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ABSTRACT 

The segregation of solute atoms at grain boundaries (GBs) can strongly impact the structural and functional 

properties of polycrystals. Yet, due to the limited availability of simulation tools to study polycrystals at the 

atomistic scale (i.e., interatomic potentials), there is a minimal understanding of the variation of solute segregation 

tendencies across the very complex space of GB micro-environments and the large range of alloys in which it can 

occur. Here, we develop an algorithmic framework that can directly learn the full spectrum of segregation energies 

for a metal solute atom in a metal polycrystal from ab-initio methods, bypassing the need for alloy interatomic 

potentials. This framework offers a pathway to a comprehensive catalog of GB solute segregation with quantum 

accuracy, for the entire alloy space. As an initial demonstration in this pursuit, we build an extensive GB segregation 

database for aluminum-based alloys across the periodic table, including dozens of alloys for which there are 

substantially no prior data.  

 

 

A perennial fundamental problem in metal physics is solute segregation at grain boundaries (GBs) in 

polycrystalline alloys  [1–3]. Such segregation can occur with only trace presence of a solute, and yet can strongly 

impact mechanical, electrochemical, electrical, and magnetic properties, to name a few  [4–6]. And, as most metals 

are used in a polycrystalline form, this phenomenon has wide-ranging engineering implications for the design and 

use of alloys [6]. The main driving force for solute segregation comes from the atomically disordered nature of 

GBs, which results in an array of local atomic environments (site-types) that can be more accommodating to the 

solute atom than the intra-grain (bulk) highly ordered lattice environment. The nature of the spectrum of site-types 

at the GBs, and the degree to which each site-type accommodates the solute atom, i.e., the segregation energy for a 

solute atom at that site-type, determines the extent of equilibrium GB solute segregation  [7–10]. A major challenge 

is that very little is known about this spectrum of GB site-types (and the corresponding segregation energies for 

solutes) in polycrystals.  

Recently, in Ref. [11], we took some first steps to tackle this challenge. Using molecular statics and dynamics 

simulations to exhaustively compute the segregation energies (as defined in the Supplemental Material (SM), 

section SM.1) for an Mg solute at all GB site-types in a randomly oriented aluminum polycrystal, we found the 

spectrum of GB site-types to be captured by a skew-normal distribution. Subsequently, in Ref. [12], we developed 

a learning framework that can predict the segregation energy of a solute atom at a GB site, based solely on its pre-

segregation (undecorated) local atomic environment, for systems that have extant interatomic potentials. 

Unfortunately, the use of interatomic potentials is a severe limitation. There are only a limited number of available 
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potentials, and few of those are accurate for the special conditions of GB segregation [13]. One obvious solution to 

these limitations is to develop more alloy interatomic potentials that are quantum-accurate, which is becoming 

increasingly possible with the advent of machine-learning-based potentials [14,15]. However, this remains far from 

a trivial task, since state-of-the-art interatomic potentials are expensive to develop  [16,17]. Their fitting typically 

requires a reference database of thousands of expensive ab-initio calculations of atomic configurations, often chosen 

painstakingly through a manual procedure to ensure good coverage of the structural and chemical space. And though 

there are new interesting developments  [18,19] that could potentially reduce the number of required training 

configurations and automate their selection procedure, this is still an active area of research that needs to be tested 

for its ability to capture (or extrapolate to) complex grain boundary atomic environments.  

Therefore, in this letter, we take an alternative approach that bypasses the need for accurate interatomic potentials 

for the problem of GB solute segregation, by directly passing from ab-initio calculations to a full macro-scale GB 

segregation isotherm for polycrystals. The framework combines a learning model with hybrid quantum 

mechanics/molecular mechanics (QM/MM) calculations, and requires only an interatomic potential for the base 

(solvent) metal. Using aluminum  [20] as the model base metal, we showcase the power of our learning framework 

by calculating – for the first time – GB solute segregation spectra in polycrystals for all group II, transition, and 

post-transition metals (excluding lanthanides, actinides, and synthetic elements) – a total of 39 solute metals. Our 

approach favors simplicity and flexibility, and is designed to be easily adapted to treat other base metals.  

Our ab-initio based framework has two key components, as illustrated in Fig. 1. First is the learning model, 

which enables the unsupervised selection of an optimal 100 training data points in polycrystalline GB environments, 

i.e., without any knowledge of the target properties (segregation energies), and the fitting of a regression model that 

can be used to accurately predict the segregation energies for all other GB sites in the polycrystal. In Ref.  [12], we 

have shown that this learning model can accurately predict the segregation energies for large numbers of GB 

environments that are sampled in random microstructures (where the sampling probability of GB disorientation 

angles follows the Mackenzie distribution), and across multiple alloys. This model can be used to treat any subset 

of the GB disorientation space (e.g., low-angle boundaries, or subpopulations of the polycrystalline GB micro-

environments, e.g., triple junctions and quadruple nodes  [21]) by selecting a base polycrystal that samples the 

subset of interest. ). However, here we are interested in the full polycrystalline environment, and therefore use a 

randomly oriented aluminum polycrystal, as shown in Fig. 1(a). And thus, the selection of training data points is 

optimized to reduce overall errors for a random microstructure.  

We refer the reader to Ref. [12] for a more detailed description of the learning model; we briefly reiterate its 

main pieces here through the summary provided in Fig. 1. The model consists of four main steps: (i) feature 

extraction, (ii) reduction of the dimensions of features, (iii) selection of training data points (for which to calculate 

segregation energies), and (iv) the learning algorithm. For feature extraction, each GB site and its local atomic 

environment within a radius of 4.5 Å, as illustrated in Fig. 1(b), is transformed into a feature vector or a “fingerprint” 

using the smooth overlap of atomic positions (SOAP) method  [22,23]. The feature vector size is determined by the 

SOAP hyperparameters; here, we use 10 radial basis functions, 10 degrees of spherical harmonics, and 0.5 Å 

smearing width for the gaussian functions in SOAP, which results in a vector length of 606 features. Thus, the initial 

input feature matrix is [Ngb × 606] in size, as illustrated in Fig. 1(c). Using this matrix as input to the learning 

algorithm would require the fitting of hundreds of coefficients (even if simple linear regression were used), which 

would require thousands of training data points. This is far too expensive for QM calculations, especially for the 

purpose of screening. Thus, to simplify the learning problem, we use principal component analysis (PCA)  [24,25] 

to reduce the dimensionality of the initial feature matrix by projecting it into a low-dimensional representation, i.e., 

principal components that maximize the variance of the data. As the first 10 principal components capture more 
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than 99% of the variance in the data (Fig. 1(d)), we use them as input features ([Ngb × 10] in size as shown in Fig. 

1(e)) to the learning algorithm instead of the initial SOAP matrix ([Ngb × 606] in size). The reduced PCA features 

reduce the learning problem to a great extent, and based on our previous work in Ref.  [12], are expected to perform 

well (in a learning model) with errors on the order of ~5 kJ/mol for a spectrum that spans a ~100 kJ/mol.  

The next step in the model is the selection of training data points, where the number (of points) is determined 

by the complexity of the learning algorithm. In our framework, we use linear regression as the learning algorithm, 

and thus as a rule-of-thumb, approximately 100 data points are sufficient  [26] to fit the 10 coefficients and the 

intercept. To choose the training data points, we use k-means clustering  [27,28] to divide the GB space into 100 

clusters based on the proximity of local atomic environments in PCA feature space. Then, for each cluster, we 

choose the GB site that is closest (i.e., shortest Euclidean distance) to its centroid, and use this site as the 

representative training data point, as shown in Fig. 1(f). (The use of k-means clustering, as opposed to random 

sampling, ensures better coverage of the full GB feature space). The end result of this unsupervised learning 

component of the framework (Fig. 1(a-f)) is the choice of 100 optimal GB sites for which we need to calculate the 

solute segregation energy to train the regression algorithm (Fig. 1(I)).  

Second, the hybrid QM/MM scheme, which we use to compute the segregation energy for the 100 training data 

points. This type of hybrid scheme has been used in the literature, though in a limited capacity, to model complex 

processes for large metallic systems  [29,30] inaccessible to QM methods that are typically limited to O(100) atoms 

(see Ref.  [31] for a detailed review); for example, dislocation motion [32–34], and solute interactions with 

dislocations  [35], and grain boundaries  [36,37].   

 

Fig. 1: An illustration of the ab-initio based learning framework for GB segregation energies. For (a) the annealed (20 nm)3 aluminum 

polycrystal  [38–42], we convert the (b) local atomic environment of every GB site within a cutoff radius of 4.5 Å into (c) a feature vector 

of 606 dimensions using the SOAP method [22,23]. (d) PCA  [24,25] is used to transform the feature matrix into a low-dimensional space, 

and obtain the first 10 principal components (which capture >99% of the variance in feature space). Using (e) the reduced feature matrix, 

we apply (f) k-means clustering  [27,28] to divide GB sites into 100 clusters, and use the centroids of the clusters as the training data points 

for the model, for which segregation energies need to be calculated using (g-h) QM/MM method as detailed  [43–51] in SM.4. (i) Linear 

regression is used to fit a learning algorithm to the training dataset, and to predict (j) the segregation energies of all GB sites in the 

polycrystal (i.e., the full spectrum) as shown, e.g., for Cu solute segregation in Al polycrystals.  
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A typical setup for the QM/MM method  [31] is shown in Fig. 1(g-h). We use QM to treat the local atomic 

environment of the GB segregation site, which we call the “core” region (the yellow region in Fig. 1(g)), and use 

MM to treat the long-range elastic interactions in the rest of the polycrystal. To do the QM calculation, we carve 

out a cluster that contains the “core” region, and a “buffer” surrounding region (the green region in Fig. 1(g)), and 

feed it to QM, after adding a vacuum layer of 10 Å in all directions to remove periodic image effects in the supercell 

(Fig. 1(h)). The “buffer” region facilitates the seamless back-and-forth coupling between QM and MM. It should 

be large enough to minimize any changes in the electronic structure of the “core” region atoms induced by the 

introduced free surface (outer area of the “buffer” region Fig. 1(h)) in the QM supercell calculation. The 

implementation details for the hybrid QM/MM scheme used here are described in SM.4.  

The main goal for the QM/MM procedure is to compute similar GB solute segregation energies as if the whole 

system were treated by QM. To test against this goal, we compare the segregation energies obtained by QM/MM 

(Eq. (S.3)) against full QM calculations in Fig. 2. Because full QM is not possible for most of the polycrystalline 

environments of interest, for this validation we are limited to special, symmetric sites. For nine different solute 

elements that sample the alloy space (>20% of all solutes studied), we explore the ∑ 5(01̅3̅) GB, which has 4 unique 

GB site-types (highlighted with red-dashed circles) as shown in Fig. 2 (see SM.5 for more details  [52] on the 

computational setup). Overall, as shown in Fig. 2, the QM/MM approach results in low errors in segregation 

energies, with the mean absolute error being less than 6 kJ/mol on a problem with a scale spanning ~200 kJ/mol. 

Additionally, the method correctly captures the variation in segregation energies across both the alloy and GB 

spaces for this narrowly defined test problem. We therefore expect a similar performance level (error on the order 

of ~5 kJ/mol) for the QM/MM scheme for the polycrystal. 

 

 

Fig. 2: Comparison between QM/MM and full QM computed segregation energies for Ag, Au, Nb, V, Y, Cu, Cd, Ga, and Be in an 

aluminum ∑ 5(01̅3̅) GB, which has four unique sites highlighted by dashed red circles.  

 

In general, our ab-initio based learning approach is easy to adapt and fine-tune. Errors from the different 

components can be systemically reduced. For the ML component, lower errors can be obtained by using: more data 
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points for training; more features and/or a larger radius cutoff to describe the local atomic environment; or a more 

sophisticated learning algorithm. And similarly, errors for the QM/MM component can be reduced by using: a larger 

“buffer” region; a more accurate functional and/or basis set for the density functional theory calculations; or a 

higher-level quantum chemical simulation method. Such modifications, however, will come at a higher 

computational cost, and thus should be reserved for post-screening efforts, e.g., adding more training data points to 

alloys of high interest. However, for screening, we find the parameters defined herein and the SM for the learning 

and QM/MM approach to be a good balance between accuracy and speed (cost). We also note that our framework 

provides a pathway to tackle, with QM accuracy, the more complex problems of non-dilute  [53–55] and higher-

order alloys  [56–58] (i.e., ternary and higher), which, in addition to understanding the spectrum of segregation 

energies, requires a comprehensive understanding of the magnitude of solute-solute interactions in the system. We 

expect this to be a major direction for future studies.  

In Fig. 3, we plot the learned GB segregation spectra for all 39 solutes in an aluminum polycrystal. These spectra 

capture the complete range of possible segregation states with near quantum-level accuracy, and are widely variable 

for different alloying elements.  As an illustration of this, each panel in Fig. 3 is colored by the magnitude of the 

specific solute excess, βgb = [X̅gb/(1 − X̅gb)] ∙ [(1 − Xc)/Xc], that is expected at a total solute concentration of 

5% and a temperature of 700K (where X̅gb, Xc are the equilibrium solute concentration at the GB and bulk (intra-

grain) regions, respectively; see SM.6 for more details). For other conditions (concentration, temperature), the 

spectra in Fig. 3 can be fitted with the following skew-normal distribution function:  

Fi
gb
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1

√2π σ
exp [−

(ΔEi
seg

− μ)
2
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seg
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√2 σ
]   (1) 

which requires only three fitted parameters – the location μ, the scale σ, and the shape (skewness) α. The fitted 

parameters for each solute in aluminum are shown in Fig. 3, which should permit accurate thermodynamic 

calculations of GB segregation for future works on aluminum alloys, using the continuous form of the spectral 

segregation isotherm [11]: 
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where Xtot is the total solute concentration in the polycrystal, f gb is the GB atomic site fraction, kB is Boltzmann’s 

constant, T is the temperature.  
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Fig. 3: The QM/MM learned GB solute segregation spectra for 39 solutes in the (20 nm)3 aluminum polycrystal shown in Fig. 1(a). The 

segregation strength, ln(βgb),  is quantified by solving for the equilibrium segregation state for Xtot = 5% and T=700 K. We fit the spectra 

to the skew-normal function (solid black line), Eq. (1), and list the values for its three parameters, μ (kJ/mol), σ (kJ/mol), and α.  

 

It is scientifically important that all solute segregation spectra are well approximated by the skew-normal 

distribution function (as shown in Fig. 3 by the solid black lines). This result matches earlier observations based on 

calculations with interatomic potentials  [12] but extends the utility of Eq. (1) to DFT-computed segregation 

energies. In fact, among the 39 solutes represented in Fig. 3, only 16 have available potentials in the NIST 

Interatomic Potentials Repository  [59,60]. The present result thus offers a pathway not only to higher physical 

accuracy in the calibration of Eq. (1), but also a means of covering the vast gaps in the alloy space not addressed 

by existing potentials. In fact, the present approach may be preferable to using existing interatomic potentials to 

study GB solute segregation. Consider the case of Al(Cu), which is a well-studied alloy with multiple available 

interatomic potentials. In Fig. 4(a), we plot the segregation spectra for Al(Cu) for five different interatomic 

potentials  [61–65], alongside the QM/MM learned spectra from this work. It is clear that the spectra are highly 

variable, and as a result, the expected solute segregation behavior is essentially not accurately predictable for any 

of the potentials; compare the solute content at 100 nm grain size and 700 K for the potentials (colored lines) with 

the quantum-based result from the present model (black line) in Fig. 4b. Two of the potentials  [64,65] give 

predictions for X̅gb that are an order of magnitude different from QM/MM. And it is indeed the QM/MM approach 

that most closely matches fully electronic results, as shown in Fig. 4(c) for four unique sites of the ∑ 5(01̅3̅) GB. 

This result highlights that even when interatomic potentials exist, they may not produce accurate results without 

extensive validation and testing against QM (assuming that QM is the ground truth); in light of this, the present 

combined learning and QM/MM approach may be an ideal balance of speed and quantum accuracy for any system, 

even if potentials already exist. 
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Fig. 4: (a) Segregation spectra for Cu solute in an aluminum polycrystal obtained using five different interatomic potentials [28–32] from 

Ref. [12] against the QM/MM spectrum computed here. (b) Predictions for X̅gb of Cu segregation in an aluminum polycrystal of 100 nm 

grain size at T =700 K for the six different spectra in (a). (c) A comparison of computed segregation energies of Cu in an aluminum 

∑ 5(01̅3̅) GB for the five interatomic potentials and QM/MM against full QM simulations.  

 

In conclusion, we have developed a flexible and easy-to-adapt ab initio-based framework that can learn the 

spectrum of solute segregation energies in a polycrystal, without the need for alloy interatomic potentials. To 

illustrate its power, we used the framework to compute the GB segregation spectra for a large swath of the 

aluminum-based alloy space (a total of 39 solutes) – a task currently infeasible using interatomic potentials. The 

proposed framework provides researchers with a simple but powerful tool to fully understand the variation of solute 

segregation across both the polycrystalline GB site space, as well as the binary alloy space. The combination of 

rapid computability with quantum-level accuracy for all realistic GB segregation sites in a polycrystalline 

environment represents a significant shift in the scope of GB segregation modeling towards genuine physical 

correctness.  
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