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Operator noncommutation, a hallmark of quantum theory, limits measurement precision, accord-
ing to uncertainty principles. Wielded correctly, though, noncommutation can boost precision. A re-
cent foundational result relates a metrological advantage with negative quasiprobabilities—quantum
extensions of probabilities—engendered by noncommuting operators. We crystallize the relation-
ship in an equation that we prove theoretically and observe experimentally. Our proof-of-principle
optical experiment features a filtering technique that we term partially postselected amplification
(PPA). Using PPA, we measure a waveplate’s birefringent phase. PPA amplifies, by over two orders
of magnitude, the information obtained about the phase per detected photon. In principle, PPA can
boost the information obtained from the average filtered photon by an arbitrarily large factor. The
filter’s amplification of systematic errors, we find, bounds the theoretically unlimited advantage in
practice. PPA can facilitate any phase measurement and mitigates challenges that scale with trial
number, such as proportional noise and detector saturation. By quantifying PPA’s metrological
advantage with quasiprobabilities, we reveal deep connections between quantum foundations and
precision measurement.

Introduction.—Advances in quantum metrology have
kindled new measurement techniques [1–5]. The
paradigmatic quantum measurement is phase estimation,
whose applications span polarimetry, magnetic sensing,
gravitational-wave astronomy, and quantum-computer
calibration [6–12]. A fundamental limit bounds how pre-
cisely one can estimate a phase from a given number of
trials [13, 14]. If some trials are filtered out, the average
information per retained, or postselected, trial can exceed
this limit [15]. Filtering can never increase the infor-
mation per input trial, so successful postselections’ rar-
ity counterbalances the extra information [16, 17]. Nev-
ertheless, distilling information from many input trials
into fewer postselected trials can alleviate challenges that
scale with trial number, including detector saturation,
proportional noise, low-frequency noise, limited memory,
and limited computational power [18–22].

We elucidate this distillation’s physical and mathemat-
ical roots using a filtering technique that we call par-
tially postselected amplification (PPA). Theoretically, the
information obtained per PPA trial can diverge as the
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fraction of postselected trials vanishes [15]. A related
technique, weak-value amplification, offers a similarly di-
verging advantage [18, 20–48]. Both techniques are ex-
amples of noncommutative filtering. We define noncom-
mutative filtering as any filtering whose effect depends on
when the filter acts. During the alternative, commutative
filtering, the per–postselected-trial precision cannot ex-
ceed the per–input-trial limit [15]. Examples include the
neutral-density filter that reduces a camera’s overexpo-
sure. PPA’s postselected trials break the per–input-trial
limit by endowing a certain quasiprobability distribution
with negative elements [15].

Quasiprobabilities represent quantum states as prob-
ability densities represent states in classical statistical
mechanics. Like probabilities, the quasiprobabilities in
a distribution sum to one. Yet quasiprobabilities can as-
sume negative and nonreal values, called nonclassical val-
ues. They can arise when the quasiprobability describes
quantum-incompatible operations or observables. Well-
known quasiprobability distributions include the Wigner
function. A rising star is the Kirkwood-Dirac distribu-
tion [49, 50], which has recently found applications in
quantum state tomography [51–55], chaos [56–60], post-
selected metrology [15, 27, 28, 30, 61–67], measurement
disturbance [68–71], quantum thermodynamics [56, 72–
75], and quantum foundations [36, 69, 76–87]. Nega-
tive Kirkwood-Dirac quasiprobabilities have been demon-
strated, under certain conditions, to underlie operational
advantages in quantum computation, work extraction,
and parameter estimation [15, 58, 67, 75].
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In this Letter, we demonstrate PPA’s parameter-
estimation enhancement in a proof-of-principle polarime-
try experiment. We estimate the birefringent phase im-
parted to photons by a near-half–waveplate. A tunable
polarization filter implements the PPA. The filter boosts
the per–detected-photon precision by over two orders of
magnitude. Furthermore, we measure a Kirkwood-Dirac
distribution that describes the experiment. Our exper-
iment operationally motivates a measure of the distri-
bution’s negativity. We prove theoretically and confirm
experimentally that the negativity is proportional to the
precision enhancement when the phase is probed opti-
mally. We also pinpoint which systematic errors limit
PPA’s theoretically unbounded precision enhancement
(Supplemental Material [88], App. A). Our experiment
unifies theoretical quantum foundations with practical
precision measurement.

Theoretical background and equality.—Consider esti-
mating a parameter θ by measuring a quantum state
ρ(θ). The quantum Fisher information (QFI) I(θ) quan-
tifies the information provided by ρ(θ) about θ, via the
state’s sensitivity to changes in θ [89] (Supplemental Ma-
terial [88], App. B). The QFI’s reciprocal lower-bounds
the variance of every unbiased estimator θe of θ, in the
Cramér-Rao bound, var(θe) ≥ 1/I(θ). [13, 14]

Let A denote an observable with greatest and least
eigenvalues a+ and a− = a+ −∆. The eigenstates |a±〉
satisfy A|a±〉 = a±|a±〉. Let a unitary U(θ) = exp(iθA)
imprint θ on an input state. The optimal inputs are even-
weight superpositions of extremal A eigenstates, e.g.,
|0〉 = (|a+〉+ |a−〉)/

√
2 and |1〉 = (|a+〉− |a−〉)/

√
2. The

imprinted state U(θ)|0〉 = |Ψ(θ)〉 carries the most QFI
possible without postselection, I(θ) = ∆2.

A postselected state can provide more QFI. If the angle
is small (θ∆ � 1), then |Ψ(θ)〉 ≈ |0〉 + i θ∆2 |1〉. The |0〉
coefficient is less sensitive to θ than the |1〉 coefficient, yet
|0〉 has a greater population. PPA partially postselects on
|1〉 via a filter whose |1〉 transmission amplitude is unity
and whose |0〉 transmission amplitude is parametrically
smaller.

More precisely, let t denote the amplitude for |0〉’s sur-
vival of the filter. The filter acts as the Kraus opera-
tor [90] K(t) = t|0〉〈0| + |1〉〈1|, wherein |t| ∈ [0, 1]. For
any |t| < 1, the filter does not commute with the gener-
ator A and enables noncommutative filtering. The filter
lets |Ψ(θ)〉 pass with a probability

pps(θ, t) = Tr(K(t)|Ψ(θ)〉〈Ψ(θ)|K(t)†) (1)

= |t|2 cos2(∆θ/2) + sin2(∆θ/2). (2)

The state becomes

|Ψps(θ, t)〉 = K(t)|Ψ(θ)〉/
√
pps(θ, t) (3)

= cos(∆Θ/2)|0〉+ i sin(∆Θ/2)|1〉 . (4)

The filter effectively amplifies θ to a Θ defined through
tan(∆Θ/2) = tan(∆θ/2)/|t|. The postselected state car-
ries the QFI

I(θ) = [∆ |t|/pps(θ, t)]
2
. (5)

p̃ρ(θ),t(a, a
′|+) a′ = a+ a′ = a−

a = a+
1+|t|2

4pps(θ,t)
ei∆θ −1+|t|2

4pps(θ,t)

a = a− e−i∆θ −1+|t|2
4pps(θ,t)

1+|t|2
4pps(θ,t)

TABLE I: Conditional Kirkwood-Dirac distribution (7) for
our PPA experiment and ρ(θ) = |Ψ(θ)〉〈Ψ(θ)|.

A large angle is typically easier to observe than a
smaller one. If the angle is small, ∆θ � 1, then Θ ex-
ceeds θ by a factor of 1/|t|. This amplification boosts
the information obtained per detected state: I(θ) ≈
(∆/|t|)2. The amplification is arbitrarily large if ∆θ is
arbitrarily small. Such extreme filtering does not signifi-
cantly reduce the information obtainable per input state:
pps(θ, t)I(θ) ≈ ∆2, if tan(∆θ/2)� |t|.

PPA can be beneficial even if ∆θ is large. Suppose
prior knowledge indicates that θ ≈ θp. Performing
U(−θp) after U(θ) shrinks the probed angle to ∆(θ−θp).

Why can a successful PPA trial offer more information
than ∆2, the most information offered by any input trial?
Reference [15] identified a necessary condition. A pro-
jectively postselected trial can carry information > ∆2

only if a Kirkwood-Dirac distribution contains a nega-
tive quasiprobability. We generalize that result beyond
projective postselection.

Let {|a〉}a and {|a′〉}a′ denote copies of an A eigenba-

sis. Kraus operators {Kf}f with
∑
f K

†
fKf = 1 model

the partial postselection. The information-bearing state
ρ(θ) is represented by the Kirkwood-Dirac quasiproba-
bilities (Supplemental Material [88], App. C)

p̃ρ(θ)(a, f, a
′) := Tr(|a′〉〈a′|K†fKf |a〉〈a|ρ(θ)). (6)

Conditioning on a postselection outcome f induces the
conditional Kirkwood-Dirac distribution

p̃ρ(θ)(a, a
′|f) := p̃ρ(θ)(a, f, a

′)/
∑
a,a′

p̃ρ(θ)(a, f, a
′). (7)

These quasiprobabilities are positive if A and K†fKf com-

mute on the support of ρ(θ) [85].
PPA involves Kraus operators, K+ = K(t) and

K− =
√
1−K(t)†K(t), that effect successful and un-

successful postselection. Table I shows PPA’s conditional
quasiprobabilities, labeled by t, for ρ(θ) = |Ψ(θ)〉〈Ψ(θ)|.
If ∆ θ < π and |t|2 < 1, the real part of p̃ρ(θ),t(a±, a∓|+)

is negative, and the postselected QFI (5) exceeds ∆2.
This concurrence stems from an equality that we prove.

We start by introducing a new measure of Krikwood-
Dirac negativity [58, 85, 86]. Let x denote the vec-
tor of arguments for a Kirkwood-Dirac distribution
{p̃(x)}x. Define the nonclassicality gap as the greatest
difference between quasiprobabilities’ absolute squares:
maxx

{
|p̃(x)|2

}
−minx

{
|p̃(x)|2

}
. The gap > 1 only if a

quasiprobability 6∈ [0, 1]. For any postselection operator



3

PostselectionPreparation Transformation Measurement
HWP1

HWP0

HWP2

QWP HWP3 WP
PBD0 PBD1 PBD2

SPCM1

SPCM2

HSPS

FIG. 1: Photonic parameter-estimation experiment: Preparation: A heralded–single-photon source (HSPS) emits
light that hits a polarizing–beam-displacer (PBD0) and emerges vertically polarized (|1〉). Transformation: The
half-waveplate (HWP0) has an optic axis angled 45◦ above the horizontal. HWP0 is tilted away from normal incidence
through an angle α about its optic axis. The waveplate rotates a photon’s polarization through an angle θ(α)− π. A
calibration curve of θ(α) ≡ θ provides a prior estimate of θ. We use this estimate to calculate the polarization projection
optimal for inferring θ (Supplemental Material [88], App. B). Postselection: A polarizing–beam-displacer interferometer,
followed by a beam block in the undisplaced port, realizes a partial polarizer. The horizontal-polarization transmission
amplitude, t with |t| ∈ [0, 1], is controlled by a half-waveplate (HWP2) inside the interferometer. The filter discards all
horizontally polarized photons when |t| = 0 and none when |t| = 1. Measurement: Motorized waveplates, followed by a
Wollaston prism (WP) and single-photon counter modules (SPCM), project onto any desired polarization.

K+, the nonclassicality gap is proportional to the opti-
mal input state’s postselected QFI (Supplemental Mate-
rial [88], App. D):

I(θ) = 4 ∆2 (8)

×
[
max
a,a′

{
|p̃ρ(θ)(a, a′|+)|2

}
−min

a,a′

{
|p̃ρ(θ)(a, a′|+)|2

}]
.

Equation (8) crystallizes the relationship between postse-
lected quantum metrology and Kirkwood-Dirac nonclas-
sicality.

Experimental setup.—We realize PPA in a proof-of-
principle polarimetry experiment (Fig. 1). The to-be-
estimated parameter θ is the excess birefringent phase,
beyond π, imparted by a near-half–waveplate (HWP0).
A heralded–single-photon source emits vertically polar-
ized photons with wavelengths of 808 nm. The photons
hit HWP0, whose optic axis lies 45◦ above the horizon-
tal. Tilting HWP0 through an incidence angle α sets its
birefringent retardance to θ(α)− π. A calibration curve
of θ(α) ≡ θ provides prior knowledge about θ.

Denote horizontal polarization by |0〉; and vertical po-
larization, by |1〉. We filter the photons by attenuating
one polarization, using an interferometer formed from
polarizing beam displacers. The postselection parame-
ter t equals the filter’s (|0〉 transmission amplitude)/(|1〉
transmission amplitude). We control t with a motorized
waveplate (HWP2) placed in the interferometer.

HWP0 rotates the photon’s polarization with the uni-
tary exp(i[θ − π]σx/2). The generator A = σx/2 has
eigenvalues a± = ±1/2 and eigenstates |a±〉 = (|0〉 ±
|1〉)/

√
2. The filtered photons occupy the state ρps(θ, t)—

ideally, the pure state (4). We projectively measure the
state’s polarization to estimate θ.

Experimental results.—First, we assess PPA’s metro-
logical performance. Then, we present the measured
quasiprobabilities (7). Comparing the quasiprobabilities
with the QFI, we support Eq. (8) experimentally.

Polarization tomography reveals how PPA boosts sen-
sitivity. Figure 2a shows the postselected state’s ampli-
fied angle, Θ, versus the true θ value. We infer the latter
using state tomography without postselection (|t| = 1).
The slope of Θ(θ) quantifies our sensitivity to small
changes in θ. When |t| = 1, Θ(θ) has a unit slope. As
we postselect more (|t| decreases), the slope grows—by a
factor of > 20 at |t| = 0.044.

We estimate θ by projectively measuring many copies
of the amplified state identically. The measurement basis
is optimized to provide the QFI according to calibrations
of θ(α) and t (Supplemental Material [88], App. B).

For each (θ, t), we sample 32 independent estimates
of θ. Figure 2b displays our estimates’ precision and
accuracy, normalized by the number N of detected pho-
tons. The precision per photon, var(θe)−1/N , agrees ex-
cellently with the QFI (5). The accuracy per photon,
MSE(θe)−1/N , mostly agrees with the QFI but falls short
at the smallest θ and |t|. The per-photon precision en-
hancement maximizes at 540± 150, when θ = 0.040 rad,
|t| = 0.044. The per-photon accuracy caps at 78 ± 15,
when θ = 0.116 rad and |t| = 0.082.

The discrepancy between precision and accuracy arises
because PPA amplifies systematic errors (Supplemental
Material [88], App. A). Small errors in adjusting the
waveplates that set |t| or A produce systematic error.
These errors begin to dominate the statistical noise as the
amplification increases. Remarkably, we found the am-
plified errors helpful for detecting and correcting errors
in A that went unnoticed without PPA’s amplification.

We extract the conditional quasiprobabilities (6) from
tomography of the unpostselected (|t| = 1) state and
present them in Fig. 3. At each (θ, t), the sum over the
quasiprobabilities is normalized to one. When |t| < 1,
quasiprobabilities acquire negative real parts, so other
quasiprobabilities acquire real parts > 1 to ensure a unit
sum. As |t| decreases, elements’ magnitudes increase—to
> 70 at the smallest θ and |t|.



4

0 0.2 0.4 
True angle  (rad)

0 

0.2 

0.4 

0.6 

0.8 

1 

Am
pl

ifi
ed

 a
ng

le
 

 (r
ad

) (a)

Experiment
Theory: = 2tan 1(tan( /2)/|t|)
Experiment
Theory: = 2tan 1(tan( /2)/|t|)

0.01 0.1 1 
True angle  (rad)

10 2

10 1

100

101

102

103

In
fo

rm
at

io
n 

(ra
d

2 ) (b) Precision
Accuracy
QFI theory

|t| = 0.044
|t| = 0.082
|t| = 0.15

|t| = 0.29
|t| = 0.53
|t| = 1.0

|t| = 0.044
|t| = 0.082
|t| = 0.15

|t| = 0.29
|t| = 0.53
|t| = 1.0

FIG. 2: Experimental performance of PPA with different
magnitudes of postselection parameter, |t|. (a) Amplified
angle vs. true angle θ. The slope signifies sensitivity to
changes in θ. When θ is small [tan(∆θ/2)� |t|], PPA
magnifies θ by a factor of 1/|t|. Setting |t| = tan(∆θ/2)
amplifies θ to π/2 and optimizes the sensitivity. Decreasing
|t| further reduces the sensitivity, rendering prior knowledge
about θ important. (b) Information per photon vs. θ. For
each (θ, |t|), we make 32 independent estimates of θ and
display the estimates’ precision (1/variance) and accuracy
(1/[mean squared error]) per mean detected photon. The
per-photon precision agrees with the predicted QFI (5) and
climbs to 540± 150 rad−2 at (θ, |t|) = (0.040 rad, 0.044).
The per-photon accuracy suffers from systematic errors at
the smallest θ and |t|, yet still reaches 78± 15 rad−2 at
(θ, |t|) = (0.116 rad, 0.082).

Figure 4 compares the nonclassicality gap with the
QFI. We compute the gap from the quasiprobabilities
shown in Fig. 3. The estimated gap is the arithmetric
mean over four runs of tomography. We determine the
QFI at θ = θ0 empirically from estimates of ρps(θ0, t)
and ∂ρps(θ, t)/∂θ|θ0 (Supplemental Material [88], App. B
states the formula for QFI). The derivative is the matrix
slope of a linear fit through three tomographic estimates:
ρps(θ0 − dθ, t), ρps(θ0, t), and ρps(θ0 + dθ, t); dθ = 0.035
radians. We repeat the procedure over four tomographic
runs to obtain a distribution of QFIs at each (θ, |t|). Em-
pirically, the distribution of the QFIs is approximately
log-normal, so we estimate the QFI and its uncertainty
using the geometric mean and geometric standard error.
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FIG. 3: Quasiprobabilities vs. amplification factor 1/|t|.
We inferred the Kirkwood-Dirac distribution (6),
p̃ρ(θ),t(a, a

′|+), from tomography of the unpostselected
(|t| = 1) state. We present empirical results together with
theoretical predictions at different θ and |t| for select
elements: (a) Re[p̃ρ(θ),t(a+, a+|+)], (b) Re[p̃ρ(θ),t(a−, a−|+)],
(c) Re[p̃ρ(θ),t(a−, a+|+)], and (d) Im[p̃ρ(θ),t(a−, a+|+)]. All
other elements are redundant because (6) ensures
p̃ρ(θ),t(a, a

′|+) = p̃ρ(θ),t(a
′, a|+)∗. For each (θ, |t|), the

quasiprobabilities’ sum is normalized to 1. Negativity in
Re[p̃ρ(θ),t(a±, a∓|+)] allows the magnitude of each element
to be greater than 1. The negativity increases as the
amplification strengthens.

The estimated QFI and nonclassicality gap are con-
sistent with the theoretical QFI [Fig. 4(a)]. Thus, our
experiment corroborates the relationship (8) between en-
hanced precision and quasiprobability negativity.

Conclusions.—We have experimentally demonstrated
and theoretically proved how negative Kirkwood-Dirac
quasiprobabilities enhance postselected metrology. We
introduced and illustrated a scheme for phase estimation,
partially postselected amplification. In our polarimetry
experiment, PPA boosted our per–detected-photon pre-
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FIG. 4: Information per detected photon (a) and per input
photon (b) vs. magnitude of postselection parameter, |t|.
Error bars denote the geometric standard error of 4
independent runs. The experimental QFI and 4 times the
nonclassicality gap are within error of the theoretical
QFI (5). Without postselection, our estimates are
shot-noise–limited to the per–input-photon precision
1 rad−2. As we increasingly postselect (as |t| decreases), the
per–detected-photon precision increases when θ ≈ 0 and
decreases when tan(θ/2) < |t|. The smallest |t| and θ
provide a per–detected-photon precision > 200 rad−2,
despite sacrificing little per–input-photon precision.

cision by over two orders of magnitude. This enhance-
ment derives from negativity of a generalized Kirkwood-
Dirac quasiprobability, according to an equation that
we prove and experimentally support. The negativity
demonstrates that our filter provides a benefit offered by
no filter that commutes with U(θ).

In theory, PPA’s precision boost is unbounded. In
practice, we find, the phase amplification augments sys-
tematic errors. Yet the error amplification has a silver
lining, having helped us detect and correct systematic
errors in our implementation of the generator A (Supple-
mental Material [88], App. A).

PPA is related to weak-value amplification (WVA), a
scheme for estimating couplings strengths [18, 20–48].
PPA and WVA concentrate information spread across
many input trials into few postselected trials. Yet PPA
differs from WVA in three ways: (i) PPA can amplify
any phase, not just coupling strengths. (ii) PPA sur-

vives decoherence better. In WVA, an interaction cou-
ples two systems. One system is measured, the other
is postselected, and both must remain coherent during
the interaction. PPA only requires the measured system
to maintain coherence. (iii) PPA admits of a simpler
mathematical treatment: WVA requires a Hilbert-space
dimensionality ≥ 4, whereas PPA works with a Hilbert-
space dimensionality ≥ 2. PPA is therefore a promising
tool for combating metrological challenges that scale with
the number of completed trials. As a whole, our work in-
terweaves the disparate studies of precision measurement
and quantum foundations.
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