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Generative adversarial networks (GANs) are one of the most widely adopted machine learning
methods for data generation. In this work, we propose a new type of architecture for quantum
generative adversarial networks (an entangling quantum GAN, EQ-GAN) that overcomes limitations
of previously proposed quantum GANs. Leveraging the entangling power of quantum circuits, the
EQ-GAN converges to the Nash equilibrium by performing entangling operations between both the
generator output and true quantum data. In the first multi-qubit experimental demonstration of
a fully quantum GAN with a provably optimal Nash equilibrium, we use of the EQ-GAN on a
Google Sycamore superconducting quantum processor to mitigate uncharacterized errors, and we
numerically confirm successful error mitigation with simulations up to 18 qubits. Finally, we present
an application of the EQ-GAN to prepare an approximate quantum random access memory and for
the training of quantum neural networks via variational datasets.

INTRODUCTION

Generative adversarial networks (GANs) [1] are one
of the most widely adopted generative machine learn-
ing methods, achieving state-of-the-art performance in a
variety of high-dimensional and complex tasks including
photorealistic image generation [2], super-resolution [3],
and molecular synthesis [4]. Given access only to a train-
ing dataset S = {xi} sampled from an underlying data
distribution pdata(x), a GAN can generate realistic exam-
ples outside S. Certain probability distributions gener-
ated by quantum computers are thought to be classically
hard to sample from under plausible conjectures [5–7],
and learning to generate these samples using a classical
GAN can also be formidably hard [8]. In this work, we
focus on developing a fully quantum mechanical GAN,
where the true data is given by a quantum state; the task
is then to learn a generator circuit that can reproduce the
same quantum state. Following the framework of a GAN,
a discriminator circuit is presented either with the true
data or with fake data from the generator. The generator
and discriminator are then trained adversarially [9]: the
generator attempts to fool the discriminator, while the
discriminator attempts to correctly distinguish true and
fake data. Unlike hybrid quantum-classical GANs that
are intrinsically restricted to learning classical distribu-
tions [10–13], we provide viable machine learning appli-
cations of the proposed quantum GAN for both quantum
data and classical data.

Current quantum hardware suffers from both incoher-
ent and coherent errors, which are often time-dependent
and thus difficult to consistently characterize [14, 15].
Supervised quantum machine learning methods requir-
ing exact implementation of certain procedures — e.g., a
swap test between states — may consequently fail to con-
verge to the correct optimum due to miscalibrated gate
parameters. To maximize state overlap in the presence of

uncharacterized errors, we introduce an entangling quan-
tum GAN (EQ-GAN) that takes a uniquely quantum ap-
proach compared to prior art: rather than providing the
discriminator with either true or fake data, we allow the
discriminator to entangle both true and fake data. Com-
paring to existing work, we show that a quantum GAN
constructed as a direct analogy of the classical GAN ar-
chitecture (QuGAN [16, 17]) may oscillate between a fi-
nite set of states due to mode collapse; the EQ-GAN
is confirmed to properly converge on these problem in-
stances.

We prove that the EQ-GAN architecture always con-
tains a Nash equilibrium at the optimal point of accu-
rately generating the true data. When initialized close to
this equilibrium point, such as in the setting of suppress-
ing small unknown errors, we find that the EQ-GAN con-
verges to the optimal Nash equilibrium due to its stabil-
ity. We provide the first multi-qubit experimental results
of a fully quantum GAN in the literature with a provably
optimal Nash equilibrium [11, 18, 19]. Experiments on
the Google Sycamore quantum processor show that the
EQ-GAN improves state overlap compared to an ideal
swap test with uncharacterized errors. Moreover, numer-
ical simulations of the EQ-GAN architecture up to 18
qubits provide evidence of the favorable error-mitigation
properties for larger circuits. Since training quantum ma-
chine learning models can require extensive time to com-
pute gradients on current quantum hardware, resilience
to time-dependent gate errors during the training pro-
cess is especially valuable in the noisy intermediate-scale
quantum (NISQ) era of quantum computing.

Finally, we provide applications of the EQ-GAN in
the broader context of quantum machine learning for
classical data. Many of the most attractive quantum
machine learning algorithms require a quantum random
access memory (QRAM) [20]. By learning a shallow
quantum circuit to generate a superposition of classical
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data, an EQ-GAN can be used to create an approximate
QRAM. We demonstrate an application of such a QRAM
for quantum neural networks [21], improving the perfor-
mance of a quantum neural network for a classification
task due to the efficient access of the dataset in superpo-
sition.

PRIOR ART

To provide a pedagogical introduction to the quantum
GAN, we begin with the direct analogy of a classical GAN
from the prior work of Refs. [16, 17]. This architecture,
despite its potential non-convergence (shown below and
numerically verified in the supplementary material [22]),
provides the clearest translation of GANs from a classical
to a quantum setting. Several theoretical and experimen-
tal approaches to a fully quantum GAN do not necessar-
ily have an optimal Nash equilibrium due to limited cir-
cuit expressivity [19, 23]; other approaches adopt quan-
tum variants of the Wasserstein metric that may improve
convergence [24, 25], but such works are ill-suited to
the experimentally relevant regime we consider here, i.e.
unsupervised optimization in the presence of unknown
noise. The only experimental implementation of a fully
quantum GAN with a provable Nash equilibrium adopts
the original QuGAN architecture and demonstrates it on
one qubit [18].

A GAN comprises of a parameterized generative net-
work G(θg, z) and discriminator network D(θd, z). The
generator maps a vector sampled from an input distribu-
tion z ∼ p0(z) to a data example G(θg, z), thus trans-
forming p0(z) to a new distribution pg(z) of fake data.
The discriminator takes an input sample x and gives the
probability D(θd, x) that the sample is real (from the
data) or fake (from the generative network). The training
corresponds to a minimax optimization problem, where
we alternate between improving the discriminator’s abil-
ity to distinguish real/fake samples and improving the
generator’s ability to fool the discriminator. Specifically,
we solve minθg maxθd V (θg, θd) for a cost function V :

V (θg, θd) = Ex∼pdata(x) [logD(θd, x)]

+ Ez∼p0(z) [log (1−D(θd, G(θg, z)))] ,
(1)

where Ex∼pdata(x) represents the expectation over the dis-
tribution pdata(x). If G and D have enough capacity, i.e.
approach the space of arbitrary functions, then the global
optimum of this minimax game exists and uniquely cor-
responds to pg(x) = pdata(x) [1]. Generalizing to the
quantum setting, the classical data can be represented
by a density matrix σ =

∑
i pi|ψi〉〈ψi| where pi ∈ [0, 1]

are positive bounded real numbers and |ψi〉 are orthog-
onal basis states. In the first proposal of a quantum
GAN (QuGAN) [16, 17], the generative network is de-
fined by a quantum circuit U that outputs the quantum

state ρ = U(θg)ρ0U
†(θg) from the initial state ρ0. The

discriminator takes ρin as either the real data σ or the
fake data ρ and performs a positive operator valued mea-
surement defined by T whose outcome determines the
probability of data being true:

D(θd, ρin) = Tr[Tρin]. (2)

Following Ref. [17], the QuGAN solves the minimax game

min
θg

max
T

(Tr[Tσ]− Tr[Tρ(θg)]) . (3)

Unfortunately, minimax optimization might not converge
to a good Nash equilibrium. When ρ is close to σ, the
optimal Hesltrom measurement operator T = P+(σ− ρ)
is close to orthogonal to the true quantum data σ and
opposite to ρ. The next step of training will try align the
generator state ρ with T to minimize the cost function in
Eq. 3, perhaps overshooting σ. In the subsequent gener-
ator update, T will again be opposite to ρ. This leads to
the oscillation of the generator and discriminator, pos-
sibly preventing convergence; we show a case of infinite
oscillation in the supplementary material [22].

CONVERGENCE OF EQ-GAN

To ensure convergence to the optimal Nash equilib-
rium, we propose a new minimax optimization problem
with a discriminator that is not directly analogous to
the discriminator of a classical GAN. Rather than eval-
uating either fake or true data individually, the optimal
discriminator is permitted to perform a measurement on
the joint system of the true data σ and generated data
ρ(θg) that, for appropriate parameters, gives the fidelity
between the two inputs:

Dfid
σ (ρ(θg)) =

(
Tr
√
σ1/2 ρ(θg)σ1/2

)2

. (4)

Notice that in comparison Eq. 3 is a linear function of in-
put states, which is not optimal in the state-certification
problem [26] of evaluating quantum generative models.
Let the discriminator Dσ(θd, ρ(θg)) represent the proba-
bility of measuring state |0〉 at the end of the discriminat-
ing circuit. If there exist parameters θopt

d that realize a

perfect swap test, i.e. Dσ(θopt
d , ρ(θg)) = 1

2 + 1
2D

fid
σ (ρ(θg)),

thenDσ is sufficiently expressive to reach the optimal dis-
criminator during optimization. Since a traditional swap
test across two n-qubit states requires two-qubit gates
that span over 2n qubits, implementation on a quantum
device with local connectivity incurs prohibitive overhead
in circuit depth. Hence, we implement the discrimina-
tor with a parameterized destructive ancilla-free swap
test [27]. The EQ-GAN architecture adversarially op-
timizes the generation of the state ρ(θg) and the learning
of a fidelity measurement Dσ (Fig. 1).
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We define a minimax cost function closer to that of the
classical GAN in Eq. 1:

min
θg

max
θd

V (θg, θd) = min
θg

max
θd

[1−Dσ(θd, ρ(θg))], (5)

where Dσ(θd, ρ(θg)) is the parameterization of the swap-
test result. We now show that a Nash equilibrium ex-

ists at the desired location. Consider a swap test circuit
ansatz for the discriminator U(θd) = exp[−iθdCSWAP],
which is the matrix exponentiation of a perfect controlled
swap gate with angle θd. Under such ansatz, the input
state ρin = |ψ〉〈ψ| and σ = |ζ〉〈ζ| will transform under
the discriminator circuit into:

HU(θd)H|0〉a|ψ〉|ζ〉 =
i sin θd

2
|1〉a[|ζ〉|ψ〉 − |ψ〉|ζ〉] +

1

2
|0〉a[(e−iθd + cos θd)|ψ〉|ζ〉 − i sin θd|ζ〉|ψ〉]. (6)

Given the circuit ansatz defined above with the prede-
fined range for the swap angle θ, the maximum value for
distinguishing between two arbitrary states is uniquely
achieved by perfect swap test angle θ = π/2. More par-
ticularly, the probability of measuring state |0〉 at the
end of the parameterized swap test depends on the swap
angle θ according to

Dσ(θd, ρ(θg)) =
1

2
[1 + cos2 θd + sin2 θdD

fid
σ (ρ(θg))]. (7)

The discriminator aims to decrease the probability of
measuring |0〉, and thus minimize Eq. 7 by getting close
to θd = π/2 which corresponds to the perfect swap test
given Dfid

σ (ρ(θg))) ≤ 1. The next step is for the genera-
tor to maximize Dfid

σ (ρ(θg)) by moving closer to the true
data. Ultimately, the generator cannot improve when
ρ(θg) = σ. Since there is an explicit update process to
train the EQ-GAN to approach the optimal Nash equi-
librium, and since the equilibrium is stable (i.e. pertur-
bations result in worse outcomes for both players), we
conclude that initializations of the EQ-GAN close to the
true state will converge to the Nash equilibrium. In the
following section, we provide an example of such a sce-
nario and provide experimental and simulated evidence
of this behavior.

|0⟩

𝜎

H H
U d)𝜃(𝜌 g)𝜃(

D𝜎D d,𝜃 𝜌)(

FIG. 1: EQ-GAN architecture. The generator varies θg to fool
the discriminator; the discriminator varies θd to distinguish
the state. Since an optimal discriminator performs a swap
test, the global optimum of the EQ-GAN occurs when ρ(θg) =
σ. While we include an ancilla qubit in the figure for clarity,
we implement a destructive ancilla-free swap test [27].

For simplicity, the example above does assume pure

state input, although the cost function (Eq. 5) permits
an EQ-GAN architecture for mixed states σ and ρ(θg)
(see supplementary material [22]). In the experiments
presented below, we use a hardware-efficient ansatz for
the discriminator designed to correct dominant coherent
gate errors.

LEARNING TO SUPPRESS ERRORS

Since the EQ-GAN architecture is agnostic to the pre-
cise parameterization of the discriminator, an appropri-
ate ansatz can learn to correct coherent errors observed
on near-term quantum hardware. In particular, the gate
parameters of two-qubit entangling gates can drift and
oscillate over the time scale of O(10) minutes [14, 15],
which can largely be mitigated by including additional
single-qubit Z phase compensations [28]. Such unknown
systematic and time-dependent coherent errors provides
significant challenges for applications in quantum ma-
chine learning where gradient computation and update
requires many measurements. Here, we demonstrate an
application of the EQ-GAN to suppress uncharacterized
errors in a two-qubit CZ gate. In experiments on the
Google Sycamore quantum processor, we find that the
adversarial approach reliably outperforms a fixed “per-
fect” swap test that fails to account for the unknown
errors. We confirm this error-mitigation behavior up to
18 qubits in numerical simulation.

Suppose the adversarial discriminator unitary is given
by U(θd), where U(θopt

d ) corresponds to a perfect swap
test in the absence of noise. Given a trace-preserving
completely positive noisy channel E , the discriminator is
replaced by a new unitary operation Ũ(θd). While a su-
pervised approach would apply an approximate swap test
given by Ũ(θopt

d ), the adversarial swap test will generi-
cally perform better if there exist parameters θ∗d such that

||Ũ(θ∗d)−U(θopt
d )||2 < ||Ũ(θopt

d )−U(θopt
d )||2. Because the

discriminator defines the loss landscape optimized by the
generator, the ρ(θg) produced by EQ-GAN may converge
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FIG. 2: EQ-GAN experiment for learning a single-qubit state.
The discriminator U(θd) is constructed with free Z rotation
angles to suppress errors due to the CZ gate (represented by
connected black dots), allowing the generator ρ(θg) to con-
verge closer to the true data state σ by varying X and Z
rotation angles.

to a state closer to σ than possible by a supervised ap-
proach if the parameterization of the noisy unitary Ũ is
general enough to mitigate errors.

QML model Minimum error in state fidelity

Perfect swap (2.4± 0.5)× 10−4

EQ-GAN (0.6± 0.2)× 10−4

TABLE I: Comparison of EQ-GAN and a perfect swap test
on a Sycamore quantum device. The error of the EQ-GAN
(i.e. 1 − state fidelity) is significantly lower than that of the
perfect swap test, demonstrating the successful adversarial
training of an error-suppressed swap test. Uncertainties show
two standard deviations.

As an example, we consider the task of learning the su-
perposition 1√

2
(|0〉+ |1〉) on a quantum device with noise

(Fig. 2). To learn to correct gate errors, the discrimi-
nator is defined by an ideal swap test using a CZ gate,
followed by adversarially learned angles of single-qubit Z
rotations. The 2-qubit EQ-GAN model obtains a state
overlap significantly better than that of the perfect swap
test (Table I). Although both methods do not stay at the
optimal point (Fig. 3), this is typical of noisy gradient
measurements and minimax optimization: after conver-
gence to the Nash equilibrium, discretization can induce
perturbations while non-zero higher-order gradients lead
the training to deviate from the global optimum [29].
Noisy simulations up to 18 qubits are seen to preserve the
error-mitigating properties of the EQ-GAN in learning
large GHZ states by producing states with near-maximal
overlap despite coherent CZ gate errors consistent with
experimental data (Fig. 4).

APPLICATION TO QRAM

Many quantum machine learning applications require
a quantum random access memory (QRAM) to load clas-

Extremal 
discriminator loss

Perfect SWAP

FIG. 3: Example of training an EQ-GAN and a perfect swap
test on the Google Sycamore processor. We experimentally
confirm that the EQ-GAN converges to a higher state over-
lap by learning to correct such errors with additional single-
qubit rotations (see Table I for error bars). The “converged”
EQ-GAN (dashed line) coincides with the iteration where the
discriminator loss is minimized.
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FIG. 4: Numerical simulation of EQ-GAN learning multi-
qubit generalizations of the GHZ state, i.e. (|0 . . . 0〉 +
|1 . . . 1〉)/

√
2. Numerous simulations of a population of EQ-

GAN models learning 6- and 7-qubit GHZ states (i.e. 12-
and 14-qubit EQ-GAN) show the robustness of correcting Z
phase errors in an ideal swap test; individual examples are
shown for learning states with up to 9 qubits due to the com-
putational cost of simulation. States are initialized and the
EQ-GAN is trained with CZ gate errors consistent with ex-
perimentally observed noise [15]. Error bars show the 25th
to 75th percentile range of state overlaps, centered around a
single instance that obtains the mean improvement in state
fidelity. See supplementary material for further analysis [22].

sical data in superposition [20]. More particularly, a set
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of classical data can be described by the empirical distri-
bution {Pi} over all possible input data i. Most quantum
machine learning algorithms require the conversion from
{Pi} into a quantum state

∑
i

√
Pi|ψi〉, i.e. a superposi-

tion of orthogonal basis states |ψi〉 representing each sin-
gle classical data entry with an amplitude proportional
to the square root of the classical probability Pi. Prepar-
ing such a superposition of an arbitrary set of n states
takes O(n) operations at best, which ruins the exponen-
tial speedup. Given a suitable ansatz, we may use an
EQ-GAN to learn a state approximately equivalent to
the superposition of data.

To demonstrate a variational QRAM, we consider a
dataset of two peaks sampled from different Gaussian
distributions. Exactly encoding the empirical probability
density function requires a very deep circuit and multiple-
control rotations; similarly, preparing a Gaussian distri-
bution on a device with planar connectivity requires deep
circuits. As described in the supplementary material [22],
we adopt a double exponential peak ansatz [30] using
3 two-qubit gates on a planar architecture, whereas en-
coding the dataset in an exact superposition requires 57
two-qubit gates. Once trained to approximate the em-
pirical data distribution, the variational QRAM closely
reproduces the original dataset (Fig. 5).

(a) Empirical PDF (b) Variational QRAM

FIG. 5: Two-peak total dataset (sampled from normal dis-
tributions, N = 120) and variational QRAM of the training
dataset (N = 60). The variational QRAM is obtained by
training an EQ-GAN to generate a state ρ with the shallow
peak ansatz to approximate an exact superposition of states
σ. The training and test datasets (each N = 60) are both
balanced between the two classes.

As a proof of principle for using such QRAM in a quan-
tum machine learning context, we train a quantum neural
network (QNN) [21] and compute hinge loss by consid-
ering each class in superposition encoded by the varia-
tional QRAM. The test accuracy on a balanced dataset
of N = 60 examples is found to be 69%±2% to two stan-
dard deviations. This demonstrates the capability of the
EQ-GAN to prepare useful primitives in larger quantum
machine learning frameworks, identifying shallow circuits
that may replace subprocedures that may otherwise be
deep and thus noisy.

CONCLUSION

Motivated by limitations of preexisting quantum GAN
architectures in the literature, we propose the EQ-GAN
architecture to overcome issues of non-convexity and
mode collapse. We adopt a parameterization of Hilbert-
Schmidt norm as the cost function as oppose to trace
distance based on the optimality of Hilbert-Scmidt norm
in state-certification problems. Similar advantages of
Hilbert-Schmidt norm has been shown in quantum em-
bedding designs of quantum kernel learning [31]. Other
approaches to a quantum GAN may improve a quantum
GAN’s convergence properties — notably, recent work
suggests that certain cost functions such as the Wasser-
stein metric may provide more robust convergence [25]
— but rely on accurate estimation of the discrimina-
tor, which may be difficult in the presence of unknown
noise. We find that the EQ-GAN’s shallow discrimina-
tor is effective at suppressing device errors and ensures
robust convergence in running laboratory quantum com-
puters, making the EQ-GAN particularly relevant for
near-term applications of quantum computing. More-
over, we demonstrate the first experimental application
of EQ-GAN using Google’s cloud quantum computers
in a machine learning application. This work opens up
new directions in utilizing quantum generative models
to achieve a quantum speedup in machine learning that
necessitates the efficient and high-fidelity preparation of
QRAM, as well as an additional setting to establish a the-
oretical understanding of the computational complexity
of training the EQ-GAN and similar variational quantum
algorithms [32].

An open source implementation of the EQ-GAN is
available made available on GitHub with accompanying
tutorials [36].
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