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We use lithium-6 atoms in an optical tweezer array to realize an eight-site Fermi-Hubbard chain
near half filling. We achieve single site detection by combining the tweezer array with a quantum gas
microscope. By reducing disorder in the energy offsets to less than the tunneling energy, we observe
Mott insulators with strong antiferromagnetic correlations. The measured spin correlations allow
us to put an upper bound on the entropy of 0.26(4) kB per atom, comparable to the lowest entropies
achieved with optical lattices. Additionally, we establish the flexibility of the tweezer platform by
initializing atoms on one tweezer and observing tunneling dynamics across the array for uniform
and staggered 1D geometries.

Arrays of neutral atoms in optical tweezers have
emerged as a powerful new platform for quantum simu-
lation and computation [2–4]. It is now possible to study
interacting quantum systems in defect-free tweezer arrays
with hundreds of atoms [5, 6]. Initial work with reconfig-
urable tweezer arrays used alkali atoms, and the platform
has now expanded to include alkaline earth atoms [7–9]
and molecules [10, 11]. Notable results include studies
of quantum spin models using atoms excited to Rydberg
states [12, 13], demonstration of high fidelity quantum
gates [14, 15], and high quality factor atomic clocks [16].
Most of the activity with tweezers arrays has focused on
atoms localized on individual tweezers. The versatility
of tweezer arrays provides a strong incentive for extend-
ing quantum simulations with this platform to systems
of mobile atoms where the effects of quantum statistics
become important. A key step in this direction has been
the demonstration of tunnel-coupled double-well tweezer
systems [17, 18].

The use of tweezer arrays to study itinerant con-
densed matter models such as the Hubbard model re-
alizes a “bottom-up” paradigm of quantum simulation,
in contrast to the more established “top-down” ap-
proach of using optical lattices [19]. Optical lattices
are an efficient way to create periodic trapping poten-
tials with thousands of lattices sites that can be loaded
directly from a degenerate gas. In recent years, quan-
tum gas microscopes have been used to probe optical
lattices with single-site resolution, allowing for extrac-
tion of multi-point correlation functions. In particular,
fermionic quantum gas microscopes have been used to
explore the phase diagram of the square lattice Fermi-
Hubbard model, a minimal model for high temperature
superconductivity [20]. Quantum gas microscopes have
allowed for direct measurement of the Mott insulator
state [21, 22], antiferromagnetic correlations at half filling
[1, 23–25], and the motion of a single hole in an antifer-
romagnetic background [26–28].

Studying Fermi-Hubbard models with optical lattices
faces two challenges that motivate the consideration of
tweezer arrays as an alternative platform. First, the
lowest entropies that have been achieved for correlated

states in optical lattices are in the range of 0.3−0.5 kB per
particle [29–31]. This has hindered access to interesting
regimes of the square Hubbard model phase diagram such
as the pseudogap or the putative d-wave superconductor
[32]. Sophisticated entropy redistribution schemes have
been investigated, but were limited by the ability to pre-
cisely control lattice potentials at the single-site level [33].
A second challenge, particularly relevant for microscope
experiments, is the difficulty of reconfiguring the appara-
tus to study different lattice geometries. Programmable
Fermi-Hubbard tweezer arrays have the potential to ad-
dress both of these issues by allowing precise dynamical
control of the simulated model at the single site level.
This includes the geometry of the array, energy offsets on
individual tweezers, and the tunneling matrix element on
each bond. Going beyond square Hubbard models will
enable microscopic studies of qualitatively different phe-
nomena including flat bands, Dirac points, and quantum
spin liquids.

The requirements for observing coherent tunneling be-
tween two tweezers are the ability to prepare atoms in
the motional ground state and to control the energy off-
set between the tweezers to better than the tunneling
energy, which is normally less than a percent of the total
depth. In Ref. [18], a two-site Fermi-Hubbard model was
realized by loading a pair of tweezers with atoms from
a degenerate Fermi gas, with subsequent work measur-
ing correlations and entanglement in coupled two- and
three-site systems [34, 35]. These experiments have been
limited in expanding to large arrays due to the difficulty
of in-situ imaging of 6Li in optical tweezers [36]. In this
work, we combine a tweezer array with a quantum gas
microscope to study a programmable eight-site Hubbard
chain, an increase in the size of the Hilbert space by over
three orders of magnitude.

We implement the Fermi-Hubbard model with two hy-
perfine spin states of 6Li loaded in a one-dimensional
tweezer array. By loading the ground state of four in-
dependent tweezers with high fidelity, we adiabatically
transform a low-entropy band insulator into a corre-
lated state by ramping on four additional tunnel-coupled
tweezers to change the filling of the system. This scheme
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FIG. 1. Experimental setup. (a) The tweezer array is generated by an AOM and is projected through an objective. Correlated
states of the Hubbard model are prepared in the array and the atoms are subsequently loaded from the tweezers into a two
dimensional optical lattice in the x−y plane for imaging [1]. Light scattered during Raman cooling in the 2D lattice is captured
through the same objective. (b) Experimental protocol. First, we load the ground state of well-separated tweezers with two
atoms in different spin states using a spilling procedure with a magnetic gradient. Next, additional tweezers ramp on to an
energy offset ∆0 where there is no tunneling. Finally, the energy offset between neighboring tweezers is reduced to zero to
adiabatically prepare an antiferromagnetic state. (c) Experimental sequence. To initialize the Fermi-Hubbard array, the energy
offset is decreased to zero while the scattering length is increased to its final value af , reaching the desired U/t.

is similar to proposed adiabatic preparation that allows
for single site control of the ramping procedure [37, 38].
Near the end of the ramp, the system is well-described
by the single-band Hamiltonian

ĤFH =−
∑
〈i,j〉,σ

tij(ĉ
†
iσ ĉjσ + h.c.)

+ U
∑
i

n̂i↑n̂i↓ +
∑
i,σ

∆in̂iσ, (1)

where ĉ†iσ is the fermionic creation operator of spin σ
at site i, and n̂iσ is the number operator. Here, the
local tunneling matrix element tij , energy offset ∆i, and
on-site interaction U can be controlled in real time. By
carefully controlling the Hubbard parameters, we prepare
low entropy states with antiferromagnetic correlations,
showcasing the ability of the tweezer platform to generate
“clean” many-body systems.

We generate the tweezer array with 770 nm light using
an acousto-optical modulator (AOM), such that differ-
ent tweezers are generated by radio-frequency tones of
different frequencies (Fig. 1(a)). We implement elliptic
tweezers with a waist of ≈ 930 nm at the atoms as mea-
sured along the direction of the tweezer array and a waist
of ≈ 1250 nm in the perpendicular direction. We work
with two different configurations of the tweezers that we
switch between during an experimental cycle: the loading
configuration with independent tweezers and the science
configuration with tunnel-coupled tweezers at half the
separation of the loading configuration. In the science
configuration, adjacent tweezers differ in radio-frequency
tone by 4 MHz, corresponding to a lattice spacing of

1350 nm. We load the initial configuration of four tweez-
ers from an attractively interacting degenerate gas that
is an equal mixture of the lowest and third lowest hyper-
fine ground states of 6Li prepared in an optical dipole
trap. The initial temperature of the gas is ≈ 0.2 times
the Fermi temperature, which does not limit the final en-
tropy of the tweezer array [39]. After allowing the system
to equilibrate, the optical dipole trap is slowly turned off
and the magnetic field is ramped to a non-interacting
value.

Initially, there are tens of atoms of each spin state oc-
cupying the lowest energy levels of each trap. To remove
atoms in higher energy levels, we apply a magnetic gra-
dient while lowering the depth of each trap to spill out
all atoms except for one atom in each spin state in the
ground state, a technique pioneered in Ref. [39]. Ac-
counting for imaging fidelity, each spin state is loaded
with a fidelity 〈n↑〉 = 〈n↓〉 = 0.975(9) [40]. We bias
the spilling procedure such that almost all of the errors
in preparation result in one atom per tweezer and we
avoid preparing any atoms in excited motional states.
After spilling, we quickly ramp on the additional tweez-
ers needed for the science configuration to ∼ 95% of the
depth of the loading tweezers, corresponding to an energy
offset ∆0 in Fig. 1(b). In the last stage of the experi-
mental sequence, we slowly decrease the tweezer energy
offsets to zero in 50 ms as the scattering length of the
atoms is ramped to its final value by increasing the mag-
netic field (see Fig. 1(b),(c)). Before imaging the result-
ing correlated state, tunneling is frozen in the array by
offsetting the tweezers back to ∆0 in 100µs and increas-
ing the overall depth by a factor of 3. We use the Python
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package QuSpin to simulate the ramping procedure for
comparison to the experiment [41].

Due to its light mass, lithium is a challenging species
to image in optical tweezers. Therefore, to detect the
atoms with single-site resolution, we transfer them from
the tweezer array into a two-dimensional square optical
lattice The lattice has a 752 nm spacing, which allows
us to super-resolve the array. At a depth of 2500 ER,
the lattice has much larger radial trapping frequencies
than the tweezers, which allows us to reach the Lamb-
Dicke regime for effective Raman sideband cooling during
fluorescence imaging [1]. Using this scheme, we detect
atoms with 98.5(4)% fidelity.

For typical tunneling energies of h×200 Hz and tweezer
depths of h×50 kHz, where h is Planck’s constant, we
need to balance the intensities of the tweezers to better
than 0.5% of the depth to be in the regime where dis-
order is comparable to or less than the tunneling. This
requirement is more stringent than for experiments with
Rydberg atoms, which typically only need to equalize the
tweezer depths to within a few percent [3, 16]. We start
by coarsely balancing tweezer intensities on a camera.
Fine balancing of tweezer depths in the science configu-
ration is achieved by feeding back on the average density
profile of the atoms at U/t ∼ 1, typically taking ∼500
experimental cycles [40].

In the offset-balanced science configuration array, the
atoms realize the Fermi-Hubbard model with disorder
less than the tunneling. As the loading fidelity of the
band insulator in the loading configuration is not per-
fect, the system is on average slightly below half filling.
After the ramp to the science configuration, the highest
〈n〉≡ p is 0.955(7), indicating some atom loss during the
ramp.

To verify that we can prepare correlated states in the
science configuration, we look for Mott insulators at large
repulsive interactions, where it is energetically favorable
for atoms to be on singly occupied sites. To image singly
occupied sites, we first convert atoms on doubly occu-
pied tweezers into Feshbach molecules to ensure loss be-
fore loading into the optical lattice [40]. We measure the
fraction of singly occupied sites in the Mott insulator as
a function of interaction energy (Fig. 2). For this mea-
surement, t/h= 160(4) Hz, and the scattering length is
tuned from 0 to 1600 Bohr radii (a0). At a scattering
length of 1600 a0, we measure U/h= 1.07(4) kHz, giving
a maximum U/t of 6.7(3). Using exact diagonalization
methods, we extract the expected singles occupation for
different densities, and find that the singles occupation
we measure at different interactions is consistent with the
density 〈n〉= 0.93(2) of this dataset.

Although the suppression of doublons conclusively
demonstrates the formation of a correlated state, mea-
surements of the density alone are insufficient to char-
acterize the system at low temperatures. At these tem-
peratures, the atoms preferentially arrange themselves

Si
ng

le
s 

de
ns

ity

U/t
0 2 4 6 8

1

0.8

0.6

0.5

0.7

0.9

Data
〈n〉= 1.0
〈n〉= 0.9
〈n〉= 0.8

FIG. 2. Singles density as a function of U/t. We compare the
experimental data to the calculated singles density at three
different total densities. The measured density 〈n〉= 0.93(2)
of this dataset is caused by imperfect loading. The inset is
a fluorescence image of an eight atom Mott insulator with
reconstruction masks (shown as white dotted lines) to identify
which tweezer the atom originated from.

in an antiferromagnetic configuration because of the su-
perexchange interaction. By removing atoms in one spin
state with resonant light and imaging the other state (the
lowest hyperfine state, |↑〉), we measure up-up density
correlations between sites i and j as Cij = 4(〈ni↑nj↑〉 −
〈ni↑〉〈nj↑〉) at the largest U/t = 6.7(3) (Fig. 3). Due to
strong quantum fluctuations, spin correlations in the one-
dimensional Fermi-Hubbard model decay over a few sites
even in the ground state. For analysis of the correlations,
we post-select on imaging four |↑〉 atoms, which lowers
the effective temperature and increases the filling [40].
We simulate the system using the grand canonical en-
semble, defined by chemical potential µ and tempera-
ture T , as the atom number in our experiment fluctuates
due to imperfect loading [42]. Using a least squares fit
on the average atom number and each individual spin
correlation, we find a local minimum of temperature
at kBT = 0.21(3)t, where the errorbar is extracted us-
ing bootstrapping methods. However, many of the cor-
relators do not have a strong dependence on tempera-
ture, and some are non-monotonic with temperature [40].
Around 10% of bootstrapped samples fit to a tempera-
ture much closer to zero than the rest of the samples.
These temperatures are even lower than the temperature
expected from numerically evolving the initial loading
configuration. This suggests that spin correlations cease
to be a good thermometer at the lowest temperatures we
achieve and the fitted temperature is an upper bound.

A more natural quantity to discuss when characterizing
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closed cold atom systems is the entropy. In the loading
configuration, after post-selecting on detecting four spin
up atoms, the initial entropy is 0.09(1) kB per particle,
calculated from

S

〈N〉
= − kB

1 + p

(
p log p+ (1− p) log(1− p)

)
. (2)

To extract the final entropy after the ramp, we compute
the entropy from the fitted grand canonical parameters,
obtaining an upper bound on the entropy per particle
of 0.26(4) kB. This entropy is comparable to the low-
est entropies measured in optical lattices with fermionic
quantum gas microscopes [29–31]. To understand where
the entropy gain in the system is coming from, we sim-
ulate the ramping procedure and find an expected final
entropy of 0.18(2) kB per particle, which is a lower bound
on the entropy of the system [40]. The dominant source
of entropy gain stems from imperfect initial states with
a single localized hole, which is an energetically excited
state that cannot adiabatically evolve into the ground
state of the homogeneous eight-site system. By imple-
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FIG. 3. Antiferromagnetic correlations in the tweezer array.
(a) Up-up antiferromagnetic correlations between all lattice
sites calculated with exact diagonalization at a temperature
kBT = 0.21(3) t and (b) experimentally measured correlations
for U/t = 6.7(3). Due to finite size effects, the edge-nearest
neighbor pairs have stronger correlations than other nearest-
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shaded curve is the range of calculated correlation values for
a specific pair of sites given by the fitted temperature range.
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FIG. 4. Pair of non-interacting atoms initialized on one edge
site tunneling across the array. (a) Exact diagonalization
(left) and experimental (right) dynamics in a configuration
with equal tunnelings across all sites. We extract a tunneling
rate of 296(3) Hz using a least squares fit. (b) Exact diago-
nalization (left) and experimental (right) dynamics dynamics
with staggered tunneling rates. For site i and site j = i + 1,
tij = 289(3) Hz for odd i and tij = 213(2) Hz for even i.

menting full spin and density readout in future experi-
ments [43], the entropy of the initial state can be elimi-
nated via post-selection. In that case, numerics indicate
that non-adiabaticity during the ramp would limit the
entropy to 0.04 kB per particle.

Not only can the tweezer platform prepare highly-
correlated low-entropy equilibrium states, but it can also
realize dynamics that are difficult to study in comparable
optical lattice systems. To demonstrate the flexibility of
the platform, we perform experiments where we prepare
atoms only on an edge site of the science configuration
and observe the propagation of the particles in the array
(Fig. 4(a)). To initialize dynamics, we decrease the offset
from ∆0 to zero in 100µs. In a non-interacting system
this experiment is a direct measurement of the tunneling
of the array. By comparing our measurements to exact
calculations of the tunneling dynamics, we conclude that
the tweezers are balanced to within half a tunneling en-
ergy.

One other advantage of the tweezer array platform is
the ability to easily realize arbitrary lattice geometries.
In our one-dimensional system, we explore this by cre-
ating a lattice with staggered tunneling. To accomplish
this, the radio-frequency tone difference between every
other tweezer is changed to 4.2 MHz, with the edge pairs
having a spacing of 4 MHz. This leads to a science con-
figuration where the tunneling is modulated on alternate
bonds and hence, qualitatively different behavior than
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the uniform tunneling array. We study tunneling dy-
namics in this staggered lattice by initializing atoms on
the edge site (Fig. 4(b)). There is good qualitative agree-
ment with simulations, with two ballistically propagating
tunneling trajectories forming before the atoms reach the
opposite side of the chain. However, since dynamical ex-
periments are intrinsically more sensitive to disorder than
studying ground states, deviations of the data from the
simulations are more significant.

In conclusion, we have shown that optical tweezer ar-
rays can be used to prepare many-body states of lattice
fermions. The key advantages over optical lattices are
increased flexibility in engineering Hubbard models on
arbitrary geometry lattices and, with full post-selection
on the atom number and spin, the possibility of reach-
ing very low entropy states limited only by adiabaticity
of the preparation. This platform is particularly well-
suited to studying ground states of many-body systems
at high U/t and at half-filling, where residual disorder
plays a negligible role. It is feasible to extend our system
to arrays of up to a hundred tweezers as has been demon-
strated by the Rydberg atom array community [5, 6], es-
pecially since the tweezer balancing algorithm runtime
is approximately independent of the number of tweezers.
To scale the tweezer array to two dimensions, we plan
to use two crossed acousto-optic deflectors, with the sec-
ond dimension introduced by stroboscopically switching
between chains created using the approach described in
this work. This will allow studying 2D Hubbard mod-
els with arbitrary software-defined geometry and micro-
scopic measurements of correlations in phases yet to be
explored with quantum gas microscopes, including quan-
tum spin liquids in triangular or hexagonal geometries
and flat-band ferromagnets in Lieb lattices.
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