
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Coherent Reaction between Molecular and Atomic Bose-
Einstein Condensates: Integrable Model

Rajesh K. Malla, Vladimir Y. Chernyak, Chen Sun, and Nikolai A. Sinitsyn
Phys. Rev. Lett. 129, 033201 — Published 11 July 2022

DOI: 10.1103/PhysRevLett.129.033201

https://dx.doi.org/10.1103/PhysRevLett.129.033201


Coherent reaction between molecular and atomic Bose-Einstein condensates:
integrable model

Rajesh K. Malla,1 Vladimir Y. Chernyak,2, 3 Chen Sun,4 and Nikolai A. Sinitsyn5

1Theoretical Division, and the Center for Nonlinear Studies,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, USA
3Department of Mathematics, Wayne State University, 656 W. Kirby, Detroit, Michigan 48202, USA

4School of Physics and Electronics, Hunan University, Changsha 410082, China
5Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

We solve a model that describes a stimulated conversion between ultracold bosonic atoms and
molecules. The reaction is triggered by a linearly time-dependent transition throughout the Fes-
hbach resonance. Our solution predicts a dependence, with a dynamic phase transition, of the
reaction efficiency on the transition rate for both atoms-to-molecule pairing and molecular dissocia-
tion processes. We find that for the latter process with a linear energy dispersion of atomic modes,
the emerging phase can have a thermalized energy distribution of noninteracting bosons with the
temperature defined by the rate of the transition. This provides a simple interpretation of the phase
transition in terms of the creation of equilibrium Bose-Einstein condensate.

Recently, a coherent conversion between Cs atomic
Bose-Einstein condensate (BEC) and the condensate of
Cs2 molecules was demonstrated by varying a magnetic
field in time and thus pushing the system across the Fes-
hbach resonance [1]. To suppress irreversible scatterings,
BECs of rotating molecules were confined in a quasi-2D
trap in [1]. In the created state, possibly up to 50% of
molecules formed a condensate, and in the reversed pro-
cess, about 40% of the molecules coherently dissociated
into atoms. Further improvements of the conversion ef-
ficiency will enable the chemistry of coherent BECs for
engineering macroscopic correlated quantum states, with
applications in sensing and information-processing.

Until the experiment in [1], a considerable fraction of
the molecular condensate, was possible to generate only
for the reactions of fermionic atoms [2–6], which had
fewer possibilities than bosonic ones to create detrimen-
tal excitations. A considerable understanding of fermion-
boson reactions was achieved due to the discovery of inte-
grability of the time-dependent Tavis-Cummings model
[7, 8], which provided statistical characteristics of the fi-
nal many-body state. A similarly general approach to
the purely bosonic reactions is still missing but desirable
for searching new effects and engineering quantum many-
body states.

The theory of integrability of explicitly time-dependent
quantum systems has recently produced a variety of solv-
able linearly time-dependent quantum models [9]. Many
of their applications have been anticipated [10–14]. How-
ever, the bulk of the found models describe interactions
of only a few states. Although the conditions for integra-
bility are known, there is still no straightforward path
to identify the models with a combinatorially complex
phase space that would satisfy such conditions. Hence,
the search for such models still relies heavily on intuition
and chance.

In this Letter, we identify a new experimentally rele-
vant model that can be solved exactly and that captures
the main features of the chemistry of BECs. Its Hamilto-

nian describes a stimulated conversion between bosonic
atoms and molecules during a sweep of a linearly time-
dependent magnetic field across a Feshbach resonance.
Our model captures the main features of the process:
many-body interactions, energy dispersion of the atomic
states, different initial populations of these states, and
an arbitrary sweep rate β:

H(t) = −βtΨ̂†Ψ̂ +
∑
k

{
εakâ
†
kâk + εbk b̂

†
k b̂k

+g
(

Ψ̂†âk b̂k + Ψ̂â†k b̂
†
k

)}
. (1)

Here, âk, b̂k, Ψ̂ are the boson annihilation operators; εa,bk
are the energies of the free atoms; β is proportional to
the ramp of the magnetic field that sweeps the system
across the Feshbach resonance, and g is the coupling for
the conversion of the atomic pairs into the molecules; Ψ̂

is the molecular operator, and âk and b̂k describe the
modes of the ultracold atoms. The atomic modes are
generally different [15]. For example, the momentum con-
servation may force the molecules with zero momentum
to split only into atoms with opposite momenta ±p. In
this case, the index k runs over only half of the possible
atomic states, for which we associate âk with âp, and we

associate b̂k with â−p. However, we allow for any reac-

tion channel k to identify b̂k with âk, which is possible if
a pair of emerging atoms has p = 0.

To keep the model (1) integrable, we disregarded the
energy dispersion of molecular states, which can be jus-
tified by the fact that the molecular condensate dom-
inates the coherent reactions with atoms. We also do
not include other than cubic interactions of the particles,
which means that the molecular-atomic interactions near
the resonance dominate.

We assume that as t → −∞ the system is close to its
ground state. Hence, the model (1) for β > 0 describes
the driven transition from atoms as t → −∞ into an
initially empty molecular mode [Fig. 1(a)]. We will call
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this a forward process. The reverse process describes the
dissociation of the molecular condensate in Fig. 1(b). It
corresponds to β < 0, so that the state with a molecu-
lar condensate is at t = −∞, and it is then coherently
converted into atomic pairs. Our goal is to find the final
state as t→ +∞.

Prior theories of the BEC chemistry were usually re-
stricted by considering steady conditions [16–20]. They
revealed a possibility of a phase transition [16, 17] but the
effect of the nonadiabatic dynamics during the stimulated
transition through the Feshbach resonance was missing.
On the other hand, the explicitly time-dependent evolu-
tion could be studied only with considerable approxima-
tions, for example, using the mean field quadratic Hamil-
tonians [21] or applying semiclassical and diagrammatic
techniques that disregarded the atomic energy dispersion
[22, 23] and could be justified only for proper limits of
the model’s parameters.

The integrability of the model (1) thus reveals the most
nontrivial behavior that can be tested for BEC reactions:
the emergence of dynamic phase transition, the effect of
competition between different reaction channels, and the
properties of quantum correlations that are induced by
cubic interactions in H(t).

To solve the model, we note that Qk = â†kâk − b̂
†
k b̂k

commutes with H(t), and introduce operators K+
k ≡

â†k b̂
†
k and K−k ≡ âk b̂k, which satisfy

[q̂k,K
±
k ] = ±2K±k , [K−k ,K

+
k ] = (q̂k + 1), (2)

where q̂k ≡ â†kâk + b̂†k b̂k. We also introduce parameters

εk = (εak + εbk), and τ to rewrite H(t) as

H(t) = −βtΨ̂†Ψ̂ +
∑
k

{
τεkq̂k/2 + g

[
Ψ̂†K−k + Ψ̂K+

k

] }
.

(3)
At τ = 1, we reproduce Eq. (1) up toQk-dependent terms
that do not change the dynamics. Our main observation
is that H(t) in Eq. (3) commutes with

H1(t) =
∑
k

{
εk(t+

τεk
β

)
q̂k
2

+
gεk
β

[
Ψ̂†K−k + Ψ̂K+

k

] }
+

+
g2

βτ

∑
i,j; i 6=j

(
K+
i K

−
j − (q̂i + 1)(q̂j + 1)/4

)
, (4)

and these two operators satisfy the relation

∂H/∂τ = ∂H1/∂t. (5)

According to [9, 25], this renders our model an integrable
multistate Landau-Zener model, for which any rescaling
of τ in Eq. (3) does not change the scattering probabilities
between any eigenstates of H(t).

Hence, without affecting the final result, we can set
τ → ∞, which renders all atomic energies, τεk in H(t),
well-separated by the time of the corresponding reso-
nances, at which τεk = −βt. Near each such resonance,
we can safely disregard all other reaction channels. After

finding the scattering amplitudes at each channel (res-
onance), we can then treat the effects of different reso-
nances sequentially in their chronological order to find
the state after the passage through all resonances.

The Hamiltonian restricted to a single reaction chan-

nel, Ψ̂↔ âb̂, is given by

H(t) = −βtΨ̂†Ψ̂ + g
(

Ψ̂†âb̂+ Ψ̂â†b̂†
)
, (6)

where we shifted the timescale to set the resonance at t =
0. The dynamics with Eq. (6) conserves two quantities:

N = Ψ̂†Ψ̂ + b̂†b̂, Q = â†â− b̂†b̂. (7)

This allows us to express the microstates only via the
number of molecules m: |m〉 ≡ |m;N −m+Q,N −m〉,
where N −m+Q and N −m are the numbers of atoms
in a and b modes, respectively. Note also that, at Q = 1,
Eq. (6) has the same matrix elements as the Hamiltonian

with a single atomic mode: â ≡ b̂.
Following [22], Eq. (6) can be mapped to the driven

Tavis-Cummings model (DTCM) [7, 8]:

HTC = βt(ψ̂†ψ̂ −N) + g(ψ̂†Ŝ− + ψ̂Ŝ+), (8)

where ψ̂ is a boson annihilation operator, and Ŝ± are
raising/lowering operators of a spin with size S = (N +

Q)/2. The DTCM conserves N = ψ̂†ψ̂+(S+ Ŝz). Hence,
we can mark its states as |m〉 where m = S + Sz, Then,

〈m+ 1|HTC |m〉 =
√

(N −m)(N +Q−m)(m+ 1). (9)

Comparing with (6), we find

〈m|H|m′〉 = 〈m|HTC |m′〉, ∀m,m′.

This map is not intuitive in the sense that the number of
molecules m in Eq. (6) is not the same as the number of

bosons in the DTCM. Instead, 〈m|ψ̂†ψ̂|m〉 = N −m.
Reaction efficiency. The DTCM has been solved pre-

viously [7]. Its transition probabilities between any mi-
crostates can be found in Eqs. (23-24) in [8], where the
limits of large N are also described. For the forward pro-
cess, there is a negative feedback because the net num-
ber of bosons in the system decreases with emergence of
molecules. Using the map to the Tavis-Cummings model
[24], we find that if all atoms are initially in the ground
state with some number of pairs N � 1 and Q = O(1)
then the probability distribution of finding m-molecules,
for 〈m〉 � 1, at the end is nearly Gaussian and sharply
peaked near the average value

〈m〉 ≡ 〈Ψ̂†Ψ̂〉t→∞ = N +
log
(
2− xN+Q

)
log x

, x = e−
2πg2

β .

(10)
For the reverse sweep, starting with N molecules and

no atoms, after the passage through one resonance, the
probability to produce n atomic pairs is given by [24]

Pn = xN−n(xN−n+1, x)n, x = e−2πg2/β , (11)
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FIG. 1. The reaction between the atomic and the molecular condensate in (a) the forward and (b) the reverse process. The
E-axis is energy; purple arrows show the direction of the transition throughout the resonance. Molecular and atomic modes in
an arbitrary trap are shown as pink and green surfaces, respectively. (c) and (d) characterize the average number of molecules
〈m〉 and of atomic pairs 〈n〉 = N − 〈m〉 that are found for different values of the inverse sweep rate, 1/β, at g = 1, after
the transition starting from the ground state in the forward and the backward processes in Eq. (6), respectively. The discrete
points are the exact predictions for the initial number of particles N = 104 [24], and the solid curves in (c) and (d) are the
large-N predictions of, respectively, Eq. (10) and Eq. (13) from [24].

where

(a, x)n ≡
n−1∏
k=0

(1− axk) = (1− a)(1− ax) · · · (1− axn−1)

(12)
is the q-Pochhammer symbol. According to [26], this
distribution is broad due to the positive feedback that
also leads to a dynamic phase transition. If the number
of molecules N is initially macroscopically large, then
the fraction of molecules converted to atoms, 〈n〉/N =
1−〈m〉/N, behaves discontinuously as a function of g2/β.
Let

f =
2πg2

β

N

logeN
, (13)

then the distribution (11) has the property

〈n〉/N = 0 for f < 1, N →∞,

〈n〉/N =
f − 1

f
for f ≥ 1, N →∞. (14)

In Figs. 1(c,d) we confirm the predictions (10), (14)
using numerically exact transition probabilities [24] for
N = 104, and also verify robustness of such predictions
against an initial asymmetry in atomic population due
to nonzero Q. Here we note similarity of Fig. 1(d) with

the experimentally obtained red curve in Fig.4(a) in [1].
Both figures describe the number of produced atoms from
molecules: in our case as a function of 1/β but as a func-
tion of time after the molecules are placed at resonance
in [1]. We attribute this to the fact that the time-scale
τeff = g/β in our model characterizes the effective time
that the system spends sufficiently close to the resonance
to dissociate the molecules during the sweep. Thus, both
figures describe similar physics: it takes initially certain
critical time for the process to produce ∼ logN atomic
pairs before they induce the positive feedback that makes
O(N) of the remaining molecules dissociate due to super-
radiance [26]. This indicates a possibility that our dy-
namic phase transition can be confirmed with the setup
that was used in [1].

Coherent thermalization. Consider now the effect of
the dispersion εk of atomic modes in the general model
Eq. (1). For the forward-sweep, the integrability means
that only higher energy atomic pairs can influence the
lower energy ones. Hence, if the initial state is the atomic
ground state then the higher energy states remain empty
at the end, and Eq. (10) applies to this case as well. Ac-
cording to it, we predict even for multi-channel reactions
an exponential dependence of the reaction efficiency on
1/β for fast sweeps and a power-law tail, N −〈m〉 ∼ 1/β
in the limit of slow transitions.
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For the reverse process, if the initial state has N
molecules, then Eq. (11) applies to the first encountered
resonance. It also applies to the following resonances but
the number of entering molecules must be reduced by the
amount that has already dissociated. If there are many
resonances, all molecules will dissociate.

The final multi-mode population distribution has a
very simple structure. To demonstrate this, we write the
joint transition probability to produce n1 atomic pairs in
the first and n2 pairs in the second resonance:

Pn1,n2
= Pn1

xN−n1−n2(xN−n1−n2+1, x)n2
, (15)

and compare two probabilities of the populations that
are different by moving one atomic pair from the lower
energy mode to the higher energy one. Taking the ratio
of such probabilities, we find

Pn1−1,n2+1

Pn1,n2

= e−2πg2/β , (16)

which does not depend on n1 and n2. The same is true
for any pair of the nearest energy atomic modes. This
means that all probabilities satisfy the detailed balance
conditions that are found in the Gibbs distribution:

P{ns} =
1

R
e−

2πg2

β

∑∞
s=1 snsδ

(
N −

∑
s

ns

)
, (17)

where s enumerates the atomic states according to their
increasing energy ordering εs in Eq. (3), {ns} is the vector
of the final atomic asbs-mode populations, and R is a
normalization factor; the delta function follows from the
particle conservation.

Physically, Eq. (17) would be thermal only for a lin-
ear energy dispersion, s = Dεs, where D is the density of
states. For a 2-dimensional trap geometry the atomic en-
ergy dispersion, indeed, is expected to be linear because

D = S
∫∫ dpxdpy

(2π)2 δ(E − p2/(2ma)) = S
∫∞

0
pdp
(2π)δ(E −

p2/(2ma)) = Sma/(2π), where ma is the atomic mass,
px,y are the momentum components, and S is the area
of the trap. Hence, for the time-linear sweep through
all resonances, we predict that the atomic distribution
after the molecular dissociation may be thermalized at
temperature

kBT =
β

2πg2D
= β/(Smag

2). (18)

The physical coupling g decays with S, so only the linear
dependence on β is our testable prediction. The dynamic
phase transition in Fig. 1(d) now has a new interpre-
tation: the final atomic distribution coincides with the
equilibrium one for free bosons, which form a BEC be-
low a critical temperature. Indeed, the first encountered
resonance is macroscopically populated if according to
Eq. (14) we have f > 1, which corresponds to the con-
densation of atoms in this mode.

We also mention an intriguing similarity of this
thermalization with simulations of Unruh temperature

FIG. 2. (a) The ratio |〈A|â2|A〉|/N oscillates for varying β
and N . (b) The overlap of |A〉 with Glauber states |α〉, α =
αx + iαy, reveals two peaks. Here, the parameters for |A〉 are:
φM = 0, |αm| = g2/β = 5, which corresponds, on average, to
50 atoms in the final state.

viewed in an accelerating reference frame by a paramet-
rically modulated BEC [27]. However, unlike [27], our
thermalization is found for our system globally, without
tracing out the state of unobserved atoms.

Finally, we comment on the role of degenerate chan-
nels, e.g., with εs = εs+1 for some s. The probability

P (n) ≡
∑

ns+ns+1=n

(Pns + Pns+1
) (19)

is a continuous function of δε ≡ εs+1 − εs in the vicinity
of δε = 0. Indeed, if δε does not change sign, this fol-
lows from integrability, and changing sign of δε merely
corresponds to changing channel indices s and s + 1,
which does not affect P (n). Hence, the net number of
atoms produced in both modes at δε = 0 is the same
as for δε 6= 0. Inductively, we find that the probabil-
ity to find n atomic pairs in an arbitrarily degenerate
atomic mode is the same as when such modes are non-
degenerate. This means that if we coarse-grain energy
into sufficiently large intervals the effect of degeneracy
on the atomic energy distribution will be suppressed af-
ter the characteristic time τeff of the passage through the
resonance.

Phase coherence. The system after the reaction is still
described by a coherent state vector with possibly non-
trivial quantum correlations. This can be revealed by
measuring the relative phases of the final states, which
can also be found exactly. In [24], we show how such
phases can be derived but we postpone the detailed anal-
ysis to a follow-up work, and consider here only the adi-
abatic limit in order to illustrate possible future research
directions.

Let the molecular condensate be in a coherent state,
which is a good approximation for an equilibrated
bosonic system [28]:

|αm〉 = e−|αm|
2/2

∞∑
n=0

αnm√
n!
|n〉. (20)

The condensate phase φM is then defined from
〈αm|Ψ̂|αm〉 ∼

√
Neiarg(αm), where N = |αm|2, so φM =
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arg(αm). Consider the adiabatic dissociation of this con-

densate into a single atomic mode: H = −βtΨ̂†Ψ̂ +
g[Ψ̂†â2 + Ψ̂(â†)2]. Each |n〉 in (20) is then converted
to eiφn |2n〉a, where a marks the atomic states. In [24] we
derive an exact formula for the scattering phase of the
complete dissociation amplitude:

φn = 3nπ/4−
n∑
k=1

argΓ[i(g2/β)(k + 1)]. (21)

For g2/β � 1 it is simplified because, for any x � 1,
π/4 + argΓ[ix] ≈ x(logex − 1). As t → +∞, the atomic
state becomes

|A〉 = e−|αm|
2/2

∞∑
n=0

αnm√
n!
eiφn |2n〉a. (22)

This state contains information about the original molec-
ular state. Thus, imagine that the molecular condensate
has a vortex, such that φM winds by 2π around some
spatial point. Let us also assume, phenomenologically,
that locally the dynamics in a linear field ramp is de-
scribed by our model. The topological property is then
preserved after the reaction because the circulation

− i
∫ 2π

0

〈A| d

dφM
|A〉 dφM = 2πN (23)

remains the same as it would be for the initial state |αm〉.
Hence, the stimulated reaction should preserve vortex-
like spatial distributions of particles and currents but the
emerging atomic state has nontrivial correlations.

The state |A〉 is far from a coherent state because
〈A|â|A〉 = 0. To test whether it can be close to a
squeezed state, in Fig. 2(a) we plot a numerically cal-
culated ratio |〈A|â2|A〉|/N as a function of g2/β. Its

values close to 1 at large N indicate the emergence of
the squeezed state. We find that this ratio is generally
small except at narrow resonant values of width ∼ 1/

√
N

near g2loge(g
2N/β)/β = 2πn, n = 1, 2 . . ., where it ex-

ceeds 0.5. Figure 2(b) shows that the nonclassical corre-
lations are illustrated better by the overlap of a typical
|A〉 (at non-resonant values of the parameters) with co-
herent states |α〉, revealing two peaks with opposite signs
of the corresponding α. This makes |A〉 akin to a macro-
scopic cat-state, whose origin can be traced to the even
parity of all states |2n〉a that contribute to |A〉. As φM
changes from 0 to 2π, the axis connecting the two peaks
rotates by angle π so that the peaks exchange their po-
sitions at the end. This is a topological consequence of
the geometric phase Eq. (23). This cat-state must be
fragile against decoherence. Breaking it down would be
in agreement with breaking Z2 symmetry in the atomic
phase that was predicted in [17]. This process, however,
is beyond the scope of our model, so we refer to [17] for
further discussion.
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[23] A. P. Itin and P. Törmä, “Dynamics of a many-particle
Landau-Zener model: Inverse sweep,” Phys. Rev. A 79,
055602 (2009).

[24] “Supplementary material, which additionally cites
refs. [29, 30], has four sections with (i) comments on the
strongly nonadiabatic regime; (ii) derivation of the scat-
tering phase for the complete molecular-atomic conver-
sion amplitude; (iii) derivation of the continuous limit for
the reaction rates at finite Q, and (iv) numerical checks
for the predicted transition probabilities,” .

[25] Vladimir Y Chernyak, Fuxiang Li, Chen Sun, and
Nikolai A Sinitsyn, “Integrable multistate Landau–Zener
models with parallel energy levels,” Journal of Physics
A: Mathematical and Theoretical 53, 295201 (2020).

[26] Chen Sun, Vladimir Y. Chernyak, Andrei Piryatinski,
and Nikolai A. Sinitsyn, “Cooperative light emission in
the presence of strong inhomogeneous broadening,” Phys.
Rev. Lett. 123, 123605 (2019).

[27] Feng L. Zhang Z. et al. Hu, J., “Quantum simulation of
unruh radiation.” Nature Physics 15, 785?789 (2019).

[28] M. Burnett K. Vaccaro J. A. Barnett, S., “Why a con-
densate can be thought of as having a definite phase,” J.
Res. Natl. Inst. Stand. Technol. 101(4), 593?600 (1996).

[29] N. A. Sinitsyn, “Landau-Zener transitions in chains,”
Phys. Rev. A 87, 032701 (2013).

[30] A. A. Rangelov, J. Piilo, and N. V. Vitanov, “Counterin-
tuitive transitions between crossing energy levels,” Phys.
Rev. A 72, 053404 (2005).

http://dx.doi.org/https://doi.org/10.1016/j.aop.2018.01.017
http://dx.doi.org/ 10.1103/PhysRevA.105.022211
http://dx.doi.org/ 10.1103/PhysRevA.105.022211
http://dx.doi.org/10.1103/PhysRevB.100.224304
http://dx.doi.org/10.1103/PhysRevB.100.224304
http://dx.doi.org/ 10.1088/1751-8121/aa6800
http://dx.doi.org/ 10.1088/1751-8121/aa6800
http://dx.doi.org/ 10.1088/1751-8121/aa6800
http://dx.doi.org/10.1103/PhysRevA.67.045603
http://dx.doi.org/10.1103/PhysRevA.67.045603
http://dx.doi.org/10.1103/PhysRevLett.93.020405
http://dx.doi.org/10.1103/PhysRevLett.93.020405
http://dx.doi.org/ 10.1103/PhysRevA.73.023609
http://dx.doi.org/ 10.1103/PhysRevA.73.023609
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysb.2006.12.015
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysb.2006.12.015
http://dx.doi.org/10.1103/PhysRevA.81.063621
http://dx.doi.org/10.1103/PhysRevA.81.063621
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/ 10.1103/PhysRevA.79.055602
http://dx.doi.org/ 10.1103/PhysRevA.79.055602
http://dx.doi.org/10.1088/1751-8121/ab9464
http://dx.doi.org/10.1088/1751-8121/ab9464
http://dx.doi.org/10.1103/PhysRevLett.123.123605
http://dx.doi.org/10.1103/PhysRevLett.123.123605
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/ 10.1103/PhysRevA.72.053404
http://dx.doi.org/ 10.1103/PhysRevA.72.053404

	Coherent reaction between molecular and atomic Bose-Einstein condensates: integrable model
	Abstract
	Acknowledgements
	References


