not physically under-
stood.

In the current manuscript, nevertheless, we find it pos-
sible to write down a fully symmetric model that has
a simple real space picture, which, remarkably and el-
egantly, solves the aforementioned puzzles. We refor-
mulate and map the interacting MATBG as an effective
topological heavy fermion system, which consists of local
orbitals (f) centered at the AA-stacking regions and delo-
calized topological conduction bands (c). The f -electrons
are so localized that they have an almost zero kinetic
energy (∼ 0.1meV) but a strong on-site Coulomb repul-
sion that we compute to be ∼ 60meV. The c-electrons
carry the symmetry anomaly and have unbounded ki-
netic energies. The actual flat bands of the BM model
are from a hybridization (∼20meV) between the f - and
c-bands. The interacting Hamiltonian also couples the
f and c electrons through the presence of several types
of interactions. Using this model, the ground states
[1, 2, 44, 50, 53, 65, 68, 71, 77, 84–86, 114] and their
topologies can be understood in a simple, physical pic-
ture. The quasi-particle excitation bandwidth can even
be analytically determined.

Topological heavy fermion model — The single-valley
BM model has the symmetry of the magnetic space group
P6′2′2, generated by C3z, C2x, C2zT , and moiré trans-
lations. (See Refs. [41, 115] for this group and its ir-
reducible representations - irreps.) The energy bands in
the valley η = + of the BM model are shown in Fig. 1(b),
where the bands are labeled by their irreps. Refs. [41, 42]
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FIG. 1. Topological heavy fermion model. (a) A sketch of
the moiré unit cell of MATBG and its heavy fermion analog,
where the local moments and itinerant electrons are formed
by the effective f -orbitals at the AA-stacking regions and
topological conduction bands (c), respectively. (b) The band
structure of the BM model at the magic angle θ = 1.05◦,
where the moiré BZ and high symmetry momenta are illus-
trated in the upper inset panel. The overlaps between the
Bloch states and the trial WFs are represented by the red
circles. The density profile of the constructed maximally lo-
calized WFs (f -orbitals) is shown in the lower inset panel. (c)
Bands given by the topological heavy fermion model (black
lines) compared to the BM bands (blue crosses). The c- (blue)
and f -bands (red) in the decoupled limit, where γ = v′? = 0,
are shown in the inset. Orange dashed lines indicate evolution
of energy levels as f -c coupling is turned on.

showed that the irreps formed by the two flat bands, i.e.,
Γ1 ⊕ Γ2; M1 ⊕M2; K2K3, are not consistent with any
local orbitals (band representations [116]) and indicate
a fragile [117–120] topological obstruction to a two-band
lattice model. Here we resolve the fragile topology by in-
volving higher energy bands. Suppose we can “borrow”
a Γ3 irrep from higher (∼20meV) energy bands and use
it to replace the Γ1⊕Γ2 states; then the replaced irreps -
Γ3, M1⊕M2, K2K3 - are consistent with px±ipy orbitals
located at the triangular lattice. We hence introduce two
trial Gaussian-type Wannier functions (WFs) that trans-
form as px±ipy orbitals under the crystalline symmetries.
As indicated by the overlaps between the trial WFs and
the Bloch bands (Fig. 1(a)), the trial WFs are supported
by the flat band states at k away from ΓM and by the
lowest higher energy band states around ΓM . Feeding
the overlaps into the program Wannier90 [121–123], we
obtain the corresponding maximally localized WFs, den-
sity profile of which is shown in Fig. 1(b) [115]. (Similar
local states are also discussed using different methods in
Refs. [38, 112].) These WFs are extremely localized -
their nearest neighbor hoppings are about 0.1meV - and
span 96% percent of the flat bands.

To recover the irreps and topology of the middle two
bands, we have to take into account the remaining 4%
states, without which the localized electrons could not
form a superconductor. To do this, we define the projec-
tor into the WFs as P, the projector into the lowest six
bands (per spin valley) as I, and divide the low energy
BM Hamiltonian HBM into four parts: H(f) = PHBMP,
H(c) = QHBMQ, H(fc) = PHBMQ, H(cf) = H(fc)†,
where Q = I − P, H(c) is the remaining Hamiltonian,

and H(fc) + h.c. is the coupling between WFs and the
remaining states. As the couplings between WFs are ex-
tremely weak (∼0.1meV) we find H(f) ≈ 0. Since the
two states in P form Γ3 at ΓM , the four states in Q must
form Γ3 ⊕Γ1 ⊕Γ2 at ΓM due to the irrep counting. Due
to the crystalline and P symmetries, H(c) in the valley η
takes the form [115]

H(c,η)(k) =

(
02×2 v?(ηkxσ0 + ikyσz)

v?(ηkxσ0 − ikyσz) Mσx

)
(1)

to linear order of k, where the first two-by-two block
is spanned by the Γ3 states and the second two-by-two
block is spanned by the Γ1 ⊕ Γ2 states. The Γ1 and Γ2

states are split by the M term (blue bands in Fig. 1(c)),
while the Γ3 states form a quadratic touching at k = 0,
which is shown in Ref. [115] responsible to the symmetry
anomaly [104] jointly protected by C2zT and P . The
coupling H(fc) in the valley η has the form

H(fc,η)(k) =
(
γσ0 + v′?(ηkxσx + kyσy), 02×2

)
, (2)

where the second block is computed to be extremely small
and hence is omitted and written as 02×2. H(fc,η) will
gap H(c,η), and hence provides for both the single particle
gap and for the flat band topology of the BM model.
Using a set of usually adopt parameters for MATBG, we
find v? = −4.303eV·Å, M = 3.697meV, γ = −24.75meV,
v′? = 1.622eV · Å.

Since the WFs and the remaining “c” degrees of free-
dom have localized and plane-wave-like wave functions,
respectively, we make the analogy with local orbitals and
conduction bands in heavy fermion systems. We refer
to them as local f -orbitals and (topological) conduction
c-bands, respectively. We use fRαηs (α = 1, 2, η = ±,
s =↑, ↓) to represent the annihilation operator of the α-
th WF of the valley η and spin s at the moiré unit cell R.
We use ckaηs (a = 1, 2, 3, 4) to represent the annihilation
operator of the a-th conduction band basis of the valley η
and spin s at the moiré momentum k. The single-particle
Hamiltonian can be written as

Ĥ0 =
∑
|k|<Λc

∑
aa′ηs

H
(c,η)

aa′ (k)c†kaηscka′ηs +
1√
N

∑
|k|<Λc

R

∑
αaηs

(

eik·R−
|k|2λ2

2 H(fc,η)
αa (k)f†Rαηsckaηs + h.c.

)
, (3)

where Λc is the momentum cutoff for the c-electrons,
aM is the moiré lattice constant, N is the number of
moiré unit cell in the system, and λ, which is found to be
0.3375aM , is a damping factor proportional to the size
of WFs. We plot the band structure of Ĥ0 in Fig. 1(c),
where the splitting of the two Γ3 states is given by 2|γ|
and the bandwidth of the two flat bands is given by
2M ≈ 7.4meV. The spectrum of Ĥ0 matches very well
with the BM model (Fig. 1(a)) in the energy range [-
70meV, 70meV].
The U(4) symmetry — The projected model of

MATBG [1, 2, 4] is found to possess a U(4) symmetry
if the kinetic energy of the flat bands is omitted. In the
heavy fermion basis, this U(4) symmetry can be realized
by imposing the flat band condition, i.e., M = 0. (Note
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that 2|M | is the bandwidth of the flat bands.) The U(4)
moments of the f -electrons, Γ3 c-electrons, and Γ1 ⊕ Γ2

c-electrons are given by [115]

Σ̂(f,ξ)
µν (R) =

δξ,(−1)α−1η

2
Aµναηs,α′η′s′f

†
RαηsfRα′η′s′

Σ̂(c′,ξ)
µν (q) =

δξ,(−1)a−1η

2N
Aµνaηs,a′η′s′c

†
k+qaηscka′η′s′ , (a = 1, 2)

Σ̂(c′′,ξ)
µν (q) =

δξ,(−1)a−1η

2N
Bµνaηs,a′η′s′c

†
k+qaηscka′η′s′ , (a = 3, 4)

(4)

respectively, where repeated indices should be summed
over and Aµν , Bµν (µ, ν = 0, x, y, z) are eight-by-eight
matrices

Aµν ={σ0τ0ςν , σyτxςν , σyτyςν , σ0τzςν}
Bµν ={σ0τ0ςν ,−σyτxςν ,−σyτyςν , σ0τzςν} ,

(5)

with σ0,x,y,z, τ0,x,y,z, ς0,x,y,z being the Pauli or iden-
tity matrices for the orbital, valley, and spin degrees of
freedom, respectively. The ±1 valued index ξ, equal
to (−1)α−1η or (−1)a−1η in the moments, labels dif-
ferent fundamental representations of the U(4) group.

The global U(4) rotations are generated by Σ̂µν =∑
ξ=±1 Σ̂

(f,ξ)
µν + Σ̂

(c′,ξ)
µν + Σ̂

(c′′,ξ)
µν . Unlike the U(4) rota-

tions found in Refs. [1, 2, 4], which only commute the
projected Hamiltonian into the flat bands, the U(4) ro-
tations here commute with the full Hamiltonian. (Gen-
erators of the U(4) or U(4)×U(4) symmetry in the first
chiral limit [36, 102] is also given in Ref. [115].)
Interaction Hamiltonian — To obtain the interaction

Hamiltonian in the heavy fermion basis, we can first
express the density operator ρ(r) of the BM model in
terms of fRαηs and ckaηs, and then substitute it into the
Coulomb interaction, ρ(r)V (r − r′)ρ(r′). By evaluating
the Coulomb integrals, we obtain the interaction Hamil-
tonian resembling a periodic Anderson model with extra
f -c exchange interactions [115],

ĤI = ĤU1 + ĤJ + ĤU2 + ĤV + ĤW . (6)

ĤU1 = U1

2

∑
R : ρfR :: ρfR : are the on-site interactions

of f -electrons, where ρfR =
∑
αηs f

†
RαηsfRαηs is the f -

electrons density and the colon symbols represent the
normal ordered operator with respect to the normal state.

ĤJ = −J
∑
Rq

∑
µν

∑
ξ=±

e−iq·R : Σ̂(f,ξ)
µν (R) :: Σ̂(c′′,ξ)

µν (q) : (7)

is a ferromagnetic exchange coupling between U(4) mo-
ments of f -electrons and Γ1⊕Γ2 c-electrons. Using prac-
tical parameters for MATBG, we obtain U1 = 57.95meV
and J = 16.38meV. The other three terms in ĤI are:
HU2

- repulsion (∼ 2.3meV) between nearest neighbor f -
electrons, HV - repulsion (∼ 48meV) between c-electrons,
HW - repulsion (∼ 47meV) between c- and f -electrons.

As a widely adopted approximation in heavy fermion
materials, ĤU2

+ ĤV + ĤW can be decoupled in the
Hartree channel due to the delocalized and localized na-
tures of c- and f -electrons. Hence these terms only effec-
tively shift the band energies of f - and c-bands. Then,
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FIG. 2. The self-consistent HF bands upon the ground states
at the fillings ν = 0,−1,−2,−3. The color of the bands repre-
sent the contributing components, wherein yellow represents
the f -electron states and blue represents the c-electron states.

U1 - the on-site repulsion of the f -electrons - is by far
the largest energy scale of the problem - more than twice
the hybridization (γ) and three times the exchange (J).
In Hartree-Fock (HF) calculations U1 is found to be the
source of spontaneous symmetry-breakings.
Ground states — Since U1 is much larger than the

couplings (γ, J , v′?(ηkxσx + kyσy)) between f - and c-
electrons, a reasonable guess of the ground states would
be product states of f -multiplets and the (gapless point)
Fermi liquid state (|FS〉) of the half-filled c-electrons. We
call such product states “the parent states”. E.g., the
parent valley-polarized (VP) state at the charge neutral-
ity (ν = 0) is

|VPν=0
0 〉 =

∏
R

∏
α=1,2

∏
s=↑↓

f†R,α,+,s|FS〉 . (8)

The parent Kramers inter-valley-coherent (K-IVC) state
is a U(4)-rotation of |VPν=0

0 〉 along the τx-direction

|K-IVCν=0
0 〉 = e−i

π
2

Σ̂x0 |VPν=0
0 〉

=
∏
R

∏
s=↑↓

1

2
(f†R,1,+,s + f†R,2,−,s)(−f

†
R,1,−,s + f†R,2,+,s)|FS〉 .

(9)

Parent states at other integer fillings (ν = 0,±1,±2,±3)
can be similarly constructed [115]. They would be ground
states of the Hamiltonian if γ, J , v′? terms vanished;
hybridization of f - and c-electrons will develop, i.e.,
〈f†c〉 6= 0, otherwise. The determination of ground states
by self-consistent HF calculation with initial states given
by the parent states is given in Ref. [115]. The nu-
merically found HF ground states at the integer fillings
(Fig. 2) are fully consistent with those in Ref. [5].

The parent states are so good initial states for the HF
calculations that the one-shot HF is already qualitatively
same as the self-consistent HF (see Fig. 3). Thanks to
the simplicity of the heavy fermion model, the one-shot
energies can be analytically estimated and we are able
to derive two rules for the ground states [115]. First,
in the parent state, f -electrons at each site tend to be
symmetric under permutation of U(4) indices to save the
Coulomb energy (Hunds’ rule). Both Eqs. (8) and (9)
satisfy the first rule. Second, for U(4)-related states at a

given integer filling ν, the state that minimizes ĤM +ĤJ

is the ground state, where ĤM is the U(4)-breaking M
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FIG. 3. The one-shot HF bands of the ground states at the
fillings ν = 0,−1. The red solid bands are the quasi-particle
bands of the decoupled Hamiltonian, where γ = v′? = J = 0.
The horizontal and dispersive red bands are of the f - and c-
electrons, respectively. The touching point of the dispersive
red bands at ΓM is quadratic, while since M is small, it may
look like linear. The one-shot bands can be understood as a
result of hybridization between f - and c-electrons.

term in Ĥ0 (Eq. (1)). This energy can be estimated by
the lowest ν + 4 levels of the mean field Hamiltonian
H(Γ1⊕Γ2) spanned by the Γ1⊕Γ2 basis of the c-bands at
k = 0, which reads (up to constants)

H(Γ1⊕Γ2) = Mσxτ0ς0 −
J

2
(τzO

fT
τz + σzO

fT
σz) . (10)

Here O
f

αηs,α′η′s′ = 〈f†RαηsfRα′η′s′〉 −
1
2δαα′δηη′δss′ is the

density matrix of the local f -orbitals with homogeneity
assumed. We have assumed that, for all the integer fill-
ings, the eight lowest energy levels (closest to the gap) are
always contributed by the Γ1 ⊕ Γ2 c-band basis - which
are part of the flat bands - hence we only need to look at
the Γ1 ⊕ Γ2 subspace. This assumption is fully justified
by previous studies based on two-band projected Hamil-
tonian, where only Γ1 ⊕ Γ2 basis exists, and will become
clearer after we discuss the charge ±1 excitations.

We now apply the second rule to Eq. (8) and (9) to

determine the one-shot state of lowest energy. O
f

matri-
ces given by Eqs. (8) and (9) are 1

2σ0τzς0 and − 1
2σyτyς0,

respectively; the resulted lowest four levels of H(Γ1⊕Γ2)

are ±M −J/2 (each 2-fold) and −
√
M2 + J2/4 (4-fold),

respectively. It is direct to verify that the latter (K-IVC)
has a lower energy. Applying the two rules to parent
states at other fillings, we obtain consistent results with
the full numerical calculations in Refs. [5, 105]. We also
obtain an analytical expression for the Chern numbers of
ground states [115].

Charge ±1 excitations — As shown in Figs. 2 and 3
and in Refs. [2, 6, 7, 85, 86, 110], at k away from ΓM ,
the quasi-particle bands have a large gap (∼ U1) and are
relatively flat; at k around ΓM , the bands have signifi-
cant dip. Such features are found related to the topology
of the two flat-bands [6, 7] but have not yet been quanti-
tatively understood. The heavy fermion model provides
a natural explanation to these features. We first con-

sider the decoupled limit (γ = v′? = J = 0) at ν = 0,
where the f -electron bands are flat and have a (charge)
gap U1, and the c-electron bands are given by H(c,η)

(Fig. 3(a)). Tuning on γ, v′?, J then yields the one-shot
quasi-particle bands. At k = 0, γ gaps out the Γ3 c-
bands, and J further gaps out the Γ1 ⊕ Γ2 c-bands. As
the splitting of Γ1 − Γ2 is smaller than that of the Γ3,
the lowest excitations will carry Γ1,Γ2 representations,
matching Refs. [2, 6, 7] and, according to the discussion

after Eq. (10), equals to 2
√
M2 + J2/4 and |J − 2M | for

K-IVC and VP states, respectively. At k 6= 0, the v′?
term hybridizes the flat f -bands and dispersive c-bands.
For large k, where the c-bands have very high kinetic en-
ergies, the hybridization is relatively weak and the gap
is still approximately U1. Thus the shape of the quasi-
particle bands is explained, and its bandwidth is approx-
imately given by (U1 − J)/2 when M is small. As dis-
cussed in Ref. [115], the feature that the larger (∼ U1)
and smaller (∼ J) gaps are contributed by f - and c-
electrons, respectively, is reflected in the STM spectra
and Landau levels at different regions (AA or AB sites)
of MATBG.

At nonzero fillings, the quasi-particle bands can also be
understood as hybridized flat f -bands and dispersive c-
bands, except that the f - and c-bands may feel different
effective chemical potentials due to the density-density
interactions between them. For example, at ν = −1, the
upper branch of the f -bands is shifted to an energy close
to the quadratic touching of the c-bands (Fig. 3(b)) [115].
Thus one of the hybridized bands is extremely flat.
Discussion — The coexistence of quantum-dot-like be-

havior [21, 25] and superconductivity [9, 11, 12, 14, 15]
may now be understood - they come from two different
types (f and c) of carriers. In fact, inspired by the pomer-
anchuk effect experiments [33, 34] and strange metal be-
havior [19, 20], authors of Refs. [33, 34, 107] also conjec-
ture the possibility of coexistence of local momenta and
itinerant electrons. (The heavy fermion theory analog
may also exist in other twisted materials [124].) Our pa-
per derives and shows the exact mapping of MATBG to
such a heavy-fermion type model. As such, the machin-
ery of heavy fermions [125–139] can now be applied, for
the first time, to MATBG. We speculate that it will lead
to pairing [52, 54, 56–59, 66, 70, 78–80, 91, 94, 95, 108]
in nontrivial gap channels.
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Ponweiser, Junfeng Qiao, Florian Thöle, Stepan S
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