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We study symmetry-broken phases in twisted bilayer graphene at small filling above charge neutrality and at
Van Hove filling. We argue that the Landau functionals for the particle-hole order parameters at these fillings
both have an approximate SU(4) symmetry, but differ in the sign of quartic terms. We determine the order
parameter manifold of the ground state and analyze its excitations. For small fillings, we find a strong 1st-order
transition to an SU(3)⊗U(1) manifold of orders that break spin-valley symmetry and induce a 3-1 splitting of
fermionic excitations. For Van Hove filling, we find a weak 1st-order transition to an SO(4)⊗U(1) manifold of
orders that preserves the two-fold band degeneracy. We discuss the effect of particle-hole orders on supercon-
ductivity and compare with strong-coupling approaches.

Introduction. Twisted bilayer graphene (TBG) is a
correlated electron system near a particular “magic” twist
angle between the layers θ ∼ 1◦, where the (quasi)periodic
moire pattern with length scale of order 14 nm yields nearly
flat bands separated from the rest of the energy spectrum by
a gap of about 40 meV [1, 2]. This system has attracted an
enormous interest in the last few years because it displays
superconductivity [3–8] and correlated insulating phases [1,
6, 9–17] near integer filling factors |n| = 1, 2, 3.

A popular theoretical approach to TBG is to treat it as
a system in which Coulomb interaction well exceeds the
kinetic energy (see e.g., [18–25] and references therein).
Within this approach, the ground states at |n| = 1, 2, 3 are
correlated insulators with distinct broken symmetries and
band topology, the fermionic spectra consist of energy lev-
els [21] or narrow bands, induced by the interaction [24].

In this paper, we use as the point of departure, the ex-
perimental observations [1, 3–5, 8, 12, 13, 15–17, 26–
31] that in between integer fillings TBG displays metallic
behavior and study instabilities in a particle-hole channel
near an integer n. We show that the corresponding or-
der splits and reconstructs the bands and may eventually
drive the system into an insulating phase with narrow sub-
bands. The rationale for our approach comes from STM
data [12, 13, 16, 26], which show that the density of states
is non-zero everywhere in the flat region and displays Van
Hove (vH) singularities, expected in the band spectrum for
itinerant fermions, and from transport data, which show that
the conductivity displays metallic behavior away from inte-
ger fillings [1, 3–5, 8, 15, 17, 27].

Our key results are an emergent SU(4) symmetry of itin-
erant fermions, which has also been argued to exist in
strong-coupling approaches, and the identification of the
manifold of degenerate ordered states, resulting from break-
ing of SU(4). We argue that the manifold is different near
different n. This gives rise to different degeneracies of re-
constructed fermionic levels. We model the behavior near
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FIG. 1. Patch models and relevant interactions. Red and blue
are fermions from the two valleys. a) 6-patch model at vH filling
(i, j = 1 − 3 label patches). b) 2-patch model. Lower panel -
4-fermion interactions. On the right are interactions, common to
both models. Equal interactions are shown once. On the left are
interactions, specific to 6-patch (a) and 2-patch model (b).

two exemplary n by introducing patch models for typical
Fermi surface geometries: pockets around the K, K′ points
at small filling, and vH points at intermediate filling. We
emphasize that these features are insensitive to the details
of the band structure. We will also analyze which orders
are detrimental to superconductivity and which are not. We
do not address topological properties, as the patch approx-
imation excludes Dirac points We conjecture that the same
orders that we find based on symmetry and universal prop-
erties of the dispersion, can be extended beyond the patch
approximation and give rise to proper topological behavior.

Model. The narrow spectrum of TBG contains four
bands (two with positive and two with negative energy,
counted from charge neutrality), each is spin-degenerate.
We use the band dispersion, obtained in numerical simu-
lations on TBG [32–34], and the Kang-Vafek model [18,
35] for 4-fermion interactions, which includes density-
density interactions and additional exchange-like interac-
tions within a hexagon in the moire lattice. For definiteness,
we consider electron doping and focus on the two bands
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FIG. 2. A sketch of intra-valley orders near n = 2 (a) and n = 1
(b). Left columns of panels a) and b) sketch electronic orders on
the moire superlattice cell (depicted by black hexagon). Two val-
leys are labeled by colors (red and blue). Arrows indicate spin or-
der for two valleys, and peaks indicate the electron density. Note
that for n = 1, spin order develops only in one valley and is accom-
panied by s+− density valley order. Right columns of panels a) and
b) show possible structures of energy levels for the ordered states.
Double-headed arrows indicate time-reversal-partner states. For
n = 1, cubic terms select between the two choices (see text).
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FIG. 3. Band splitting in the ground state (X labels degeneracy) An
almost 4-fold valley and spin degenerate band splits either into two
2-fold degenerate bands in the 6-patch model, or into one 3-fold
degenerate and one non-degenerate band in the 2-patch model.

with positive energy. The bands are specified by the orig-
inal valley index and are non-degenerate for a generic mo-
mentum. We analyze two cases: (i) vH filling, when the
chemical potential passes through three vH and the density
of states diverges logarithmically, or even more strongly for
specific band parameters[36] (the 6-patch model, Fig. 1(a))
and (ii) smaller filling, when the Fermi surface is sizable,
but still consists of pockets, centered at Dirac points K and
K′, (the 2-patch model, Fig. 1(b)). We apply the 6-patch
model to n ≈ 2, which experimentally is close to vH filling,
and the 2-patch model to fillings around n = 1. In each case
we identify the set of leading particle-hole instabilities and
obtain the reconstructed fermionic spectrum.

SU(4) symmetry for itinerant fermions. A generic
particle-hole order parameter Φi j(k,Q), made out of two
fermions, is specified by fermionic momenta k and k + Q
and two Pauli matrices: σi acting in spin space, and τi act-
ing in “isospin” valley space (i, j = 0, 1, 2, 3, where σ0 and
τ0 are identity matrices). The effective Hamiltonian for the
coupling between Φi j(k,Q) and fermions can be cast into a
4 × 4 matrix form

HΦ =
∑

i, j,Q,k

Φi j(k,Q)c†kσi ⊗ τ jck+Q, (1)

where c†, c are creation and annihilation operators of

fermions. The term with Q = 0 and σ0 ⊗ τ0 can be dis-
carded as it just renormalizes the chemical potential. For
a given filling, order parameters with certain Q’s are most
likely to develop. These are, besides Q = 0, the various
Q connecting different vH points for the 6-patch model,
and Q = K −K′ for the 2-patch model. The k dependence
can be classified by irreducible representations of the lat-
tice point group, which are often associated with, e.g., s
or d-wave symmetry. In the 6-patch model, the total num-
ber of components of Φi j(k,Q) is 143 (23 for Q = 0
and 120 for finite Q). In the 2-patch model, there are 31
fermionic bilinears with Q = 0 and 32 with Q = K − K′.
Each order parameter gets renormalized by the interaction
as Φi j(k,Q) = Φ

(0)
i j (k,Q)/(1 − λi j(k,Q)), where the di-

mensionless λi j depends on the coupling and (temperature-
dependent) susceptibility for the ordering channel. It de-
pends on the model, which coupling(s) induce the leading
instability upon lowering the temperature at λi, j → 1.

In the 6-patch model the two largest couplings corre-
spond [30] to a 7-component intra-valley spin and charge
order (Q = 0, s-wave symmetry, i = 0, ..., 3, j = 0, 3 with
i = j = 0 excluded) and an 8-component inter-valley spin-
and charge-density-wave order (Q , 0 connects neighbor-
ing vH points, s-wave symmetry, i = 0, ..., 3, j = 1, 2). The
two couplings are not identical, but are numerically very
close for an arbitrary ratio of the density-density and the
TBG-specific exchange components of the interaction. Ne-
glecting the difference, we end up with the model of 15 or-
der parameters specified by 15 4×4 matrices σi ⊗ τ j. These
15 matrices can be viewed as orthonormal generators of an
SU(4) group, and 15 corresponding order parameters form
the adjoint representation of SU(4). The free energy at the
quadratic level is the sum of the squares of these 15 order
parameters [37]. We emphasize that SU(4) is an emergent
symmetry of the order parameter manifold, and the full low-
energy itinerant model is not SU(4) symmetric. We veri-
fied [38] that the same approximate S U(4) symmetry, ap-
pears in the model with 12 vH points, which may be rele-
vant to n = −2.

A similar situation holds for the 2-patch model near
n = 1. Here we find [38] that 15 Q = 0 order param-
eters, symmetric between patches at K and K′, have the
largest and identical couplings. Neglecting other bilinears,
we again obtain an effective model, described by 15 or-
thonormal generators of SU(4), with 15 order parameters
forming the adjoint representation. In both models, the or-
der parameters can be relabeled as one scalar field φ = Φ0,3,
two vector fields S+ = Φi,0 and S− = Φi,3, two inter-valley
scalar fields φA,B = Φ0, j and two inter-valley vector fields
SA, SB = Φi, j (i = 1, ..., 3, j = 1, 2).

SU(4) Landau functional. To derive the Landau func-
tional, we depart from the model of interacting fermions
with dispersion appropriate for vH and smaller filling. We
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introduce 15 order parameters in each case, use a Hubbard-
Stratonovich transformation to integrate out fermions, and
expand the free energy in powers of the order parame-
ters, with coefficients evaluated using propagators of patch
fermions [38]

F =
α

4
Tr(Φ2) +

3γ
√

2
Tr(Φ3) +

β

4
Tr(Φ4) + O(Φ6), (2)

where Φ ≡
∑
{i, j}Φi jσi ⊗τ j, and prefactors α, β, γ are differ-

ent for the 2- and 6-patch model [39]. One can verify that F
remains invariant under Φ → Φ′ = UΦU† for U ∈ SU(4).
Explicitly, the quadratic term has the form F(2) = αR2,
where R2 = φ2 +φ2

A +φ2
B +S2

+ +S2
−+S2

A +S2
B. The prefactor α

is expressed via the interaction and fermionic polarization,

and becomes negative below some Tph. The cubic term is
allowed by symmetry and has the form

F(3) = 6
√

2γ
[
S+ · (φASA + φBSB) + φS+ · S− + S− · SB × SA

]
.

where γ = −
∫

G3, and G is a fermion propagator. One
can easily verify that γ = (−1/2)d2n/dµ2, where n is elec-
tronic density per spin. The presence of F(3) implies that
the transition is first order. However, it is a weak first-order
transition because γ vanishes if we expand the dispersion to
the lowest order around patch points, and we expect it to be
small if we go beyond the patch model and include higher-
order terms. The key physics then comes from the quartic
term, which is F(4) = β(R4 + 4C), where

C = (S+ · S−)2+(SB × SA + φS+)2+(SA × S− + φBS+)2+(S− × SB + φAS+)2+(SA · S+)2+(SB · S+)2+(SAφA + SBφB + S−φ)2 .
(3)

The crucial difference between the 2- and 6-patch models
is the sign of β(T ). At vH filling (6-patch model) β(T ) is
positive and diverges as 1/T 2 at T → 0. At smaller filling
(2-patch model), we find β(T ) < 0 at relevant T , see Figs.
5 and 7 in [38]. The difference in the sign of β has a strong
impact on the type of the ordering transition and the order
parameter manifold.

vH filling (β > 0). In F(4) = βR4 + 4βC, the term C
contains the sum of full squares. For positive β, the Landau
functional is then minimal if C = 0, i.e. when the order
parameters satisfy

(S+ · S−) = (SA · S+) = (SB · S+) = (SAφA + SBφB + S−φ) = 0,
(SB × SA + φS+) = (SA × S− + φBS+) = (S− × SB + φAS+) = 0.

(4)
For any configuration that satisfies (4), F = αR2 + βR4, and
minimizing at T < Tph, we obtain the non-zero value of
the total R2 = |α|/(2β). The transition is second order with-
out F(3) and weakly first order if the prefactor γ in F(3) is
small but finite. We give a general parameterization for the
configurations at the minimum in [38]. Specific examples
are, e.g., configurations with only intra-valley components
φ and S± or only inter-valley components φA,B and SA,B. For
intra-valley order, there are two solutions: (i) φ , 0,S± = 0
and (ii) φ = 0, S+ · S− = 0 with fixed S2

+ + S2
− = |α|/2β. The

first describes s+− valley order (splitting of chemical po-
tentials for the two valleys), the second describes magnetic
order with equal magnitudes of S1,2 = (S+ ± S−)/

√
2 in the

two valleys, S2
1 = S2

2 = |a|/4β, and arbitrary angle between
S1 and S2. The two limiting cases are ferromagnetic and an-
tiferromagnetic alignments. [40] Configurations with only
inter-valley components describe density-waves and loop-

currents [30]. For a generic order parameter that satisfies
F(4) = βR4, nine variables remain undetermined by Eq. (4).
Because the total R2 is fixed, there are 8 Goldstone modes.
This can be also seen by noticing that the SU(4) symmetry
is broken down to SO(4)⊗U(1). The broken symmetry is
described by the coset SU(4)/[SO(4)⊗U(1)] with 15-6-1=8
generators, which are the 8 Goldstone modes [38].

Smaller filling (β < 0). For negative β, the or-
der parameter manifold is different as now one has to find
configurations that maximize C in (3). To get a first in-
sight, consider a configuration with only intra-valley orders
φ and S±. A straightforward analysis shows that in this case
F(4) = − 7

3 |β|R
4 + |β|C̃, where

C̃ =
(
S2

+ − S2
−

)2
+

1
3

(
2φ2 − S2

+ − S2
−

)2
+ 4 [S+ × S−]2 (5)

The minimum of F(4) is reached when C̃ = 0, which holds
when density and spin valley orders are both non-zero: φ2 =

S2
+ = S2

− and S+ = ±S−. The last condition implies that the
spin order now develops only in one valley, along with s+−

valley order, see Fig. 2. The transition is strongly first order,
and to get the equilibrium value of R2 one needs to include
sixth-order terms in Φ.

We extended this analysis to the full set of 15 order
parameters by expanding around one of these states with
φ = S z

+ = S z
− to second order in φA,B and SA, SB. We

found after long algebra that (i) the minimum of F(4) is
still at −(7/3)|β|R4, and (ii) the order parameter manifold
at the minimum is parameterized in terms of Hopf coordi-
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nates and variables ε and r as

S+ = r(0, 0, 1 −
ε2

2
sin2 θ)

SA = rε(sin θ cosψ1, sin θ sinψ1, cos θ cosψ2);
SB = rε(sin θ sinψ1,− sin θ cosψ1,− cos θ sinψ2);

φ = r(1 −
ε2

2
); φA = rε cos θ cosψ2; φB = −rε cos θ sinψ2;

S− = r(−
ε2

2
sin 2θ cosψ+,−

ε2

2
sin 2θ sinψ+, 1 −

ε2

2
cos2 θ),

where ψ+ = ψ1 + ψ2, and we directed S+

along ẑ. In terms of these variables, R2 =

3r2
(
1 + 3ε4/16 (1 − (1/9) cos 4θ) + O(ε6)

)
. The result

F(4) = −(7/3)|β|R4 is also valid up to O(ε6). The seven
independent variables in (6), together with the requirement
that R2 is fixed, yield 6 Goldstone modes. This can also be
shown more rigorously by noticing that for β < 0, SU(4)
symmetry is broken down to SU(3)⊗U(1) [41]. The broken
symmetry is described by the coset SU(4)/[SU(3)⊗U(1)]
with 15-8-1=6 generators, corresponding to the 6 Gold-
stone modes [38].

Reconstructed fermionic dispersion. Upon gap open-
ing, the initial four-fold (spin and valley) degeneracy of the
electronic dispersion in the 6- and 2-patch model is lifted.
For the 6-patch model, we verified that the states remain
doubly degenerate for any configuration from the order pa-
rameter manifold [38]. The easiest way to see this is to
consider the state with s+− valley order: it splits chemical
potentials in the two valleys but preserves spin degeneracy.
Similarly, the bands remain two-fold degenerate also spin
and density-wave orders. For the 2-patch model, the situ-
ation is different: a four-fold degenerate Fermi level splits
into a non-degenerate level, which shifts by 3r/4 and a 3-
fold degenerate one, which shifts by −r/4 (see Fig. 3). Such
a splitting is consistent with the residual SU(3)⊗U(1) sym-
metry and holds for any configuration from the order pa-
rameter manifold.

The sign of r is determined by F(3) = γr3, where γ =

(−1/2)d2n/dµ2. This γ can be directly extracted from the
data on compressibility dµ/dn. The data at zero external
field show [42] that at small n, dµ/dn decreases with in-
creasing n, hence γ < 0, but for n > 0.7, the slope of dµ/dn
changes sign, and for larger n, γ > 0. For a positive γ, the
equilibrium value of r is negative. In this situation, a singly
degenerate level moves down in energy, while three degen-
erate levels move up, see Fig. 3. Such a splitting implies
that the spin/valley order increases the filling of a band for
fermions with a given valley and band index at the expense
of three other bands, which get depleted. This, along with
the behavior near n = 2, in which the filling of two bands
increases and that of the other two bands decreases, is con-
sistent in general terms with the scenario [42] of a cascade

of phase transitions with consequent filling of the bands of
fermions with given valley and spin indices.

Conclusions. In this work we described the forma-
tion of a symmetry-broken ground state in TBG near n ≈ 2
and n ≈ 1. We introduced two itinerant patch models: the
2-patch model for n ≈ 1, in which Fermi surfaces form
pockets near Dirac points K, K′, and the 6-patch model
for n ≈ 2, which we associated with vH filling. We ana-
lyzed potential instabilities in the particle-hole channel and
derived the corresponding Landau functionals. We argued
that in both cases the largest and (almost) equal couplings
are for a set of 15 order parameters. These 15 order param-
eters form an adjoint representation of SU(4), and the cor-
responding Landau functional is SU(4) symmetric. These
order parameter represent spin and valley orders with zero
and finite momentum transfer.

We found two different order parameter manifolds de-
pending on whether the SU(4) symmetry is broken down
to SU(2)⊗SU(2)⊗U(1), as in the 6-patch model, or to
SU(3)⊗U(1), as in the 2-patch model. In the first case, the
manifold has 8 Goldstone modes, and the initially 4-fold de-
generate energy level splits into 2 doubly degenerate levels.
In the second case the manifold has 6 Goldstones, and the
4-fold degenerate level splits into one non-degenerate level
and 3 degenerate ones. Because SU(4) is only approximate,
some of the Goldstone modes are pseudo-Goldstones. Yet,
this should preserve a qualitative difference between order-
parameter manifolds near n = 2 and n = 1. We treated n = 1
and n = 2 instabilities separately. The next step in this anal-
ysis would be to consider the n = 2 instability, arising from
the already ordered state, induced by the transition at n = 1.
We also note that some of our results, like the splitting of
energy levels ( 4→ 1+3 and 4→ 2+2 ) and the number of
Golstone modes (8 and 6), match the results for Chern in-
sulators [21], although in our case the number of Goldstone
modes is not directly related to the Chern numbers. Another
similarity to strong-coupling approaches is the large num-
ber of degenerate ground states that we find due to the large
symmetry. This has been discussed as a possible explana-
tion for variations in experimental phase diagrams.
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