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We experimentally realized a time-periodically modulated 1D lattice for ultracold atoms featuring
a pair of linear bands, each with a Floquet winding number. These bands are spin-momentum locked
and almost perfectly linear everywhere in the Brillouin zone (BZ): a near-ideal realization of the 1D
Dirac Hamiltonian. We characterized the Floquet winding number using a form of quantum state
tomography, covering the BZ and following the micromotion through one Floquet period. Lastly,
we altered the modulation timing to lift the topological protection, opening a gap at the Dirac point
that grew in proportion to the deviation from the topological configuration.

Topologically protected edge modes are present in sys-
tems from 2D and 4D quantum Hall systems [1, 2],
Z2 topological insulators [3], to atmospheric waves [4].
Time-periodic driving, described by Floquet theory, al-
lows for new topological invariants [5–7] including the
Floquet winding number, leading to new protected quan-
tities. Here we study atomic Bose-Einstein condensates
(BECs) in the lowest two bands of a periodically driven
1D optical lattice and observe a pair of protected chiral
bands that are a near-ideal realization of the 1D Dirac
Hamiltonian. We extract the topological winding num-
ber from the time-resolved micromotion and find that
altering the modulation timing opens a gap at the Dirac
point.

The bulk-edge correspondence yields protected edge
bands that reside on the system’s surface. For exam-
ple 2D-Z2 topological insulators have a pair of counter-
propagating spin-momentum locked 1D edge modes. By
contrast we observe 1D topologically protected bands
derived from a periodically driven 1D system, where
the topological protection results from a non-zero Flo-
quet winding number [5] defined in terms of the 1+1D
space defined by crystal momentum q and time t [8].
These bands are spin-momentum locked, intersect at
q = 0 and have the remarkable property of being lin-
ear everywhere in the Brillouin zone (BZ). The periodic
quasienergy structure of Floquet systems allows these
bands to smoothly cross the edge of the BZ by entering
the next quasienergy zone.

All of these features are present in a periodically mod-
ulated Su-Schrieffer-Heeger (SSH) model [9]

Ĥ = −
∑
j

[J |j + 1, ↓〉〈j, ↑|+ J ′ |j, ↓〉〈j, ↑|+ h.c.]

that approximates our 1D bipartite lattice [10]. Each
unit cell (labeled by integer j) consists sites that we de-
note by |↑〉 and |↓〉 to emphasize their role as a pseudospin
degree of freedom [Fig. 1(a)]. J ′ and J are the tunneling
strengths within a unit cell and between adjacent unit
cells, respectively.

Following Ref. 8, we implemented a Floquet “switch-
ing” protocol where the lattice periodically alternates be-

tween a configuration I (C-I) with J ′ ≈ 0 and J = J0 and
a reversed configuration-II (C-II) with period T . This al-
lows intercell tunneling |j + 1, ↓〉 ↔ |j, ↑〉 during the first
half period and intracell tunneling |j, ↓〉 ↔ |j, ↑〉 dur-
ing the second half period. When J0T = π each half
period implements a π-pulse, exchanging the amplitude
between sites. Figure 1(a) illustrates how this leads to a
displacement of the lattice constant a per Floquet period,
with |j, ↑〉 → |j + 1, ↑〉 and |j, ↓〉 → |j − 1, ↓〉. This gives
constant velocity v = ±a/T , (pseudo)spin-momentum
locked motion under stroboscopic observation. Together
these features are captured by a 1D Floquet Dirac Hamil-
tonian ĤF(q) = qvσ̂z describing massless (i.e. gapless)
relativistic particles [8]. Any deviation from exact π-
pulses opens gaps in the quasienergy spectrum ~εα(q),
where α labels the quasienergy band. For each initial
pseudospin, different crystal momentum states start and
end each driving period at the same point on the Bloch
sphere, but follow different trajectories. We show that,
taken over the whole BZ, these trajectories cover the
Bloch sphere, giving winding numbers of ±1 for initial
pseudospins |↑↓〉. A related experiment in a small syn-
thetic dimension chain observed the drift of initially lo-
calized states [12] but not the linear drift of crystal mo-
mentum eigenstates nor the band topology.

Experiments Our experiments began with small N ≈
104 atom [13] 87Rb BECs in a crossed optical dipole
trap (ODT) in the |f = 1,mF = −1〉 hyperfine ground
state. The ODT, formed by two intersecting 1064 nm
laser beams traveling along ex and ey, had trap frequen-
cies (ωx, ωy, ωz)/2π ≈ (15, 150, 100) Hz. A bias magnetic
field B0 ≈ 0.1 mT Zeeman-split the three mF states by
ωZ/2π ≈ 1 MHz. These states were dressed by a radiofre-
quency (rf) magnetic field with frequency ωrf and two
laser beams counterpropagating along ex driving Raman
transitions. As shown in Fig. 1(c), each Raman beam
had frequency components ω0 and ω0 + ωrf ; φrf denotes
the relative phase between the rf field and the Raman
beat tone. The wavelength λR = 2πc/ω0 = 790.03(2) nm
of the Raman lasers [14] defines the single-photon recoil
wave-vector kR = 2π/λR and energy ER = ~2k2R/2m,
with speed of light c and reduced Planck constant ~.
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FIG. 1. Concept. (a) Left: Switching protocol, with the
j = 0 unit cell marked in grey. In C-I atoms tunnel between
neighboring unit cells (bold green links); in C-II, they tunnel
within the same unit cell (bold black links). Right: adia-

batic lattice potentials colored by 〈F̂x〉. (b) Floquet band

structure colored according to 〈F̂x〉 sampled stroboscopically.
The lowest BZ and quasienergy zone is marked in grey. Left:
idealized SSH model; right: numerical lattice model [11]. (c)
Schematic. The BEC was illuminated by counter-propagating
Raman lasers and an rf magnetic field. (d) Static lattice tun-
neling with data (markers) and simulations (black curves).

Upper: magnetization 〈F̂x〉. Middle: group velocity. Bottom:

displacement colored according to 〈F̂x(t)〉 using the color scale
in (a).

The atoms interact with these fields via a Zeeman like
Hamiltonian [15] Ĥint = Ω(x̂) · F̂, with total atomic an-

gular momentum operator F̂. The effective magnetic
field Ω(x̂) = [Ωrf cos(φrf) + Ω̄ cos(2kRx̂),−Ωrf sin(φrf) −
δΩ sin(2kRx̂),

√
2δ]/
√

2 is defined in terms of the detun-
ing δ = ωZ − ωrf ; the rf coupling strength Ωrf; and
Ω̄ = Ω+ + Ω− and δΩ = Ω+ − Ω−, derived from the two
Raman coupling strengths Ω±. The lowest energy adi-
abatic potential formed a spin-dependent bipartite lat-
tice [10], shown for two choices of φrf in Fig. 1(a). As in-
dicated by the magnetization of the adiabatic potentials,
the |↑, ↓〉 sites are highly spin polarized, corresponding

to atomic states |mx = ±1〉. The potential minima are
degenerate for φrf = ∓π/2, where ∓ selects between C-I
and C-II. All other values of φrf introduce an energy dif-
ference ∆ between |↑, ↓〉 that, while absent in the SSH
model, is useful for state preparation [11] and readout.

Following all our experiments, we measured the spin-
resolved momentum distribution by first removing the
the Raman lasers and the rf field. An rf pulse induced a
π/2 rotation around F̂y, transforming eigenstates of F̂x
to our F̂z measurement basis; we then initiated time of
flight (ToF) by extinguishing the trapping lasers. During
the 12 ms ToF a magnetic field gradient along ey Stern-
Gerlach separated the three mF states, after which the
density distribution was resonantly absorption imaged.
This allowed us to separately infer the overall populations
in the |↑〉 , |↓〉 sites.

Our procedure for loading BECs into the bipartite lat-
tice adiabatically ramped the coupling fields and detun-
ing to their final values in 2.5 ms, with φrf = 0 or π chosen
to select occupation on |↑〉 or |↓〉 sites. Lastly, we selected
between C-I and C-II by abruptly changing φrf to ∓π/2.
The resulting q = 0 pseudospin polarized state was an
equal superposition of our lattice’s lowest two bands; fol-
lowing loading, atoms resonantly tunneled between the
strongly coupled neighboring pseudospins [16, 17].
Dispersion Figure 1(d) plots this tunneling in C-I for

atoms prepared in |↓〉 where data is plotted by mark-
ers and the solid curves are the results of our numerical
model [18]. The top panel shows the measured magneti-
zation 〈F̂x〉 coherently oscillating with 366(3) µs period,
resulting from motion between neighboring sites. We sep-
arately observe near-zero population in |mx = 0〉 during
this evolution, enabling the mapping |↑, ↓〉 → |mx = ±1〉.
The scatter increases at long times, indicating the onset
of dephasing, likely from a combination of optical path
changes from acoustic vibrations, laser intensity noise,
and magnetic field instabilities.

Figure 1(d, middle) plots the instantaneous group ve-
locity obtained from the momentum distribution mea-
sured in ToF [19]. The high frequency oscillations are re-
peatable and have amplitude consistent with the ≈ 7 %
occupation of higher bands anticipated by our numeri-
cal modeling (black). The bottom panel integrates the
group velocity [20], giving the BEC’s displacement as it
tunnel-oscillates between adjacent lattice sites separated
by nearly 1/2 of a unit cell, ≈ 200 nm. While the higher
frequency components are conspicuous in group velocity,
they play little role in atomic displacement at the tunnel-
ing timescale, since integration acts as a low-pass filter.

Having demonstrated the behavior of the static lat-
tice, Fig. 2(a) depicts the configuration switching pro-
tocol with near optimal timing. This was achieved by
suddenly changing the phase φrf, ideally every half tun-
neling period as evoked in Fig. 1(a). To avoid exciting
higher bands with these abrupt switches, we smoothly
ramped Ωrf to zero, changed φrf, and reversed the ramp,
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FIG. 2. Floquet protocols. (a,b) switching protocol and (c,d)
the single-configuration protocol. (a,c) Computed intercell
(black) and intracell (green) tunneling strengths and displace-

ment (colored according 〈F̂x〉). Grey and white bands indi-
cate the different configurations. (b,d) Floquet quasienergies
[using the same color scale as in Fig. 1(a)].

smoothly changing J and J ′ as in the Fig. 2(a, top). The
drive period T = 448 µs increased from the ≈ 366 µs bare
tunneling period [Fig. 1(d)], resulting from the time spent
ramping Ωrf to and from zero, during which time tunnel-
ing was suppressed. We empirically found the rf phases

to achieve C-I and C-II differed by φ
(II)
rf − φ

(I)
rf ≈ 1.03π

rather than π as predicted by our model. In addition,
we observed a 6(2) % difference in their tunneling pe-
riods [21]. We compensated for this in our modulation
scheme by reducing the time spent in C-II proportionally.

Fig. 2(a, bottom) shows results for atoms prepared in
|↑〉 (positive slope) and |↓〉 (negative slope). Following
each Floquet period, the magnetization of both trajecto-
ries (indicated by the color of the markers), returned to
their initial values, demonstrating spin-momentum lock-
ing of Floquet eigenstates. These data show a near-linear
increase of displacement sustained over many Floquet pe-
riods consistent with our numerically modeled time evo-
lution (black), yielding drift velocities ±0.89(4)a/T and
±0.86(2)a/T , respectively. These differ from the ideal
drift velocity a/T , i.e., one unit cell per cycle that is
representative of the overall slope of the band structure
[Fig. 2(b)]. Our numerics indicate this results from the
nonzero value of both J and J ′ during our rf-switching
stage [black and green curves in Fig. 2(a, top)], allowing
unwanted tunneling; and the departure of our physical
system from the tight-binding SSH model. Nevertheless,
our numerics indicate that the group velocity averaged
over the BZ has magnitude a/T for each band.

To confirm the importance of the configuration-
switching protocol, we introduced a single-configuration
protocol with the same Ωrf ramps but with constant φrf
[Fig. 2(c)]. The displacement and magnetization mea-
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FIG. 3. Crystal momentum resolved pseudospin micromotion
and corresponding Berry curvature. Upper three panels: Nu-
merical model (left) and unfiltered experimental data (right)
for pseudospin components for configuration switching proto-
col (initial states |↑〉). Lower three panels: Berry curvature
based on filtered experimental data (right) and numerical sim-
ulation (left) for configuration switching protocol with initial
states |↑〉 and |↓〉 and single-configuration protocol (initial
state |↑〉).

sured following this protocol are oscillatory and corre-
spond to tunneling confined within a single double well.
Figure 2(d) shows the associated Floquet band structure
with a quadratic touching point, reminiscent to those in
bilayer graphene [22]. The curvature of these bands re-
sults from the same deviations described above for the
configuration-switching protocol.

Winding number Similar to adiabatic pumps [23], the
topology of 1D Floquet bands is characterized by an in-
teger valued winding number

ν =
1

2π

∫
BZ

∫ T

0

dqdtF (q, t), (1)

defined in terms of the Berry curvature F (q, t) =
(〈∂qψ(q, t)|∂tψ(q, t)〉 − c.c.)/i. We reconstruct the two
component (pseudo-)spinor |ψ(q, t)〉 for all crystal mo-
mentum states over one period of modulation using quan-
tum state tomography [24] and directly compute ν [25]
using Ref. 26 for discretely sampled data.

Our standard measurement gives the population in the
{|↑〉 , |↓〉} states from which we obtain 〈σ̂z〉. To mea-
sure 〈σ̂x〉 and 〈σ̂y〉, we designed lattice configurations for
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which evolution implemented pseudospin rotations gen-
erated by (σ̂x + σ̂z)/

√
2 and σ̂x, respectively [27]. We

applied these operations after the system evolved for a
time t and parallelized the measurement by filling the
ground band of our initial lattice [28] to measure all
q states simultaneously [29] [30]. These data yielded
the crystal momentum resolved pseudospin magnetiza-
tion m(q, t) = (〈σ̂x(q, t)〉 , 〈σ̂y(q, t)〉 , 〈σ̂z(q, t)〉) from the
populations following each rotation. Figure 3(a) plots all
three components of m(q, t) for a single Floquet cycle
of our configuration-switching protocol, starting in state
|↑〉. Our experimental data (right) are consistent with
numerical simulation (left).

Our measurement of m(q, t) suffices to obtain the asso-
ciated Floquet winding number [5] using Eq. (1). Evalu-
ating the Berry curvature requires differentiation of noisy
data, so we applied a low-pass Gaussian filter (with root
mean squared widths ∆t = 10 µs and ∆q = kR/6) prior
to computing F (q, t). Panel (b) plots the resulting Berry
curvatures F (q, t) for our configuration switching proto-
col with initial states |↑〉 and |↓〉, as well as our single-
configuration protocol (top, middle and bottom respec-
tively). For |↑〉, F (q, t) has a net positive contribution
for t < T/2; while for t > T/2 both positive and negative
structures are present; these cancel upon integration. All
together we find ν↑,↓ = {0.991(5),−0.998(4)} for systems
initialized in |↑〉 or |↓〉; this is in very good agreement
with {0.9994,−0.9995} obtained by performing the same
analysis on numerically simulated data. Uncertainties in
our lattice parameters (leading to deviations from opti-
mal timing) and imperfect state preparation can cause
the time-evolution to be not perfectly T -periodic, yield-
ing non-integer ν even without the technical noise present
in experiment. For comparison, panel (b) bottom shows
F (q, t) for our single-configuration protocol, for which we
obtain ν = 0.01(2), compared to ν = 0.0019 from sim-
ulation. Here our initial state was fully magnetized, an
eigenstate of the ideal switching protocol, but a coherent
superposition of the two bands shown in Fig. 2(d).

Unlike topological invariants in static systems, the Flo-
quet winding number is directly linked to εα(q) via [5]

ν =
∑
α

[
T

2π

∫
BZ

dq∂qεα(q)

]
. (2)

Each term of the sum measures the difference in
quasienergy at the ± edges of the BZ for the αth band;
the integral is zero for bands that link at the edge of
the BZ (such as our single-configuration protocol) since
εα(−kR) = εα(kR). By contrast our Dirac-like bands
change in quasienergy by ±2π/T , each contributing ±1
to the sum suggesting ν = 0. Our configuration switch-
ing protocol leads to a pair of chiral symmetries [8] with
symmetry operators {σ̂x, σ̂y}; for example the symmetry

operation Σ̂ = σ̂x takes Σ̂†ĤFΣ̂ = −ĤF. Together these
separate state-space into decoupled ↑ and ↓ subspaces
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FIG. 4. Breaking of chiral symmetry. (a) Time evolution with
Floquet period T = 330 µs, away from the optimal point T0 =
438 µs, colored according to the instantaneous magnetization
using the color scale in Fig 1. Configurations (grey rectangles)
are plotted along with the data. (b) Computed spectrum for
data in (a), and circled in orange in (c). (c) Zitterbewegung
frequency as a function of δT/T0 showing the gap closing at
the symmetry point.

that individually have ν↑↓ = ±1. The quantization of
the Floquet winding number results from the continuity
of the Floquet band structure in the combined Bloch-
Floquet BZ, even in the absence of chiral symmetry. In
our case, chiral symmetry enables the Floquet winding
number to take non-zero values.

Fine-tuning The chiral symmetry is present only for
a fine-tuned switching protocol, i.e., tunneling π-pulses
as discussed above; for example, changing the tunnel-
ing period to T0 + δT open a gap ≈ 2J0|δT |/T0 in the
Floquet spectra at the center of the BZ [31] leading to
non-topological bands with massive Dirac dispersion.

Figure 4(a) plots the time evolving position when
J0T < π; the data is colored according to its in-
stantaneous magnetization and the gray boxes mark
the configurations. This shows the first switch occur-
ring before the magnetization inverts, and at longer
timescales the position undergoes periodic oscillations—
zitterbewegung [32]—arising from the quantum interfer-
ence [33] of the two gapped bands at q = 0, shown in
Fig. 4(b).

The dependence of the gap on δT in Fig. 4(c) is in
near perfect agreement with the simple model (dashed
lines), and fitting to a hyperbola provides an upper bound
0.05(1)× (2π/T0) of the gap in our fine-tuned configura-
tion, indicating that our experiment was very close to the
optimal configuration.

Discussion and outlook Topological systems can be or-
ganized by their symmetries [34], and the breaking of
the chiral symmetry of our system is similar to Z2 topo-
logical insulators where any small magnetic field breaks
time reversal symmetry and opens a gap where the edge
bands cross. In our case, perturbations to the Floquet
Hamiltonian that obey the chiral symmetries leave the
winding number unchanged; however, the linear disper-
sion would in general be lost. Such terms generally de-
rive from time-dependent perturbations in the lab frame.
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This Floquet topological protection may have applica-
tions similar to dynamical decoupling [35] where suitable
time-dependent driving renders Floquet systems immune
to targeted noise. By contrast perturbations to the static
Hamiltonian that obey the chiral symmetries generally
lead to terms in the Floquet Hamiltonian that do not
obey chiral symmetry.

Our protocol realizes a diabatic quantized pump,
complementing adiabatic topological and geometrical
adiabatic Thouless pumps [23] realized with ultracold
atoms [10, 36–38] as well as proposals for high frequency
topological pumps [39, 40]. Adiabatic Thouless pumps
are also characterized by the Floquet topological index
in Eqs. (1) and (2). Similarly the (nearly) adiabatic Flo-
quet time evolution operator factorizes into decoupled
subspaces (not labeled by |↑↓〉). At any finite drive fre-
quency the evolution operator mixes these subspaces re-
sulting in topologically trivial bands. As a result, adi-
abatic Thouless pumps do not continuously connect to
the diabatic case discussed here; in addition, our control
trajectory directly traverses the gap-closing point in the
SSH model (when J = J ′) and thus could not operate as
an adiabatic pump.

Analogous schemes can create topological edge [5] and
surface states [41] in 2D and 3D and are related to re-
cently observed anomalous 2D Floquet systems [42–44].
These systems are characterized by a winding number [7]
related to crystal momentum-resolved micromotion [45].
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dards and Technology, and the National Science Founda-
tion through the Physics Frontier Center at the Joint
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