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Gravitational waves (GWs) are an exciting new probe of physics beyond the standard models of
gravity and particle physics. One interesting possibility is provided by the so-called “gravitational
atom,” wherein a superradiant instability spontaneously forms a cloud of ultralight bosons around
a rotating black hole. The presence of these boson clouds affects the dynamics of black hole binary
inspirals and their associated GW signals. In this work, we show that the binary companion can in-
duce transitions between bound and unbound states of the cloud, effectively “ionizing” it, analogous
to the photoelectric effect in atomic physics. The orbital energy lost in this process can overwhelm
the losses due to GW emission, so that ionization drives the inspiral rather than merely perturbing
it. We show that the ionization power contains sharp features that lead to distinctive “kinks” in the
evolution of the emitted GW frequency. These discontinuities are a unique signature of the boson
cloud and observing them would not only constitute a detection of the ultralight boson itself, but
also provide direct information about its mass and the state of the cloud.

The dynamics of black hole mergers in vacuum is a pre-
cise prediction of general relativity (GR), which has been
confirmed by the gravitational wave (GW) observations
of the LIGO/Virgo collaboration [1, 2]. The robustness
of these predictions implies that looking for any devia-
tions is an interesting test for physics beyond the stan-
dard models of gravity and particle physics [3, 4]. Such
signals would arise if new environmental effects modify
the dynamics of the inspiral. For example, if dark mat-
ter clusters around black holes it would affect the inspiral
through dynamical friction [5, 6].

Another interesting class of new physics, that can
be probed with future GW observations, are ultralight
bosons with masses in the range of 10−20 to 10−10 eV and
very weak couplings to ordinary matter. Such weakly-
coupled particles arise in the string landscape as ultra-
light axions [7–10] and are also interesting dark matter
candidates [11]. However, these new hidden sectors don’t
necessarily have a large cosmic abundance, which makes
detecting them an interesting challenge.

Regardless of how these bosons couple to the Stan-
dard Model, however, they must gravitate. This uni-
versal coupling, plus the spate of current and upcoming
gravitational wave detectors, has generated a lot of inter-
est in using black holes, either in isolation or in an inspi-
ral, to discover weakly-coupled new physics [3, 4, 12, 13].
A particularly promising avenue relies on black hole su-
perradiance [14], where a rapidly rotating black hole can
spontaneously shed mass and angular momentum to form
a large cloud of these ultralight bosons, independent of
their prior cosmic abundance. The efficiency of this pro-
cess depends on the ratio of the black hole’s gravitational
radius to the Compton wavelength of the field, the so-
called gravitational fine structure constant,

α ≡ rg
λc

= µM , (1)

where µ is the boson mass, M is the mass of the black
hole and we use natural units, with ~ = c = G = 1. For
α ∼ O(0.01 − 0.1), the cloud both grows quickly and is
long-lived (on astrophysical timescales).

The structure of this boson cloud is nearly identical to
that a hydrogen atom and the system is often called a
gravitational atom. While superradiance naturally pre-
pares the cloud in one of these states, the others can be
excited when this atom participates in a binary inspiral
(see Fig. 1).

The gravitational atom is thus subject to a quasi-
periodic perturbation whose frequency slowly increases
in time. The strength of this nearly periodic perturba-
tion can be resonantly enhanced whenever its frequency
matches the difference between two (or more) states of
the cloud [15, 16]. In this letter and its companion [17],
we study bound-to-unbound state transitions of the grav-
itational atom, which allow part of the cloud to escape
the gravity of the black hole. We refer to this pro-
cess as “ionization,” in analogy to the photoelectric ef-
fect in atomic physics. The backreaction of the ioniza-
tion process strongly affects the dynamics of the inspi-
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FIG. 1. Schematic diagram of a gravitational atom in an
equatorial binary inspiral. The position of the companion
with mass M∗ can be described by the distance between the
two black holes, R∗, and the polar angle ϕ∗.
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ral. As we will show, the departure from the GR predic-
tions is significant, with the inspiral typically becoming
much faster. This backreaction can be interpreted as dy-
namical friction acting on the body passing through the
cloud [18–20]. Despite acting continuously as the sep-
aration shrinks, the effect contains sharp features car-
rying details on the energy structure of the cloud and
the nature of the putative new particles. We will show
how these sharp features are imprinted in the GW signals
emitted by the binary.

Gravitational atoms. Consider a real scalar field Φ
of mass µ, for simplicity without self-interactions. Us-
ing the ansatz Φ(t, r) =

[
ψ(t, r)e−iµt + h.c.

]
/
√

2µ, the
Klein–Gordon equation in the Kerr background becomes
an effective Schrödinger equation [15, 21]:

i
∂

∂t
ψ(t, r) =

(
− 1

2µ
∇2 − α

r
+ · · ·

)
ψ(t, r) , (2)

where we have neglected subleading terms in α. The
Schrödinger equation (2) has hydrogenic energy eigen-
states, which can be divided into two qualitatively dis-
tinct classes.

The first are the bound states |n`m〉, labeled by their
total and azimuthal angular momentum ` and m, and
the principal quantum number n. The bound state
wavefunctions take the hydrogenic form, ψn`m(t, r) =
Rn`(r)Y`m(θ, φ)e−i(ωn`m−µ)t, where r ≡ (r, θ, φ) denote
the Fermi frame which, at leading order in α, coincides
with the Boyer–Lindquist coordinates of the black hole.
As for the hydrogen atom, the wavefunction varies over
length scales set by the “Bohr radius” rc ≡ (µα)−1 and
decays exponentially as r → ∞. For small α, the fre-
quencies are [21–23]

ωn`m = µ

(
1− α2

2n2
+O

(
α4
))

+ iΓn`m , (3)

where the imaginary part, Γn`m ∝ µα4`+5, comes from
the dissipative nature of the black hole’s event horizon.
This imaginary part permits the superradiant growth or
decay of the bound states, depending on whether they
rotate faster or slower than the horizon. We work in a
range of parameter space in which these growth rates are
fast enough to ensure the growth of the cloud on astro-
physical timescales, yet are slow enough that they can
be ignored when focusing the timescales relevant to the
binary inspiral. In this approximation, the bound states
are described by a discrete set of hydrogenic energies,
εn`m = Re[ωn`m] − µ. By convention, these states are
unit-normalized 〈n`m|n′`′m′〉 = δnn′δ``′δmm′ , where the
inner product is defined in the standard way.

The second class of eigenstates are the unbound states
|ε; `m〉, which are labeled by the non-negative energy ε =
ω−µ ≥ 0, total angular momentum `, and azimuthal an-
gular momentum m. In contrast to the bound states, the
unbound wavefunctions ψε;`m(t, r) = Rε;`(r)Y`m(θ, φ)
have purely real frequencies and asymptote to spheri-
cal waves with wavenumber k, such that ε = k2/(2µ), as

r → ∞. By convention, these unbound states are nor-
malized such that 〈ε; `m|ε′; `′m′〉 = δ(ε−ε′)δ``′δmm′ and
are orthogonal to every bound state.

Ionization. An inspiraling companion with mass
M∗ ≡ qM , orbital separation R∗, and true anomaly ϕ∗
(see Fig. 1) perturbs the Schrödinger equation (2) by its
gravitational potential,

V∗(t, r) = −qα
∑
`,m

r`<
r`+1
>

ε`m e
−imϕ∗Y`m(θ, φ) , (4)

where the sum1 ranges over ` ≥ 2 and |m| ≤ `, and
r> (r<) denotes the larger (smaller) of r and R∗. We
restrict to inspirals that take place entirely within the
equatorial plane, so that the tidal moments simplify,
ε`m = 4π

2`+1Y
∗
`m(π2 , 0), where the superscript ∗ denotes

complex conjugation. The gravitational perturbation
(4) is quasi-periodic, with both the orbital frequency2

Ω(t) = ±dϕ∗/dt and the orbital separation R∗(t) slowly
evolving as the parent black hole and companion merge.
For simplicity, we consider quasi-circular orbits, for which
dΩ/dt = γ(Ω/Ω0)11/3, where the chirp rate γ is de-
fined with respect to the reference frequency Ω0 as γ =
96
5 qM

5/3Ω
11/3
0 /(1+q)1/3. Throughout the inspiral phase,

however, this frequency evolves very slowly γ � Ω2 which
allows us to linearize the frequency Ω(t) ≈ Ω0 +γt in the
regime we are interested in. The cloud is thus subject to a
gravitational perturbation whose fundamental frequency
Ω(t) slowly increases in time.

In this letter, we study how the cloud and binary in-
spiral evolve when this driving frequency is high enough
to efficiently mediate transitions from the bound to un-
bound states of the atom, resonantly unbinding or ion-
izing the cloud from the black hole. We first assume
that the system initially occupies a single bound state
|nb`bmb〉 whose energy we denote by εb. The com-
panion (4) connects this state to the continuum of un-
bound states |ε; `m〉 via a matrix element with definite
frequency 〈ε; `m|V∗(t)|nb`bmb〉 = η`m(ε; t) exp[−i(m −
mb)ϕ∗(t)], where the amplitude η`m(ε; t) inherits its slow
time dependence from the companion’s radial motion.

As described more thoroughly in [17], at weak cou-
plings qα � 1, the evolution of the system can be di-
vided into three stages, centered about the time t0 where
the frequency of the perturbation matches the minimum
energy difference between the initial state and the con-
tinuum, ±(m−mb)Ω(t0) + εb = 0. Far before this time,√
γ(t − t0) � −1, the perturbation oscillates too slowly

to provide enough energy to excite the bound state into
the continuum, and so the cloud remains bound. Far
after this time,

√
γ(t − t0) � 1, the companion orbits

1 We explicitly exclude both the ` = 0 and ` = 1 contributions, as
the latter is fictitious [15] and neither mediate level transitions.

2 By convention, the positive (negative) sign denotes an orbit in
which the companion co-rotates (counter-rotates) with the cloud.
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quickly enough to ionize the cloud and the cloud steadily
depletes. For intermediate times,

√
γ|t − t0| . 1, there

are transient phenomena which interpolate between these
two regimes over a timescale that is fast compared to that
of the inspiral and set by γ−1/2.

The steady depletion of the cloud is well-approximated
by applying Fermi’s Golden Rule, which states the tran-
sition rate per unit phase space (energy) into unbound
states with angular quantum numbers ` and m is

dΓ`m = dε
∣∣η`m(ε; t)

∣∣2 δ(ε− εb ∓ (m−mb)Ω(t)
)
. (5)

While (5) is typically derived by assuming neither Ω(t)
nor η`m(ε; t) evolve in time, it is consistent [17] to apply
it here as long as qα � 1 and we ignore any transient
phenomena. Summing this rate over all unbound states
that the cloud can transition into yields an equation for
the mass ejected from the cloud by ionization,

dMc

dt

∣∣∣∣
ion

= −Mc

∑
`,m

∣∣η`m(ε(m)
∗ ; t

)∣∣2 Θ
(
ε(m)
∗
)
, (6)

where ε(m)
∗ (t) = εb + gΩ(t) is the energy of the state the

cloud ionizes into and Θ(ε) is the Heaviside step function.
We also define g ≡ ±(m−mb), where the positive (neg-
ative) sign denotes co-rotating (counter-rotating) orbits.

The companion must do work to ionize the cloud. The
ionization power, i.e. the energy lost by the orbit per unit
time due to ionization, is

Pion =
Mc(t)

µ

∑
`,m

gΩ(t)
∣∣η`m(ε(m)

∗ ; t
)∣∣2 Θ

(
ε(m)
∗
)
. (7)

In Fig. 2, we compare this ionization power to the energy
lost due to GW emission,

Pgw =
32

5

q2M2

(1 + q)2
R4
∗Ω

6 , (8)

ignoring cloud depletion for both co- and counter-
rotating orbits, as a function of the binary separation R∗.
We see that ionization is a large effect, as it takes energy
from the binary orders of magnitude more efficiently than
GWs, even with a conservative choice of the cloud’s ini-
tial mass Mc,0.

Sharp features. The most distinctive feature of
Fig. 2 are the sharp jumps in the ionization power at
specific orbital separations

R(g)
∗
M

= α−2
[
4g2(1 + q)n4b

]1/3
, g = 1, 2, · · · . (9)

These jumps arise in co-rotating (counter-rotating) orbits
because, for each set of unbound states with azimuthal
angular momentum m > mb (m < mb), there is a fre-
quency at which ε(m)

∗ = 0 and the companion can just
begin to ionize the bound state |nb`bmb〉 into that con-
tinuum. The values of R(g)

∗ in (9) correspond to the or-
bital separations at those frequencies.
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FIG. 2. Ratio between the energy (per unit time) lost due to
ionization and due to GW emission for co-rotating [blue] and
counter-rotating [orange] orbits, with α = 0.2 and Mc/M =
0.01 in a |211〉 state.

These jumps appear sharp because |η`m(ε; t)|2 is fi-
nite in the low-energy limit, ε → 0. This is due to the
long-ranged nature of the gravitational potential, which
localizes the low-energy unbound states about the black
hole,

lim
ε→0

Rε;`(r) =

√
2µ

r
J2`+1

(
2
√

2µαr
)
, (10)

and forces them to have non-vanishing transition ele-
ments to the bound states [17]. The aforementioned
transient phenomena that occur near the moments
when ε(m)

∗ (t) = 0 soften this sharp behavior.

Scaling symmetry. In the limit of small q, the ion-
ization power (7) has an interesting scaling symmetry
which allows us to determine the result for arbitrary
parameters after it has been computed once for a fidu-
cial set of parameters. The radial wavefunctions Rn`(r)
and Rε;`(r) only depend on the dimensionless variables
r/rc = α2r/M and kr =

√
2µεr, respectively. Moreover,

the energy ε(m)
∗ appearing in (6) and (7) scales as α3/M

times a function of r/rc. This means that, when evalu-
ating the matrix elements η`m(ε; t) at ε(m)

∗ , all the radial
variables will scale as α2r/M . The ionization power must
then also scale homogeneously with α. By power count-
ing, we find that

Pion = α5q2McM P(α2R∗/M) , (11)

where P is a universal function for each |nb`bmb〉 that
can be computed numerically.

Accretion. If the companion is also a black hole, it
will absorb some of the cloud as it passes through it.
The capture cross section of an ultralight scalar field by
a black hole has been computed in [24–26]. As the com-
panion moves through the bulk of the cloud, R∗ ∼ rc, it
will accrete mass at a rate [17]

dM∗
dt

= A∗ρ , (12)
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with A∗ = 16πM2
∗ the horizon area of the companion,

whose rotation we ignore for simplicity, and ρ the mass
density of the medium. In addition to a sizeable increase
in its mass which enhances Pion and Pgw, the companion
also experiences a significant force as it absorbs momen-
tum from the cloud.

Binary evolution. To determine the impact of ion-
ization and accretion on the binary inspiral, we numeri-
cally solve for the evolution of a few benchmark systems.
We will focus on intermediate mass ratio binaries, with
q � 1, for which the sharp features of the ionization
can occur in-band for a future space-based observatory
like LISA. We solve for the separation R∗, the compan-
ion’s mass M∗ and the cloud’s mass Mc. As resonances
between bound states only happen at specific discrete or-
bits [16], while ionization and accretion act continuously,
we will ignore the former. Our solutions therefore should
not be taken as a complete study of the system’s dy-
namics, but rather as demonstrations of the impact that
ionization and accretion can have on an inspiral.

The evolution of M∗ and Mc is governed by mass con-
servation,

dM∗
dt

= 16πM2
∗ρ(R∗) , (13)

dMc

dt
= −dM∗

dt
−Mc

∑
`,m

∣∣η`m(ε(m)
∗ ; t

)∣∣2 Θ
(
ε(m)
∗
)
, (14)

where ρ(R∗) ≡ Mc|ψ|2 is the local density of the cloud
at the position of the companion. For a real field Φ, the
cloud is not axisymmetric, and thus we replace ρ(R∗)
with its average over an orbit. The second term on the
right-hand side of (14) captures the mass loss due to ion-
ization as defined in (6). The evolution of R∗ follows
from the conservation of energy,

qM2

2R2∗

dR∗
dt

= −Pgw − Pion

−
(√

MR∗ ∓
mM

α

)(
M

R∗

)3/2
dq

dt
,

(15)

where we have neglected terms that are subleading in q.
The right-hand side of (15) includes the radiation re-
action force from the emission of GWs and the friction
caused by both ionization and accretion.

As illustrated in Fig. 2, Pion can overwhelm Pgw for a
wide range of separations. The evolution of the binary
will then be driven, rather than simply perturbed, by
the interaction with the cloud. The extra friction can
dramatically shorten the merger time and, generally, a
“plunge” is observed as soon as Pion overcomes Pgw.

Imprints in the GW signal. The binary emits
gravitational waves with frequency fgw = Ω/π, where
Ω2 = M/R3

∗ for a circular Keplerian orbit. Distinct fea-
tures in R∗(t) therefore become observable signatures
in fgw(t) and hence the observed GW waveform.

Figure 3 shows the evolution of the GW frequency
for co- and counter-rotating orbits, with a power-law
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FIG. 3. Evolution of the GW frequency as a function of the
time to merger, t − tm, for M = 104M� and α = 0.2, with
initial values of R∗ = 400M , q = 10−3 and Mc/M = 0.001
in a |211〉 state. Shown are the results for co-rotating [blue]
and counter-rotating [orange] orbits, relative to the vacuum
solution [black].

rescaling that transforms the vacuum solution into a
straight line. It is immediately apparent that the de-
viations from the vacuum solution are both large and
feature distinctive kinks, which arise from the disconti-
nuities in Pion(R∗) at the separations (9). These kinks
are a unique signature of the boson cloud and carry sig-
nificant information about the parameters of the system.
From (9), the GW frequency at the kinks is

f
(g)
gw =

6.45 mHz

g

(
104M�
M

)(
α

0.2

)3(
2

nb

)2
=

33.5 mHz

g

(
M

104M�

)2(
µ

10−14 eV

)3(
2

nb

)2
.

(16)

In Fig. 3, we have chosen parameters such that these
kinks occur in the range probed by future space-based
GW detectors like LISA. This requires relatively large
α for which the lifetime of the |211〉 state becomes a
concern [16, 17]. To account for this decay, we choose a
small initial value for the mass of the cloud, Mc/M =
10−3. It is possible to have smaller values of α if we
simultaneously reduce M , although the degree to which
this is possible is limited by the fact that q = M∗/M must
be small enough for our perturbative analysis to be valid.
Measuring kinks at specific frequencies tells us about the
state of the cloud and the mass of the field µ, especially if
the black hole mass M can be measured with other parts
of the signal.

Figure 3 presented the evolution of the system for a
specific choice of parameters. In the regime of interest,
Pion � Pgw, the dependence on these parameters can be
determined analytically using a scaling symmetry of the
evolution equations. Neglecting other forces and changes
in q and Mc throughout the inspiral, we can obtain an
approximate equation for the evolution of fgw under the
effect of ionization only:

df
2/3
gw

dt
≈ 2

π2/3

Pion

qM5/3
. (17)
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FIG. 4. Evolution of the (inverse) frequency fgw for M =
104M� and α = 0.04, 0.08, . . . , 0.28, with initial q = 10−3

and Mc/M = 0.01 in a |211〉 state. The axes are rescaled
according to (19), with α̂ ≡ α/0.2. The curves have been
horizontally shifted to match at t = tmax, which has been
chosen close to the peak of Pion/Pgw. Shown are the results
for co-rotating [blue] and counter-rotating [orange] orbits.

Using the ionization power’s scaling behavior (11), we
can write this as

dz2/3

dτ
≈ 2P(z−2/3) , (18)

where we have defined the dimensionless variables z ≡
(M/α3)πfgw and τ ≡ α3qMct. The solution can there-
fore be written as

fgw(t) =
α3

M
f(τ(t)) , (19)

where f(τ) is a universal function that depends on the
shape of Pion for a given state |nb`bmb〉 of the cloud. The
region of validity of this formula increases with larger Mc.
In Fig. 4, we confirm that the solutions of the full system
of equations (13), (14) and (15) indeed are described by
a universal shape, when both fgw and t are appropriately
rescaled. The curves depart from each other only when
the approximation Pion � Pgw fails (that is, very close
and very far from the merger), or when corrections due
to the varying q and qc become important.

Conclusions. The dynamical impact of superradi-
ant clouds on binary inspirals is phenomenologically rich.
In this paper, we studied a new effect, “ionization,” that
is important when the binary separation is comparable
to the size of the cloud. The orbital energy lost in the
process can overwhelm the losses due to GW emission, so
that ionization drives the inspiral rather than just per-
turbing it. Although it acts continuously throughout the
inspiral, ionization also leaves sharp, distinct signatures
in the frequency evolution of the system and carry direct
information on the state of the cloud and the mass of the
scalar field.

Our analysis made a number of simplifying assump-
tions. Most notably we neglected the resonant bound-to-
bound transitions mediated by the gravity of the com-
panion. Their inclusion is necessary to understand the

history of the system and the evolution of the state of
the cloud. Moreover, while we restricted ourselves to
quasi-circular equatorial orbits, interesting effects could
arise in the general case, such as orbital plane precession
or eccentrification. A combined treatment of all of these
effects will serve as a starting point to model gravita-
tional waveforms involving gravitational atoms and de-
vise suitable strategies to discover them with upcoming
GW detectors.
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