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We derive the long-time dynamics of a tracer immersed in a one-dimensional active bath. In contrast to previ-
ous studies, we find that the damping and noise correlations possess long-time tails with exponents that depend
on the tracer symmetry. For generic tracers, shape asymmetry induce ratchet effects that alter fluctuations and
lead to superdiffusion and friction that grows with time when the tracer is dragged at a constant speed. In the
singular limit of a completely symmetric tracer, we recover normal diffusion and finite friction. Furthermore,
for small symmetric tracers, the active contribution to the friction becomes negative: active particles enhance
motion rather than oppose it. These results show that, in low-dimensional systems, the motion of a passive tracer
in an active bath cannot be modelled as a persistent random walker with a finite correlation time.

Since Einstein and Smoluchowski, the motion of a tracer
particle in a bath has been a topic of much interest [1]. The
simplest textbook framework models the motion of the parti-
cle as a memoryless Brownian motion using an underdamped
Langevin equation [2–4]. The momentum autocorrelation
function then decays exponentially with a single time scale,
signalling a transition between inertial and viscous regimes.
This was, however, found to be over-simplistic: the conserva-
tion of momentum in the solvent instead leads to a power-law
decay [5–7] and a host of interesting phenomena—especially
in low dimensions—such as the breakdown of the Fourier
law [8–10].

When compared to the equilibrium case, active fluids re-
veal a much richer physics, from the ratchet effects induced by
asymmetric gears [11–14] and rectifiers [15–20] to the long-
ranged forces and currents generated by asymmetric obsta-
cles [20–24]. Over the past two decades, much activity has
been devoted to studying passive tracers in active baths [25–
63]. In the adiabatic limit in which the bath’s relaxation is
much faster than the tracer’s response [64–71], the tracer’s
dynamics is described by a generalized Langevin equation
(GLE). In 1D, it reads

γ0Ẋ(t) +
∫ t

0
dt′γ(t− t′)Ẋ(t′) = F(t) + η(t) , (1)

where the interactions with the active particles lead to a
stochastic force F(t) and a retarded friction

∫ t
0 dt

′γ(t −
t′)Ẋ(t′). Equation (1) also includes a memoryless viscous
medium at temperature T that leads to the friction coefficient
γ0 and a Gaussian white noise η(t) satisfying 〈η(t)η(t′)〉 =
2γ0Tδ(t− t′). Despite many efforts, a single unifying picture
for the friction γ(t) and the force-force correlation functions
CF ≡ 〈F(t)F(0)〉c does not emerge from existing results.

First, a large class of experimental and numerical studies
have suggested that the random, finite-duration encounters be-
tween the bath particles and the tracer lead to an exponen-
tial decay of γ(t) over a short time scale [25–35]. Equa-
tion (1) then reduces to (γ0 + γT)Ẋ(t) = F(t), where
γT ≡

∫∞
0 dtγ(t). In this case, similarly to an underdamped

Brownian particle, the large-scale motion of the tracer is diffu-
sive. This has been justified analytically in the simple case of a
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Figure 1. (a) A large tracer and a bath of small active particles are
immersed in a viscous medium inside a long narrow channel. (b) The
short transverse dimension allows modelling the channel as a one-
dimensional system where particles can bypass each other and the
tracer, even though the transverse and orientational fluctuations of the
tracer are lost in this one-dimensional description. Top: asymmetric
tracer. Bottom: symmetric tracer.

tracer connected by linear springs to a bath of active Ornstein-
Uhlenbeck particles [72]—an active counterpart to the cele-
brated work of Vernon and Feynman [73–75].

In contrast, a second class of experiments and models on so-
called wet-active matter suggests a more complex physics [37,
41, 43, 45, 50, 55, 59]. The long-ranged decay of hydrody-
namic interactions can indeed turn γ(t) andCF (t) into power-
laws [37, 45, 59]. These may lead to anomalous diffusion on
intermediate time scales but, ultimately, lead to long-time dif-
fusion.

We note, however, that long-time tails are generic, even in
the absence of hydrodynamic interactions. Indeed, the fluctu-
ating density of active particles is a conserved quantity—and
hence a slow field—so that the bath cannot have a single char-
acteristic relaxation time. This leads to power-law memory
and correlations, as already noted for equilibrium [6, 7, 76, 77]
and nonequilibrium [78, 79] systems, including phoretic col-
loids [80] and driven tracers [81, 82]. In low-dimensional sys-
tems, these tails may result in anomalous transport over long
time scales [80, 81]. Although thoroughly studied in other
contexts, these effects were so far overlooked for tracers in
dry active baths.

In this Letter, to resolve this issue, we consider the simplest
non-trivial system in which Eq. (1) can be systematically de-
rived: a single tracer immersed in a dry one-dimensional ac-
tive bath of run-and-tumble particles. To remain as close as
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possible to the phenomenology of an active bath in d > 1 di-
mensions, we allow particles to overtake each other and the
tracer, hence modelling the latter by a soft repulsive potential
V (x), see Fig. 1. Starting from the coupled dynamics of the
bath particles and tracer positions, {xi(t), X(t)}, we deter-
mine explicitly the long-time behaviors of γ(t) and CF (t) as
functions of the tracer shape and of the microscopic param-
eters of our model. To do so, we employ a controlled adia-
batic expansion [83, 84] valid in the large γ0 limit in which
the tracer dynamics can be described by Eq. (1). Our results
show the emergence of long-time tails that lead to interesting
and qualitatively different behaviors for symmetric and asym-
metric tracers. For generic, asymmetric tracers, ratchet effects
make γ(t) and CF (t) scale as ∼ t−1/2 in the long-time limit,
leading to superdiffusive behavior around their mean displace-
ments: 〈

X2(t)
〉

c ≡ 〈X
2(t)〉 − 〈X(t)〉2 ∼ Kt3/2 . (2)

When the tracer is towed at a constant velocity U , it experi-
ences a friction force from the active particles that grows as:

ffric(t)
U

∼ −ΓTt
1/2 . (3)

We provide below explicit expressions for K and ΓT in the
presence of a soft asymmetric potential in a dilute active bath.
In the singular limit of a symmetric tracer, CF (t) and γ(t)
scale as ∼ t−3/2, similar to a tracer in a bath of equilibrium
Brownian particles [76, 85], which yields a diffusive behavior:〈

X2(t)
〉

c ∼ 2Dt . (4)

Towing the tracer at constant velocity U , the active particles
exert a finite friction force:

ffric(t)
U

= −γT − γ1t
−1/2 +O(t−3/2) , (5)

where γT ≡
∫∞

0 dtγ(t). Interestingly, for small tracer sizes,
γT and γ1 are negative: the active bath pushes the tracer in
the towing direction. We provide perturbative expressions
for D and γT and defer their systematic derivations for later
work [86]. All our results are confirmed by microscopic sim-
ulations shown in Fig. 2. The derivation presented below sug-
gests that the exponents are universal to any bath with long-
time diffusive statistics. We confirm that they hold in the pres-
ence of soft repulsive interparticle forces in Section I of [87].

Model. We consider bath particles moving with speed v and
randomly switching their orientations with rate α/2, leading
to a persistence length `p = v/α. The tracer interacts with
the active bath via a short-range potential V which vanishes
outside [0, LT], such that the force on bath particle i is f(xi−
X) = −∂xiV (xi − X) and the tracer size is LT. We take
|µf(x)| < v so that particles are able to cross the tracer, which
emulates the channel in Fig. 1a. The tracer and bath-particle
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Figure 2. Simulation results (symbols) compared with our theoretical
predictions for the long-time limit, without any fitting parameters,
(dashed black lines): (a) MSD for symmetric and asymmetric tracers;
(b) friction force exerted on an asymmetric tracer; (c) symmetric-
tracer friction coefficient vs tracer size LT. Simulation details and
results for soft repulsive interactions are given in Section I of [87].

dynamics thus read

γ0Ẋ(t) = Ftot(t) ≡ −
∑
i

f [xi(t)−X(t)] , (6)

ẋi(t) = vσi(t) + µf [xi(t)−X(t)] , (7)

where the σi(t) ∈ {±1} flip independently with rate α/2 and
µ is the bath-particle mobility. In Eqs. (6) and (7) we ne-
glected the thermal noises acting on the tracer and bath par-
ticles, which are typically much weaker than the active and
viscous forces [25, 26, 34, 38, 88]. (See section V of [87] for
a discussion of the T 6= 0 case.) In the analytical derivations
below we consider a dilute bath of active particles, without
interparticle forces, in either infinite systems or periodic ones
of size L� LT, `p.

Theory. The fluctuating force Ftot(t) differs from the aver-
age force F exerted on a tracer held fixed. This is due to both
the tracer’s motion and the stochasticity of the active bath. The
average correction due to the tracer motion is characterised by
γ(t) in Eq. (1). Within an adiabatic perturbation theory γ(t)
is defined as

〈Ftot(t)〉 − F ≡ −
∫ t

0
dt′γ(t− t′)Ẋ(t′) , (8)

where the average is conditioned on a given realization of
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Ẋ(t). The fluctuations of Ftot are then characterized through

F(t) ≡ Ftot(t) +
∫ t

0
dt′γ(t− t′)Ẋ(t′) . (9)

Adiabatic perturbation theory tells us that, when γ0 is large,
the statistics of F(t) are identical to those of the force exerted
on a tracer held fixed [84]. Furthermore, it relates γ(t) and
F(t) through an Agarwal-Kubo-type formula [83]

γ(t− t′) =
〈
F(t)∂X0 ln ρs

[
x(t′)−X0, σ(t′)

]〉s
. (10)

Here, ρs(x − X0, σ) is the steady-state density of bath par-
ticles with orientation σ and displacement x − X0 from a
tracer held fixed at X0. The brackets 〈·〉s represent an av-
erage with respect to ρs. In the following, we set X0 = 0
without loss of generality. For an equilibrium bath at temper-
ature T , 〈F(t)〉s = 0 and Eq. (10) reduces to the fluctuation-
dissipation theorem (FDT) γ(t) = CF (t)/T where CF (t) =
〈F(t)F(0)〉s. Outside equilibrium, these constraints need not
hold.

To characterize the tracer dynamics, we compute indepen-
dently F = 〈F(t)〉s, CF (t) and γ(t − t′). To do so, we
start from the expression for the steady state of noninteracting
run-and-tumble particles in the presence of an external force
f(x) [89, 90]:

ρs(x, σ)=
1
2ρL

1+σ µv f(x)exp
{
βeff

∫ x

0
dy

f(y)
1−
[
µ
v f(y)

]2
}
, (11)

where ρL is the particle density at x = 0−, Teff = v2/µα is
the effective temperature, and βeff = 1/Teff. The steady-state
density is ρs(x) =

∑
σ ρs(x, σ).

Asymmetric tracer. For an asymmetric tracer, the densities
of active particles ρR and ρL at the right and left ends of the
tracer differ and are given by ρR = 2ρ0/ [1 + exp (βeffε)] and
ρL = 2ρ0/ [1 + exp (−βeffε)], where ε ≡ −

∫
dxf(x)/{1 −

[µf(x)/v]2}. The density difference then leads to a nonva-
nishing average force F = −

∫
dxf(x)ρs(x) exerted on the

tracer [21, 91, 92], which is given by

F = −Teff(ρR − ρL) = 2Teffρ0 tanh
(

ε

2Teff

)
, (12)

where we have introduced the average background density
ρ0 = (ρR + ρL)/2. Note that Eq. (12) is consistent with the
ideal gas law applied to the left and right sides of the tracer.

The long-time behavior of CF (t) and γ(t) can be de-
rived from the knowledge of the propagator p(x, σ, t|x′, σ′, 0).
In the long-time limit, the dynamics of the active parti-
cles are diffusive so that the support of p(x, σ, t|x′, σ′, 0)
spreads over a region of length 2b(t) around x′, where
b(t) ∼ (πDefft)1/2 is a diffusive propagating front. For
any x − x′ � b(t), and to leading order in b(t),
p(x, σ, t|x′, σ′, 0) has relaxed to the normalized steady-state
distribution ρs(x, σ)/

∑
σ

∫ b(t)
−b(t) dxρs(x, σ). For LT � 2b(t),

one can neglect the region inside the tracer in the integral so
that

∑
σ

∫ b(t)
−b(t) dxρs(x, σ) ∼ (ρR + ρL)b(t), up to corrections

of order O(L−1). Since b(t) ∼ (πDefft)1/2 we get

p(x, σ, t|x′, σ′, 0) ∼ ρs(x, σ)
ρR + ρL

(πDefft)−1/2 . (13)

This heuristic result can be derived exactly, within the adi-
abatic limit, and its sub-leading correction can be shown to
scale as O(t−3/2) (See Section II of [87]).

On long times, p(x, σ, t|x′, σ′, 0) is independent of the
initial coordinate (x′, σ′). Therefore, two-point correlations
are factorized in this limit. Furthermore, for N noninteract-
ing particles, the forces exerted by different particles on the
tracer are uncorrelated so that CF (t) = N{〈f(t)f(0)〉s −
[〈f(t)〉s]2}, where f(t) is the force due to a single bath par-
ticle. Since 〈f(t)〉s = F/N , N [〈f(t)〉s]2 only contributes a
correction of order O(L−1) to CF (t). Using Eq. (13), CF (t)
can then be evaluated as:

CF (t)=
∑
σσ′

∫
dxdx′f(x)p(x,σ,t|x′,σ′,0)f(x′)ρs(x′,σ′) (14)

= F 2

ρR + ρL
(πDefft)−1/2 +O

(
t−3/2

)
. (15)

Similarly, we obtain from Eqs. (10) and (12)

γ(t)=
∑
σσ′

∫
dxdx′f(x)p(x, σ, t|x′, σ′, 0)∂x′ρs(x′, σ′) (16)

= βeff
F 2

ρR + ρL
(πDefft)−1/2 +O

(
t−3/2

)
. (17)

Remarkably, the long-time regime satisfies an effective FDT
γ(t) = βeffCF (t) + O(t−3/2). We also note that Eqs (11)-
(17) hold in the infinite-system-size limit. For large-but-finite
systems, they are complemented by O(L−1) corrections, as
discussed in Section III of [87].

Equations (15) and (17) immediately show that the asym-
metric tracer undergoes anomalous dynamics on long times.
Indeed, the noise and friction intensities, defined as I =∫∞

0 dtCF (t) and γT =
∫∞

0 dt γ(t) are infinite, hence leading
to an ill-defined diffusivity D ≡ I/(γ0 + γT)2. To charac-
terize the anomalous dynamics of the tracer we first consider
its free motion. We define the tracer’s mobility B(t) through
X(t) =

∫ t
0 dt

′B(t− t′)F(t′), which leads to

〈
X(t)2〉

c = 2
∫ t

0
dt1

∫ t1

0
dt2B(t1)B(t2)CF (t1 − t2) . (18)

Since we are working in the large γ0 limit, B(t) ∼ 1/γ0 [93].
Using Eq. (15) for CF (t) then gives Eq. (2), hence implying
superdiffusion, with

K = 4F 2

3ρ0γ2
0
√
πDeff

. (19)
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In addition to anomalous diffusion, the asymmetric tracer
experiences friction that grows with time, as shown by the
following towing experiment. Setting a constant velocity Ẋ =
U in Eq. (1), the friction exerted by the active particles on the
tracer can be measured as ffric(t) ≡ 〈Ftot〉−F . From Eqs. (8)
and (17), we get

ffric(t) = −U
∫ t

0
dt′γ(t′) ∼ −U F 2

Teffρ0

(
t

πDeff

)1/2
, (20)

which yields Eq. (5) with ΓT = F 2(πDeff)−1/2/Teffρ0.
Symmetric tracer. For a symmetric tracer, F = 0. Equa-

tions (15) and (17) then imply that γ(t), CF (t) = O
(
t−3/2).

In this case, I and γT remain finite so that D = I/(γ0 + γT)2

is well defined and Eq. (4) holds. We now present heuristic
discussions of CF (t) and γ(t) that account for two impor-
tant features: their scaling as t−3/2 and their sign changes for
small tracers. These results can be derived exactly, within the
adiabatic limit, for piecewise linear potentials [86].

Consider a symmetric tracer of length LT whose potential
is depicted in Fig. 3. While our results can be derived ex-
actly [86], we present here a simple argument which holds in
the limit in which the edges of the tracer have a small width d
and small slopes ±f0. Consider first a single particle located
at the left end of the tracer, at x̂ ' 0, moving in the direction σ̂.
At long times, the probability distribution of its position x is a
Gaussian centered around σ̂`p, of variance 2Defft (See Fig. 3).
The force-force correlation of this particle can be computed as

c(σ̂, t) = f2
0 d√

4πDefft

[
e
−

`2
p

4Defft − e−
(LT−σ̂`p)2

4Defft

]
, (21)

as can be inferred from Eq. (14) using ρs(x′, σ′) = δ(x′)δσ′,σ̂ .
Note that the factor d comes from the integration over x in
Eq. (14), which also leads to the two exponentials correspond-
ing to x ' 0 and x ' LT , respectively. This amounts to sum-
ming the contribution due to particles returning to the left end,
such that f(x)f(x′) = f2

0 , and that of particles crossing the
tracer, such that f(x)f(x′) = −f2

0 .
Let us return to the case of an active bath of density ρ0.

We denote by m the polarization of particles around x′ = 0
so that the local density of particles with orientation σ is
ρ0

1+σm
2 . The force-force correlation is then obtained from

the single-particle result through CF (t) = 2ρ0[ 1+m
2 c(1, t) +

1−m
2 c(−1, t)], where the factor 2 stems from the contribu-

tions of particles starting at x′ ' LT. Expanding the expo-
nentials in (21) in the long-time limit, one finds the leading
orders to cancel, yielding the t−3/2 scaling of CF (t). Using
Eq. (11) leads tom = µf0/v, which is consistent with the fact
that active particles polarize against external potentials [94].
Straightforward algebra then gives

CF (t)∼ ρ0(f0dLT)2

4π1/2(Defft)3/2G(`p/LT) (22)

where G(y) = 1 − 2µf0
v y. Importantly, CF (t) becomes neg-

x

≃0 ℓp-ℓp

d

LT

Figure 3. Consider a symmetric tracer (blue potential) and an active
particle located at its left end at position x̂ at t = 0. The parti-
cle is shown in orange and magenta for σ̂ = ±1 respectively. At
late times, the particle position is distributed as a Gaussian centered
around xc = x̂+ σ̂`p. For σ̂ = 1, when `p � LT, the anticorrelation
between f(x′) and f(x) leads to a negative contribution to CF (t).
Conversely, a σ̂ = −1 particle leads to a positive contribution toCF .
Due to the polarization against the potential, σ̂ = ±1 occur with dif-
ferent probabilities. This leads to an overall negativeCF (t) for small
LT and a positive one for large sizes.

ative when the size of the tracer is small, LT ≤ 2µ`pf0/v.
In the discussion above, we neglected O(f0) corrections to
the propagator and to the steady-state density due to the edges
of the tracer. Including the f0 corrections to all orders con-
firms the scaling (22), to order O(d2), albeit with G(y) =
[1 − ( 2µf0y

v )2]/[1 − (µf0
v )2]2 (See Section IV of [87]). This

does not change the leading order estimate for the crossover
length ∼ 2µf0`p/v. Negative autocorrelations have been re-
ported in other contexts, in [7] and out [80] of equilibrium.
Here, it is a direct consequence of the polarization against the
potential. Setting m = 0 in the computation above always
leads to CF (t) > 0.

We now turn to the long-time behavior of γ(t). Inserting
Eq. (11) in Eq. (10) leads to γ = γp − γa, with

γp(t− t′) ≡ βeff

〈
F(t) F(t′)

1−
[
µ
vF(t′)

]2
〉

c

, (23)

γa(t− t′) ≡ βeff

〈
F(t)

σ(t′)`p∂x(t′)F(t′)
1− σ(t′)µvF(t′)

〉
c

. (24)

The heuristic argument developed above for CF (t) directly
extends to the correlators (23) and (24), showing that γa and
γp both inherit the t−3/2 scaling of CF (t) at long times. In-
specting Eq. (23) shows that, to leading order in f0,

γp(t) ∼ βeffCF (t) = βeffρ0(f0dLT)2

4π1/2(Defft)3/2G(`p/LT) . (25)

Equation (25) is nothing but an effective FDT for the passive
tracer. Our results show that the FDT is only expected to hold
for small f0 and should be generically violated when γa is not
negligible compared to γp.

The presence of σ(t′) in Eq. (24) makes the contribu-
tions of σ′ = ±1 particle add up, instead of cancelling,
leading to γa(t) > 0 for all LT and a long-time scaling
γa ∼ O(f3

0 )t−3/2. Therefore, to leading order in f0, γ ∼
βeffCF (t). This suggests that γT =

∫∞
0 dtγ(t) can also



5

change sign and become negative for small tracers. Indeed,
a perturbative calculation finds that

γT ∼ βeffv
−1ρ0(f0d)2LT

`p

(
1−

d2 + 6`2p
3dLT

)
. (26)

The derivations of this result and of the asymptotics of γa
are not particularly illuminating; they are deferred to Section
IV of [87]. Importantly, Eq. (26) implies that when a small
symmetric tracer is dragged at velocity U , the active bath en-
hances its motion rather than resisting it.

Adiabatic limit. Although Eq. (1) is a common framework
to describe tracer’s dynamics, it relies on the assumption that
their motion is slow. An important—but rarely debated—
question is thus its range of validity. Here, this is set by the
requirement that the tracer’s response is much slower than the
diffusive relaxation of the bath, i.e. 〈X(t)〉 ,

〈
X2(t)

〉1/2
c �

(Defft)1/2. For an asymmetric tracer, using 〈X(t)〉 ∼ Ft/γ0
and Eq. (2), we find t � τ1 ≡ Deff(γ0/F )2 and t � τ2 ≡
(Deff/K)2. Equation (19) implies τ1 � τ2 so that the adia-
batic limit holds up to t � τ1. Beyond this time scale, which
can be arbitrarily large, an asymmetric tracer in an active bath
cannot be described by Eq. (1). Considering a finite system
of size L, the diffusive relaxation time is t = τrel ∼ L2/Deff.
Thus, the adiabatic limit for an asymmetric tracer in a finite
system is valid for FL � Deffγ0, which can be achieved by
designing the tracer shape to bound F or by using a small
enough system. For a symmetric tracer, there is no temporal
restriction and the only requirement is D � Deff, which can
be fulfilled by setting γ0 � (I/Deff)1/2. For towing both
asymmetric tracers and symmetric tracers at constant velocity
U , the only requirement is U � Deff/L.

Conclusion. In this Letter, we have derived the long-time
dynamics of a passive tracer in a dilute active bath under
the sole assumption of an adiabatic evolution. We have re-
vealed new regimes for both asymmetric and symmetric trac-
ers. First, ratchet effects generically lead to the superdiffu-
sion of asymmetric tracers, which also experience friction that
grows with time when they are dragged at constant velocity
U . For symmetric tracers, the long-time tail preserves the dif-
fusive behavior, but negative active friction is observed for
small tracers. The latter solely follows from the persistent
motion of active particles and their polarization by external
potentials, a mechanism that differs from previously studied
cases with negative mobility [72, 95, 96]. We expect the tails
for asymmetric and symmetric tracers to become t−d/2 and
t−(d/2+1) in d dimensions, respectively. This suggests, in two
dimensions, that

〈
X(t)2〉

c ∼ t ln t for an asymmetric tracer,
which remains to be verified. Our results stem from generic
features of dry active particles and should thus hold gener-
ically. The exponents are expected to be universal, but the
transport coefficients can be dressed, for instance, by interac-
tions. Moreover, the mechanisms should lead to even richer
behaviours for active suspensions in momentum-conserving
fluids [37, 45, 50, 59], or in the presence of phoresis [80].
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