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Stochastic thermodynamics has revolutionized our understanding of heat engines operating in
finite time. Recently, numerous studies have considered the optimal operation of thermodynamic
cycles acting as heat engines with a given profile in thermodynamic space (e.g. P − V space in
classical thermodynamics), with a particular focus on the Carnot engine. In this work, we use the lens
of thermodynamic geometry to explore the full space of thermodynamic cycles with continuously-
varying bath temperature in search of optimally shaped cycles acting in the slow-driving regime.
We apply classical isoperimetric inequalities to derive a universal geometric bound on the efficiency
of any irreversible thermodynamic cycle and explicitly construct efficient heat engines operating in
finite time that nearly saturate this bound for a specific model system. Given the bound, these
optimal cycles perform more efficiently than all other thermodynamic cycles operating as heat
engines in finite time, including notable cycles, such as those of Carnot, Stirling, and Otto. For
example, in comparison to recent experiments, this corresponds to orders of magnitude improvement
in the efficiency of engines operating in certain time regimes. Our results suggest novel design
principles for future mesoscopic heat engines and are ripe for experimental investigation.

Introduction. Over the past several decades, stochastic
thermodynamics has dramatically improved our under-
standing of nonequilibrium statistical physics [1–7]. A
major focus of study in this area has been the perfor-
mance of engines operating in finite time, where both
power and dissipation are finite, often with an empha-
sis on engines operating at maximal power [8–24]. A
recurring theme has been the interplay, and often incom-
patibility, among high efficiency, high output power, and
low dissipation [13, 15, 18, 22]. To that end, we recently
characterized optimal protocols for the finite-time opera-
tion of a Brownian Carnot engine [22], a colloidal system
introduced in [25], finding minimally dissipative cycles of-
ten came at the expense of reduced power and efficiency.

In this work, we study the implications of this inter-
play from a geometric perspective and arrive at a univer-
sal bound on the efficiency of heat engines operating in
finite time. We also numerically construct optimal cycles
that nearly saturate the bound, and we characterize its
tightness for a specific model system and compare them
to a variety of non-optimal cycles. We find that even
natural extensions of well-known quasi-static cycles (e.g.
Carnot engines) to finite-time cycles perform far less effi-
ciently than the optimal cycles, demonstrating the utility
of our result.

Efficiency of irreversible engines. Following [26], we
use a definition of efficiency that directly captures the
irreversibility of a thermodynamic cycle. Specifically, for
a generic thermodynamic engine operated by cyclically
varying the temperature T of a heat bath in contact with
the system and some volume-like mechanical control vari-
able λ, the (average) efficiency is defined as

η ≡ W

U
=

∮
Xλdλ∮
XT dT

, (1)

where Xν is the thermodynamic force conjugate to the
control variable ν ∈ {T, λ}, defined as

Xλ ≡ −
〈
∂HΛ

∂λ

〉
, (2)

XT = S ≡ −〈log ρt〉 , (3)

where HΛ is the Hamiltonian of the (working) system
for a fixed set Λ = (T, λ), S is the system entropy, ρt
is the phase space distribution of the system at time
t, and brackets denote ensemble averages. Note that U
here does not represent the internal energy, but can be
thought of as the uptake of thermal energy from the heat
source, or the amount of energy that is available for work
production under a given temperature profile [26]. This
efficiency is well-defined for any engine with positive work
output, W > 0. Following the first law of thermodynam-
ics and appealing to the cyclic operation of the engine,
the efficiency may be rewritten as

η =

∮
Xλdλ∮
SdT

=

∮
Xλdλ∮

Xλdλ+
∮
TdΣ

≤ 1, (4)

where dΣ ≡ dS− dQ/T is the total infinitesimal entropy
production in the universe. Here, Q is the heat exchange
into the system from the reservoir at a temperature T .
Following the second law, dΣ ≥ 0 such that the inequal-
ity follows directly and the unity bound can only be sat-
urated for quasistatic, reversible engines. This definition
of efficiency has gained traction in the study of finite-time
heat engines [21, 22, 27], and a comparable definition is
standard for monothermal cycles, e.g. in active matter
or chemical transduction contexts [28–31].

Now, let us consider a finite-time operation such that
Σ > 0 and the system is driven with finite driving rates
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Λ̇. The thermodynamic forces may be expanded as

Xµ = Xµ − gµνΛ̇ν , (5)

where summation over repeated indices is implied. Here,
Xµ is the quasistatic value of X for a given set Λ and,
following the standard linear response framework, gµν is
given by a correlation function

gµν = β

∫ ∞
0

dt 〈δXµ(t)δXν(0)〉Λ . (6)

Using this expansion, the efficiency can be written

η =

∮
Xλdλ∮
XT dT

≈
∮

(Xλ − gλνΛ̇ν)dλ∮
(XT − gTνΛ̇ν)dT

≈ 1−
∮
dtΛ̇µgµνΛ̇ν∮
Xλdλ

= 1− A

Wτ
, (7)

where A is the dissipated work (or alternatively called
the dissipated availibility) through one cycle, τ is the cy-
cle duration, and W is the work output for quasistatic
driving. Following [32–39], we see that the thermody-
namic control space is imbued with a geometric struc-
ture by reinterpreting gµν as a metric tensor. Geometric
approaches such as this have greatly facilitated the devel-
opment of optimal protocols for nonequilibrium systems
[38–47]. With these definitions, the dissipated work sat-
isfies

τA ≡ τ
∮
dtΛ̇µgµνΛ̇ν ≥

(∮
dt

√
Λ̇µgµνΛ̇ν

)2

≡ L2, (8)

where L is the thermodynamic length of the protocol as
defined by the metric. Optimal driving then yields [26]

η ≤ η∗ = 1− L
2

Wτ
, (9)

which gives the optimal geometric efficiency η∗ for any
closed curve in thermodynamic control space.

The bound, Eq. (9), applies to any generic closed curve,
yielding the best possible efficiency for an optimal tem-
poral parametrization for a given path. We now seek to
go further and find cycles that are maximally efficient
over the space of all possible closed paths in thermody-
namic control space. Fixing the protocol duration and
given Eq. (9), to leading order in 1/τ , we must therefore
find the curve that minimizes the quantity L2/W.

Isoperimetric bound on efficiency. We now note an
important feature of W. It is well known from stan-
dard thermodynamics that the quasistatic work is simply
given by the area contained within the curve of the (qua-
sistatic) cycle in λ− Xλ space, which we will henceforth
refer to as Clausius space in reference to the Clausius
curve. We will refer to the inner region of this curve as C
and the boundary (the Clausius curve) as ∂C. By means

of an appropriate change of coordinates, the metric gµν
may be transformed for this space, yielding a metric gCµν
such that the thermodynamic length is given

L =

∮
∂C

√(
dT
dλ

)
µ

gµν

(
dT
dλ

)
ν

=

∮
∂C

√(
dXλ
dλ

)
µ

gCµν

(
dXλ
dλ

)
ν

,

(10)

and the quasistatic work is

W =

∫∫
C
dλdXλ =

∮
∂C
Xλdλ. (11)

We define one final quantity of interest: the thermody-
namic area, defined as the integral over of the region with
the proper thermodynamic geometric measure:

A =

∫∫
C

√
gCdλdXλ, (12)

where gC ≡ det gCµν . The physical interpretation of this
quantity may not be as clear as that of thermodynamic
length, though we will use it as a key ingredient. Notably,
dating to antiquity [48, 49], bounds exist relating the
perimeter L (D) and area A (D) of a region D, known
as isoperimetric inequalities. In general, for a simply-
connected two-dimensional region, one has two inequali-
ties [49]

L 2 ≥ 4πA − 2

[∫∫
D

K+

]
A , (13)

L 2 ≥ 4πA −
[
supDK

]
A 2. (14)

where K is the Gaussian curvature of the underlying
space and K+(p) ≡ max(K(p), 0) for a point p ∈ D. As a
simple example, we remind the reader of the case of Eu-
clidean space where K = K+ = 0 and both inequalities
yield L 2 ≥ 4πA , which is saturated only for the opti-
mal shape of a circle. Similar isoperimetrically optimal
shapes exist for other manifolds [49]. Importantly, when-
ever the curvature is everywhere nonpositive, Eq. (13)
yields the familiar Euclidean bound, though it is only
tight for special spaces, such as when K = 0.

In the context of thermodynamic geometry, the bound
readily applies, where now we consider the thermody-
namic length of a closed curve and the thermodynamic
area of the enclosed region. That is

L2 ≥ 4πA− 2

[∫∫
C
K+

]
A, (15)

L2 ≥ 4πA−
[
supCK

]
A2. (16)

Henceforth, we will focus on the case when K ≤ 0 and
will relegate the more general case to the Supplemental
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Material [50]. In this case, we may assume L2 ≥ 4πA.
Therefore,

L2

W
=
L2

W
A
A

=
L2

A
A
W
≥ 4π

A
W

= 4π
√
gC , (17)

where the overline indicates an area average value. Given
this bound, we may now write for the efficiency a univer-
sal bound

η ≤ 1− L
2

Wτ
≤ 1− 4π

√
gC

τ
. (18)

This bound, which we will refer to as an isoperimentric
bound on efficiency, is our first major result and presents
a fundamentally new and purely geometric bound on the
efficiency of nonequilibrium engines. Also, whereas the
previous bound, Eq. 9 was directly applicable to the opti-
mized parametrization of a specific predetermined cycle,
this bound places constraints on the optimal shape of a
cycle and can only be approached for geometrically op-
timized cycle shapes. This therefore introduces a new
optimization principle wherein optimally efficient cycles
must minimize the average value of

√
gC over the region

they enclose in Clausius space. In a pioneering study, a
similar bound was recently recovered for the specific case
of the Brownian gyrator [27], though we highlight that
Eq. (18) applies generically.

Construction of optimal cycles. Given this isoperimet-
ric bound, we now seek to construct optimal cycles that
(nearly) saturate it. This is done by finding shapes that
minimize the ratio L2/A. Inspired by previous literature
[49], we will use a variational principle. Namely, we seek
to maximize A while holding L2 fixed; we do so by means
of a Lagrange multiplier. The relevant functional takes
the form

F =

∮
dt

(√
gCXλλ̇− ξ

(
Ẋλ

λ̇

)
µ

gCµν

(
Ẋλ

λ̇

)
ν

)
, (19)

where ξ serves as a Lagrange multiplier enforcing a fixed
dissipation for shapes that maximize the corresponding
area [68]. Optimization is found through solving the re-
sulting Euler-Lagrange equations for Xλ(t) and λ(t) un-
der a cyclic constraint.

Parametric harmonic oscillator We will now illustrate
the utility of this result by studying the parametric har-
monic oscillator. This important model system consists
of a particle of mass m trapped in a harmonic potential
with variable stiffness V (x) = 1/2k(t)x2 in contact with
a heat bath of variable temperature T (t) and subject to
viscous damping ζ. This system has been studied exten-
sively [22, 25, 40, 51–55], and its geometry has been well
characterized — its metric is

gµν =
mkB
4ζ

 1
T

(
4 + (ζ)2

km

)
− 1
k

(
2 + (ζ)2

km

)
− 1
k

(
2 + (ζ)2

km

)
T
k2

(
1 + (ζ)2

km

)
µν

.

In this case, the mechanical control variable is k and
the corresponding force is Xk = −1/2 〈x2〉. In the qua-
sistatic limit, we have Xk = −kBT/2k by the equiparti-
tion theorem. Therefore, under the change of variables
(T, k)→ (P̃ , Ṽ ) ≡ (Xk, k), we find

gCµν = −

(
ζ

2P̃
+ 2mṼ

ζP̃
m
ζ

m
ζ

mP̃
2ζṼ

)
,

where we use P̃ and Ṽ to suggestively map to pseudo-
pressure and pseudo-volume in Clausius space and re-
capture the usual identity dW = P̃ dṼ . We find gC =
m/(4Ṽ ) and the Gaussian curvature K = 1/(ζP̃ ) ≤ 0 as
P̃ ≤ 0 such that Eq. (18) applies. As a result, we have

η ≤ 1−
2π
√

m
Ṽ

τ

for any possible thermodynamic cycle.
We now seek to characterize the optimal cycles for this

model system. Following Eq. (19), we consider the func-
tional

F =

∮
dt

[√
gCP̃ ˙̃V + ξ

(
˙̃P
˙̃V

)(
ζ

2P̃
+ 2mṼ

ζP̃
m
ζ

m
ζ

mP̃
2ζṼ

)(
˙̃P
˙̃V

)]
.

(20)
The Euler-Lagrange equations are then found by varying
with respect to P̃ and Ṽ (Supplemental Material [50]).
To our knowledge, the resulting Euler-Lagrange equa-
tions are analytically intractable, so we turn to numer-
ics. For simplicity, we generate cycles from a given set

of initial conditions, P̃ (0), Ṽ (0), ˙̃P (0), and ˙̃V (0), and a
given value of the Lagrange multiplier ξ. If we concern
ourselves only with the shape of the curve rather than
its particular parameterization, we could instead param-
eterize P̃ as a function of Ṽ , such that one of these ini-
tial condition degrees of freedom is redundant. Thus,
optimal shapes are specified by a four-parameter family
determined by P̃ (t = 0), Ṽ (t = 0), dP̃ /dṼ (t = 0) and ξ.

Generically, it is unclear whether these conditions will
be sufficient to specify a smooth closed curve [48, 49, 56].
In general, the isoperimetrically optimal curves will con-
sist of stable smooth curves that have constant geodesic
curvature at (nearly) all points [48, 49, 56]. In our case,
the numerical solutions yield curves of constant geodesic
curvature that are typically non-closed but instead con-
sist of “near-miss” cycloids [50], which has been observed
previously while seeking optimal cycles [55]. However, as
we are interested only in cyclic engines, we will construct
cycles that traverse a single optimal period by truncat-
ing the curve when it is at the nearest point on the curve
whose tangent curve is parallel to the original tangent
curve. We then connect these two points by a straight
line, thus closing the cycle. For small cycles, the resulting
kink is imperceptible whereas it becomes more noticeable
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FIG. 1: (a) A Brownian Carnot cycle (dashed purple) and
three isoperimetrically optimal cycles (blue) with identical

values of W and
√
gC using mass and damping values from

[25]. The optimal cycles have a 55× increase in performance
relative to the Carnot cycle. (b) Same as (a), but in a more
underdamped regime.

for larger cycles, as can be seen in Fig. 2. Similarly, the
efficiencies are impacted more significantly for larger de-
viations from smooth curves. Truly optimal curves would
consist of fully smooth closed curves of constant geodesic
curvature, which may only be realizable in specific re-
gions of the Clausius space. By choosing to work with
specific initial conditions, we allow for the construction
of near optimal cycles at all points of Clausius space at
the cost of having to introduce small, finite sections of
non-optimality. As we will see, these “optimal” cycles
still prove remarkably close to saturating the bound and
strongly outperform all other cycles we consider.

For example, consider the Brownian Carnot cycle,
whose shape is given in Fig. 1. Setting ζ = 7.51 µg
s−1 and m = 0.545 pg (based on experimental parame-
ters used in [25]), and choosing the extremal values of P̃
and Ṽ shown, Eq. (17) implies that its greatest possible
efficiency is

(1− η)τ =
L2

W
= 9.58× 10−4 s� 1.76× 10−5 s =

4πA
W

,

demonstrating that the performance of the Carnot cycle
is a factor of 55 times larger than the optimal value for
these parameter settings. In contrast, by constructing a
series of (nearly) optimally-shaped cycles with identical

values of W and
√
gC , we instead find the bound is ap-

proached to within three-hundredths of one percent. The
shapes of these cycles are displayed in Fig. 1(a).

We next consider a slightly underdamped parameter
regime, setting m = 80.9 mg and ζ = 15.0 mg s−1. In
this regime, various Carnot engine cycles (for given lim-
its on hot and cold bath temperature) perform somewhat
better, but they still do not come close to saturating
it. Intriguingly, in contrast to the previous regime, op-
timally constructed shapes now appear much closer to
Carnot-like cycles than those previously constructed, as
in Fig 1(b). Now, we find that optimal engines seemingly
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FIG. 2: (a) Optimally constructed cycles with quasistatic
output work of 6 pN µm (blue) and 120 pN µm (orange) for
experimental parameters used in [25]. (b) Same as (a) for
underdamped parameters; adiabats shown in dotted lines.

remain close to adiabats for a significant duration of the
cycle, albeit with a rapid (and smooth) turnaround at
corners. This is replicated for other choices of maximal
temperature and stiffness as shown in Fig. 1(b). We also
show optimal cycles for a variety of values of m/ζ in the
Supplemental Material [50].

We can further evaluate our bound by comparing
it to generic cycles in Clausius space. In particular,

in Fig. 3, we plot the value of
√
gC against L2/W

for 15000 randomly constructed cycles, as well as 1000
randomly selected Carnot, Stirling, Otto, and hybrid
Carnot/geodesic (introduced in [22]) cycles (see [50] for
a review of these various cycles and for details of how
Fig. 3 is constructed). We also plot 500 optimally con-
structed cycles. As is easily observed, the optimal cycles
nearly saturate the bound for a large parameter regime

of
√
gC whereas other cycles are far less efficient. The

data are surprisingly structured: for a fixed shape, we

find L2/W ∼
(√

gC
)2

, an interesting empirical finding.
Cycles that saturate the bound must therefore not main-
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FIG. 3: Optimally constructed cycles strongly outperform
Carnot and all other cycles tested. Optimal (blue circles),
Hybrid (orange squares), Stirling (green diamonds), Otto (red
upwards triangle), Carnot (purple downwards triangle), and
randomly constructed (gray X’s) plotted against the bound
Eq. (17) (black dotted line).
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tain the same cyclical shape for different average values
of
√
gC , but instead change so as to remain optimal, as

was shown in Fig. 2.

Discussion. In this work, we have applied the classi-
cal isoperimetric inequalities to thermodynamic spaces,
yielding a novel universal bound on the efficiency of any
closed thermodynamic cycle for a generic system. We
have then constructed optimal cycles that nearly satu-
rate this bound for the specific model system of the para-
metric harmonic oscillator. Importantly, this bound, al-
though not always tight, nevertheless strongly constrains
the efficiency of thermodynamic cycles and introduces
new design principles for the design of efficient finite-time
heat engines. We emphasize that all results are indepen-
dent of temporal parametrization and depend only on the
shape of cycles.

This derivation ultimately arises from thermodynamic
geometry, which is a perturbative solution to first order
in response theory. Our bound is therefore only approxi-
mate in nature and does not technically constrain the ef-
ficiency of engines acting beyond slow-driving. However,
it is unlikely such engines would prove less dissipative
and more efficient than their slower-driven counterparts,
such that one would expect the bound to still apply, but
not be as tight. A more interesting question is whether
there are higher order or even nonperturbative bounds
that constrain the efficiency of all finite time cycles. Such
bounds have been found for the fluctuations of the more
traditional definition of efficiency about its mean [57–
59]. Similarly, one should ask if the efficiency of optimal
engines in our framework would still outperform others,
such as the Carnot or Stirling engine, even when far away
from linear response where our results are not guaranteed
to apply. We leave the detailed study of the question to
future work, but there does exist anecdotal evidence that
engines designed in linear response prove more efficient,
even when operating far-from-equilibrium [22, 26].

Also, although the main focus of this work was in op-
timizing the average efficiency of thermodynamic cycles,
given that our optimal cycles were designed to be min-
imally dissipative for a fixed thermodynamic area, they
should also have a high output power, though they may
not be optimally powerful cycles. A recurring theme in
the literature is the set of tradeoffs between high output
power, high efficiency, low dissipation, and minimal fluc-
tuations about the means of stochastic thermodynamic
quantities [17, 20, 23, 24, 26, 46, 59, 60]. Studying this
interplay further and designing optimal cycles achieving
different objectives is of interest for future work. Simi-
larly, we focused on the problem of finding optimal, un-
constrained cycles in thermodynamic space, such that
control parameters, the temperature of the heat bath
and mechanical controls, are allowed to vary continu-
ously in time. Although this regime has been studied ex-
tensively [13, 21–23, 26] and is experimentally accessible
[25], it is a distinct and worthwhile question to address

the problem of constructing optimal, finite-time engines
under other more constrained control settings where such
smooth variations may not be possible.

In addition and more generally, isoperimetric inequal-
ities have been a significant direction of study in math-
ematics, and we expect them to have important impli-
cations in thermodynamic geometry. We are encouraged
from their recent application to the Brownian gyrator [27]
and adiabatic thermal engines operating between two
heat baths [24], but we anticipate there remains a great
deal to be learned by their application in various ther-
modynamic settings. In particular, whereas ultimately
our bound relied on the introduction of thermodynamic
area, isoperimetric inequalities for manifolds with den-
sity [50, 61–63] could lead to further strict bounds on
dissipation directly given a work output.

Finally, although our main focus here was on classi-
cal thermal systems, thermodynamic geometry is equally
applicable to quantum settings and this bound likewise
should constrain the efficiency of quantum heat engines,
a major focus of current research [18, 46, 64–67].

Conclusion. Here, we have used classical geometric
results in concert with geometric approaches to thermo-
dynamics to place a bound on the efficiency of any irre-
versible heat engine and study it in the specific case of
the parametric harmonic oscillator. This bound applies
irrespective of the system details or dynamics and it sug-
gests new design principles for construction of efficient
engines at microscopic scales.
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[36] F. Schlögl, Zeitschrift für Physik B Condensed Mat-

ter 59, 449 (1985), URL https://doi.org/10.1007/

BF01328857.
[37] G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995), URL

https://link.aps.org/doi/10.1103/RevModPhys.67.

605.
[38] G. E. Crooks, Phys. Rev. Lett. 99, 100602 (2007), URL

https://link.aps.org/doi/10.1103/PhysRevLett.99.

100602.
[39] D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108,

190602 (2012), URL https://link.aps.org/doi/10.

1103/PhysRevLett.108.190602.
[40] P. R. Zulkowski, D. A. Sivak, G. E. Crooks, and M. R.

DeWeese, Phys. Rev. E 86, 041148 (2012), URL https:

//link.aps.org/doi/10.1103/PhysRevE.86.041148.
[41] P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E

89, 052140 (2014), URL https://link.aps.org/doi/

10.1103/PhysRevE.89.052140.
[42] P. R. Zulkowski, D. A. Sivak, and M. R. DeWeese,

PLOS ONE 8, 1 (2013), URL https://doi.org/10.

1371/journal.pone.0082754.
[43] P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E

92, 032113 (2015), URL https://link.aps.org/doi/

10.1103/PhysRevE.92.032113.
[44] P. R. Zulkowski and M. R. DeWeese, Physical Re-

view E 92, 032117 (2015), ISSN 1539-3755, 1550-2376,
URL https://link.aps.org/doi/10.1103/PhysRevE.

92.032117.
[45] G. M. Rotskoff and G. E. Crooks, Phys. Rev. E 92,

060102(R) (2015), URL https://link.aps.org/doi/

10.1103/PhysRevE.92.060102.
[46] P. Abiuso, H. J. D. Miller, M. Perarnau-Llobet, and

M. Scandi, Entropy 22 (2020), ISSN 1099-4300, URL
https://www.mdpi.com/1099-4300/22/10/1076.



7

[47] S. Blaber and D. A. Sivak, The Journal of Chemical
Physics 153, 244119 (2020).

[48] L. E. Payne, SIAM Review 9, 453 (1967), ISSN 00361445,
publisher: Society for Industrial and Applied Mathemat-
ics.

[49] R. Osserman, Bulletin of the American Mathematical So-
ciety 84, 1182 (1978), URL https://doi.org/.

[50] See Supplemental Material at [URL will be inserted by
publisher] for further details on derivations, numerical
methods, isoperimetric bounds for arbitrary curvatures,
and the potential future thermodynamic uses for mani-
folds with density.

[51] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98,
108301 (2007), URL https://link.aps.org/doi/10.

1103/PhysRevLett.98.108301.
[52] V. Blickle and C. Bechinger, Nature Physics 8, 143

(2012), URL https://doi.org/10.1038/nphys2163.
[53] I. A. Mart́ınez, E. Roldán, L. Dinis, D. Petrov, and

R. A. Rica, Phys. Rev. Lett. 114, 120601 (2015), URL
https://link.aps.org/doi/10.1103/PhysRevLett.

114.120601.
[54] I. A. Mart́ınez, E. Roldán, L. Dinis, and R. A. Rica, Soft

Matter 13, 22 (2017).
[55] Y. Huang and P. S. Krishnaprasad, Discrete & Continu-

ous Dynamical Systems - S 13, 1243 (2020).
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