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The Petz recovery channel plays an important role in quantum information science as an operation that ap-

proximately reverses the effect of a quantum channel. The pretty good measurement is a special case of the

Petz recovery channel, and it allows for near-optimal state discrimination. A hurdle to the experimental real-

ization of these vaunted theoretical tools is the lack of a systematic and efficient method to implement them.

This paper sets out to rectify this lack: using the recently developed tools of quantum singular value transfor-

mation and oblivious amplitude amplification, we provide a quantum algorithm to implement the Petz recovery

channel when given the ability to perform the channel that one wishes to reverse. Moreover, we prove that, in

some sense, our quantum algorithm’s usage of the channel implementation cannot be improved by more than a

quadratic factor. Our quantum algorithm also provides a procedure to perform pretty good measurements when

given multiple copies of the states that one is trying to distinguish.

Introduction—Pretty good measurements [1–5] and Petz

recovery channels [6–10] are workhorses of quantum infor-

mation theory: they are used ubiquitously to prove basic re-

sults in quantum communication and measurement [11]. Al-

though important for attaining quantum channel capacities

[12–16] and performing state discrimination [1–4, 9], these

useful theoretical constructions are less common in experi-

ment, for the simple reason that there has not been a system-

atic method for performing them efficiently in practice. Our

goal here is to fill this gap.

The Petz recovery channel was introduced in the context of

quantum sufficiency in [6, 7] and later rediscovered in [9] in

the context of quantum error correction. It can be understood

as a critical part of a quantum version of the Bayes theorem

[17, Section IV]. To review it, let us begin with the classi-

cal case. A classical channel with input system X and output

system Y over the alphabets X,Y is a conditional probability

distribution {pY |X(y|x)}x∈X,y∈Y. We consider a probability dis-

tribution pX(x) over the alphabet X as the input to the channel.

It then follows from the Bayes theorem that pX(x)pY |X(y|x) =

pY (y)pX |Y(x|y), where pY (y) =
∑

x pX(x)pY |X(y|x). Hence, for

all x ∈ X, y ∈ Y, we define the “reversal channel” via the

formula

pX |Y(x|y) =
pX(x)pY |X(y|x)∑
x pX(x)pY |X(y|x)

. (1)

This channel acts on the output system Y. If the particu-

lar distribution pY(y) defined above is “sent in” through this

channel, then the input pX(x) is recovered perfectly: pX(x) =∑
y pX |Y(x|y)pY(y). The computation of the reversal channel

pX |Y(x|y) requires a specification of the input probability dis-

tribution pX(x) and the forward channel pY |X(y|x). The Petz

recovery channel is a quantum generalization of the reversal

channel above: it is a function of a quantum channel N and

an input state σ to the channel, with the former generalizing

pY |X(y|x) and the latter pX(x). We discuss it in more detail in

what follows.

The Petz recovery channel appears often in quantum in-

formation as a proof tool, showing that near-optimal recov-

ery from undesired quantum operations is possible. Ref. [9]

demonstrated how this recovery channel can be an effective

means for reversing the effects of noise. Thereafter, [18]

showed that the Petz recovery channel (therein called “trans-

pose channel”) is a universal recovery operation for approx-

imate quantum error correction, which performs comparably

to the best possible one in terms of worst-case fidelity (see

also [19, 20]). The Petz recovery channel also goes by the

name “pretty good recovery,” as used in [21, 22], due to the

result of [9]. Yet another application comes from the field of

quantum communication: [16] showed explicitly how to use

the Petz recovery channel in a decoder to achieve the coher-

ent information rate of quantum communication. It has also

found use in developing physically meaningful refinements of

quantum entropy inequalities [23–27]. See [28–32] for further

uses.

As an application of our results, our quantum algorithm can

be used to implement the pretty good measurement (PGM)

[1–5]. This measurement was used in [12, 15] as part of a

coding scheme to approach the Holevo information rate for

classical communication over a quantum channel. It has also

been instrumental in proving bounds for quantum algorithms.

Ref. [33] showed that the PGM is an optimal measurement

for solving the dihedral hidden subgroup problem and that it

is helpful in proving a lower bound on the sample complexity
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of this problem. Similar techniques have been used for quan-

tum probably-approximately-correct learning [34]. Ref. [35]

recently showed how to implement the PGM for pure states,

while our algorithm for Petz recovery channels is capable of

performing the PGM in the general case.

We now begin the technical part of our paper, starting with

an explicit description of the Petz recovery channel and the

resources that we work with for its implementation.

Petz recovery channel—The Petz recovery channel is a

function of a quantum state σA on a system A and a quan-

tum channel NA→B taking system A to a system B. It is given

explicitly as follows [10]:

P
σ,N
B→A

(ωB) ≔ σ
1/2

A
N†

(
N(σA)−1/2ωBN(σA)−1/2

)
σ

1/2

A
, (2)

where N† is the Hilbert–Schmidt adjoint [11] of the channel

N and we have omitted the system labels of NA→B for brevity.

It is a composition of three completely positive (CP) maps:

(·)→ [N(σA)]−1/2(·)[N(σA)]−1/2, (3)

(·)→ N†(·), (4)

(·)→ σ
1/2

A
(·)σ1/2

A
. (5)

None of these maps are trace preserving individually, but over-

all the map in (2) is trace preserving on the support of the

state N(σA) [23]. We note here that the main idea behind our

algorithm is to implement the Petz recovery channel as a com-

position of the three maps given in (3)–(5), while taking into

account the fact that the overall map in (2) is trace-preserving

in order to implement it deterministically with some desired

accuracy.

Block-encoding—The Petz recovery channel depends on

the state σA, and so our algorithm needs some form of ac-

cess to it. In order to cover a wide range of scenarios, we

employ the block-encoding formalism, which generalizes the

most common input models for matrices used in quantum al-

gorithms [36, 37].

Let ‖·‖ denote the spectral norm of a matrix (also known as

the Schatten ∞-norm). For a complex matrix A and α ≥ ‖A‖,
the matrix A/α can be represented as the upper-left block of a

unitary matrix:

U =

[
A/α ·
· ·

]
⇐⇒ A = α(〈0| ⊗ I)U(|0〉 ⊗ I). (6)

The unitary matrix U is said to be a block-encoding of A.

Henceforth, we do not write identity operators explicitly, but

we instead include system subscripts as a guide. If the linear

map A/α acts on a qubits, then the unitary U can be thought

of as a probabilistic implementation of this map: given an

a-qubit input state |ψ〉, applying the unitary U to the state

|0〉|ψ〉, measuring the first system, and post-selecting on the

|0〉 outcome, the second system contains a state proportional

to A|ψ〉/α.

This generalizes the two most relevant input models in our

case. If we are given copies of the quantum state σA, then

we can implement an (approximate) block-encoding of σA by

using density matrix exponentiation [38, 39] and “taking the

logarithm” of the time evolution [37]. Moreover, if we have

access to a quantum circuit Uσ
RA

that prepares a purification

|ψσ〉RA ≔ Uσ
RA
|0〉R|0〉A of σA, such that TrR[|ψσ〉〈ψσ|RA] = σA,

then we can directly implement an exact block-encoding ofσA

with only two uses of Uσ
RA

as follows [36, 37]:

Vσ
RAA′ ≔ (Uσ

RA)†(IR ⊗ SWAPAA′ )U
σ
RA =

[
σA ·
· ·

]
, (7)

where system A′ is isomorphic to system A.

Assumptions—The resources that we use for implementing

the Petz recovery channel are as follows: 1) Quantum cir-

cuits UσA and UN(σA) that are (approximate) block-encodings

of σA and N(σA), respectively, and 2) a quantum circuit

UN
E′A→EB

that implements the channel N, in the sense that

UN
E′A→EB

|0〉E′ =: VN
A→EB

, where VN
A→EB

is an isometric exten-

sion of N satisfying TrE[VN
A→EB

(ωA)(VN
A→EB

)†] = N(ωA), for

every input density operator ωA.

We note that, given an efficient description of the channel N

in terms of its Kraus operators, the unitary UN
E′A→EB

can be

efficiently implemented on a quantum computer [40]. Also,

given copies or “purified access” to σA, we can achieve the

corresponding access toN(σA) after applying UN
E′A→EB

, which

then results in an efficient block-encoding for N(σA).

Rewriting the Petz recovery channel—Eq. (4) calls for the

application of the adjoint N† of the channel N. We now

explain how this can be accomplished using UN
E′A→EB

. The

action of the adjoint on an arbitrary operator ωB is given

by N†(ωB) = 〈0|E′UN †(IE ⊗ ωB)UN|0〉E′ [11]. Let ΓEẼ ≔

|Γ〉〈Γ|EẼ denote an operator proportional to the maximally en-

tangled state on E and a reference system Ẽ, where |Γ〉EẼ ≔∑dE−1

i=0
|i〉E |i〉Ẽ and dE is the dimension of system E. Then ex-

tending the identity operator with ΓEẼ , we rewrite the previous

identity as

N†(ωB) = TrẼ[〈0|E′ (UN
E′A→EB)†

(
ΓEẼ ⊗ ωB

)
UN

E′A→EB |0〉E′ ].
(8)

Now the interpretation of the adjoint map as a probabilis-

tic quantum operation is clear: the adjoint map N† acting on

the operator ωB can be applied by tensoring in the maximally

entangled state ΓEẼ/dE , performing the inverse of the uni-

tary UN, measuring the system E′, accepting if the all-zeros

outcome occurs, and finally, ignoring the system Ẽ (which

corresponds to tracing it out).

Thus, our plan is to implement the linear extension of the

adjoint map, as given in (8). Sandwiching this between the

other two maps in (3) and (5) comprising the Petz recovery

channel, we obtain the following isometric extension of the

Petz recovery channel:

VP

B→ẼA
≔ (〈0|E′⊗IẼ⊗σ

1
2

A
)(UN

E′A→EB)†(|Γ〉EẼ⊗[N(σA)]−
1
2 ). (9)

Tracing over Ẽ then implements the Petz recovery channel

P
σ,N

B→A
(ωB). Note that in the rewriting above, the implementa-

tion of the adjoint map discussed in the preceding paragraph
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is no longer contiguous. It proceeds in two phases: the appli-

cation of the unitary (UN
E′A→EB

)† before multiplication by σ
1/2

A

(which applies (5)); and the measurement and post-selection

after that step.

Quantum singular value transformation—Our implemen-

tation is based on quantum singular value transformation

(QSVT) [37]. QSVT transforms the singular values of a

block-encoded matrix and thus provides an efficient means

of quantum matrix arithmetic. Often we need to rely on

approximations, and so when doing so, we keep track of

the error/precision δ, as well as the sub-normalization fac-

tor α: we say that U is an (α, δ)-block-encoding of A if

‖A − α(〈0| ⊗ I)U(|0〉 ⊗ I)‖ ≤ δ.
In what follows, we manipulate block-encodings Uρ of den-

sity operators ρ. The power of QSVT is that it allows for trans-

forming Uρ to a block-encoding of f̃ (ρ), where f̃ is a function

applied to the singular values of its argument. More precisely,

f̃ denotes a polynomial approximation of some function f ; in

view of the maps given in (3) and (5) above, the particular

functions of interest here are f1(x) ≔ x−1/2 and f2(x) ≔ x1/2.

The complexity of realizing the transformed block-

encoding unitary U f̃ (ρ) is stated in terms of the number of uses

of Uρ (which dominates the overall gate complexity), and it

depends on the parameters of the functional approximation f̃ .

For a function f , let ‖ f (x)‖I ≔ supx∈I| f (x)|. Using techniques

from [41], for the two functions above, one can find polyno-

mial approximations f̃1, f̃2 such that θ1/2

2

∥∥∥ f̃1(x) − x−1/2
∥∥∥

[θ,1]
≤

δ, and 1
2

∥∥∥ f̃2(x) − x1/2
∥∥∥

[θ,1]
≤ δ for θ, δ ∈ (0, 1/2]. If ρ has

minimum singular value λmin, then it suffices to set θ ≤ λmin.

Since 1/λmin behaves like a “condition number” for ρ, being

proportional to the difficulty of transforming ρ, we denote it

with the symbol κ and employ this notation later. Indeed, us-

ing the functional approximations from [41], QSVT achieves

the desired transformations up to the errors indicated above,

with O
(

1
θ

log 1
δ

)
uses of Uρ.

The quantum algorithm—We implement the isometric ex-

tension of the Petz recovery channel given in (9). This con-

sists of applying the maps in (3), (4), and (5) sequentially,

with the first and third steps employing QSVT. Eq. (9) also

has a measurement component as the final step, arising from

the implementation of the map in (4). By exploiting the

trace-preserving property of the Petz recovery channel, we

amplify the probability of success of this measurement (i.e.,

the projection onto |0〉E′ ) using oblivious amplitude amplifica-

tion [42], which is a special case of QSVT [37]. Overall, the

implementation is precise up to ε error in diamond distance

[43] (see [11] for a definition of diamond distance). Theo-

rem 1 below states the guarantees of this technique.

Theorem 1 Let Nσ, NN(σ) and NN denote the number of el-

ementary quantum gates needed to realize the unitaries UσA ,

UN(σA), and UN
E′A→EB

, respectively (noting that in our appli-

cations NN(σ) ≤ Nσ + NN). Let κσ denote an upper bound on

the reciprocal of the minimum non-zero eigenvalue of σA, and

correspondingly, let κN(σ) denote the same for N(σA). There

exists a quantum algorithm realizing the channel P̃
σA ,N

B→A
, which

is an approximate implementation of the ideal Petz recovery

channel in (2), in the sense that

∥∥∥P̃σA,N

B→A
− PσA ,N

B→A

∥∥∥⋄ ≤ ε, (10)

with gate complexity (up to poly-logarithmic factors)

Õ
(√

dEκN(σ)

(
κN(σ)NN(σ)+NN+Nσ min

(
κσ, dEκN(σ)/ε

2
)))
.

(11)

In (11), dE is the dimension of the system E, which is not

smaller than the Kraus rank of the channel N(·).

In the Supplementary Material 1, we provide a modified al-

gorithm that substitutes the dependence on dE in (11) with the

rank of the state Ñ(σ), where Ñ is a channel complementary

to N [11]. For certain choices of N and σ, this provides a

dramatic reduction in the runtime.

We now break the algorithm down into its four steps and

analyze each step individually (assuming without loss of gen-

erality that ε = O(1)). We indicate the steps using the numbers

(1)-(4).

(1) To simulate the first step of the Petz recovery chan-

nel, as described by (3), we transform the block-encoding

of N(σA) to a

(
2
√
κN(σ),

O(ε)√
dE

)
-block-encoding U

f̃1(N(σA))

R′B

of [N(σA)]−1/2 using QSVT, which has gate complexity

O
(
κN(σ)NN(σ) log dE

ε

)
. Then the following error bound holds

∥∥∥ f̃1(N(σA)) − (N(σA))−1/2
∥∥∥ ≤ O(ε)/

√
dE , (12)

which suffices for our purposes, as shown later.

(2) Let Ẽ be a system with dimension equal to that of E.

The second step of the algorithm is simply to prepare the

maximally entangled state |Φ〉EẼ ≔ |Γ〉EẼ/
√

dE alongside the

state prepared above, and then apply the unitary (UN
AE′→BE

)†.

Note that |Φ〉EẼ is a normalized quantum state, introducing an

additional factor of 1
dE

in the output density operator, which

resurfaces in the subnormalization factor of the overall unitary

(see (15)). The maximally entangled state |Φ〉EẼ is prepared

by means of a unitary UΦ
EẼ

acting on the state |0〉EẼ , so that

|Φ〉EẼ ≔ UΦ
EẼ
|0〉EẼ . Note that the unitary UΦ

EẼ
is easy to im-

plement. For example, if systems E and Ẽ consist of qubits,

one can apply Hadamard gates on the qubits of E and CNOT

gates between pairs of qubits of E and Ẽ. In this step, we

have described the first half of the procedure for implement-

ing a linear extension of (4); the final part, which consists of

measurement and post-selection, is deferred to the fourth step.

(3) The third step of the algorithm is to apply an approx-

imation of the map in (5) that conjugates the state by σ
1/2

A
.

Analogous to the first step, we transform the block-encoding

of σA to a

(
2,

O(ε)√
dEκN(σ)

)
-block-encoding U

f̃2(σA)

R′′A of f̃2(σA) us-

ing QSVT, which has gate complexity O
(
κσNσ log

(
dEκN(σ)

ε

))
.

1 The Supplementary Material also includes Ref. [44].
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Then the following error bound holds
∥∥∥ f̃2(σA) − σ1/2

A

∥∥∥ ≤ O(ε)/
√

dEκN(σ). (13)

We can now apply the unitary U
f̃2(σA)

R′′A to the output of

Step 2. In detail, letting ρA denote the output state of Step 2,

we tensor in the state |0〉〈0|R′′ to the input state ρA and perform

the unitary U
f̃2(σA)

R′′A .

Let us summarize the algorithm up to this point. We have

described the addition of auxiliary systems as happening sep-

arately in each step. However, we are free to tensor them in

to the input state ωB at the start, enlarging the input state to

|0〉〈0|R′′ ⊗ |0〉〈0|EẼ ⊗ |0〉〈0|R′ ⊗ ωB. Then to this state, we apply

the following product of unitaries:

W̃ ≔ U
f̃2(σA)

R′′A

(
UN

E′A→EB

)†(
UΦ

EẼ
⊗ U

f̃1(N(σA))

R′B

)
, (14)

where U
f̃2(σA)

R′′A and U
f̃1(N(σA))

R′B are implemented using QSVT.

The unitary W̃ approximates the isometric extension in (9) and

can be represented as the following block-encoding:

W̃ =


1
4

√
1

dEκN(σ)
ṼP

B→ẼA
·

· ·

, (15)

where the linear operator ṼP

B→ẼA
is an approximate isometric

extension of the Petz recovery channel and is defined through

its action on a ket |ψ〉B as

ṼP

B→ẼA
|ψ〉B ≔ f̃2(σA)

(
VN

A→EB

)†
f̃1(N(σA))|Γ〉EẼ |ψ〉B. (16)

After applying W̃ to the enlarged input state, we would like

to measure the R′′E′R′ systems and obtain the all-zeros state

as the outcome (which corresponds to the top-left block of W̃).

Receiving this outcome signals the successful implementation

of the desired map ṼP

B→ẼA
, up to a sub-normalization factor of

4
√
κN(σ)dE . To compare this to the ideal isometric extension

in (9), we should account for the accumulated errors due to the

approximate implementations of N(σA)−1/2 and σ
1/2

A
in W̃ . It

follows that
∥∥∥ṼP

B→ẼA
− VP

B→ẼA

∥∥∥ ≤ O(ε), (17)

where ṼP

B→ẼA
is defined in (16) and VP

B→ẼA
in (9). To see this,

observe that the left-hand side of (17) can be bounded from

above by the following quantity:

∥∥∥σ1/2

A
− f̃2(σA)

∥∥∥
∥∥∥∥∥
(
VN

A→EB

)†
N(σA)−1/2|Γ〉EẼ

∥∥∥∥∥ +
∥∥∥∥∥ f̃2(σA)

(
VN

A→EB

)†∥∥∥∥∥
∥∥∥|Γ〉EẼ

∥∥∥
∥∥∥N(σA)−1/2 − f̃1(N(σA))

∥∥∥, (18)

which follows from applying the triangle inequality and sub-

multiplicativity of the spectral norm. Noting that |Γ〉EẼ is the

unnormalized maximally-entangled vector, we further bound

the following terms:
∥∥∥∥∥
(
VN

A→EB

)†
N(σA)−1/2|Γ〉EẼ

∥∥∥∥∥ ≤
√

dEκN(σA), (19)

∥∥∥∥∥ f̃2(σA)
(
VN

A→EB

)†∥∥∥∥∥
∥∥∥|Γ〉EẼ

∥∥∥ ≤ 2
√

dE . (20)

The second bound follows because f̃2(σA) is a block-encoding

with norm at most 2. Putting (18)–(20) together with the

bounds in (12) and (13), we conclude an overall error between

VP and ṼP of O(ε).

(4) Finally, we move on to the last step, which is a mea-

surement of the R′′E′R′ systems. Eq. (15) makes it clear

that the probability psuccess of measuring the all-zeros state,

at this point, is approximately 1
16dEκN(σ)

. We would like to am-

plify this probability, and so we use oblivious amplitude am-

plification to implement an approximate projection onto this

state. This too can be achieved using QSVT techniques [37]

and requires a number of repetitions of W̃ that scales as

O
(
1/
√

psuccess

)
, which in this case is Nrep ≔ O

(√
dEκN(σ)

)
.

After applying (robust) oblivious amplitude amplification [45,

Theorem 28], we obtain a unitary that is a (1,O(ε))-block-

encoding of the isometric extension VP

B→ẼA
, providing an

O(ε)-approximate implementation of the Petz recovery chan-

nel.

The complexity of our algorithm is given by Nrep times

the complexity of implementing W̃. As we discussed pre-

viously, the cost of implementing the first step in W̃ is

O
(
κN(σ)NN(σ) log dE

ε

)
. The complexity of implementing the

second step is O
(
NN + log dE

)
, where the logarithmic term

is the cost of implementing UΦ
EẼ

. Finally, the complexity

of the third step is O
(
κσNσ log

dEκN(σ)

ε

)
. An alternative for

this last step is to consider choosing a threshold θ higher

than 1/κσ, and approximating the square root function by

constant zero below the threshold. Indeed, then choosing

θ ≈ ε2/(dEκN(σ)) suffices, resulting in the alternative com-

plexity O
(

dEκN(σ)

ε2 Nσ log
dEκN(σ)

ε

)
of the third step.

Lower bounds—Our algorithm uses the forward channel

unitary UN
E′A→EB

about O
(√

dEκN(σ)

)
times. We now prove

that there is no generally applicable algorithm that uses

UN
E′A→EB

fewer than Ω
(
d

1
2
−α

E
κ
α
N(σ)

)
times, for all α ∈ [0, 1

2
],

thereby ruling out the possibility of large improvements on

our algorithm that would simultaneously improve the depen-

dence on both parameters dE and κN(σ).

We consider solving the problem of unstructured search of

N ≥ 2 elements with only a single marked element. Let O be

a search oracle that recognizes the single marked element. Let

the input state σA be the maximally mixed state representing a

uniformly random index i ∈ [N]. The forward channel NA→B

applies the search oracle and outputs its output, which is equal

to 1 if i is the marked element and is equal to 0 otherwise.

Hence NA→B(σA) = diag(1 − 1
N
, 1

N
) and κN(σ) = dE = N. Let

PN,σA be the Petz recovery channel defined from N and σA

as specified above. Now applying the exact channel PN,σA on

the state ωB = |1〉〈1| finds the marked element with certainty.

Thus, for every constant c < 1, applying a c-approximate

channel P̃N,σA on ωB still finds a marked element with prob-

ability at least 1 − c. This requires Ω(
√

N) = Ω
(
d

1
2
−α

E
κ
α
N(σ)

)

uses of O, as the well known quantum search lower bound

states [46].

Pretty good measurement—One can use our algorithm to
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implement the pretty good measurement [1–5], which is a spe-

cial case of the Petz map. In this application, one is given

a set {σx
B
}x of states and a probability distribution pX . Let

σXB denote the following classical–quantum state: σXB ≔∑
x pX(x)|x〉〈x|X ⊗ σx

B
. Let NXB→B ≔ TrX be the partial trace

channel that discards system X.

We now plug these choices into (2). The adjoint map

(NXB→B)† appends the identity on system X. Let σB ≔

NXB→B(σXB) =
∑

x pX(x)σx
B
. The resulting Petz recovery

channel is as follows:

P
σXB ,TrX

B→XB
(ωB) ≔

∑

x

[x]X ⊗ pX(x)
(
σx

B

) 1
2 (σB)−

1
2ωB(σB)−

1
2
(
σx

B

) 1
2 ,

which is known as the “pretty good instrument” [23] and

where [x] ≡ |x〉〈x|. This is a generalization of the pretty

good measurement that has a quantum output in addition to

the usual classical measurement output; the PGM is obtained

by discarding the quantum output.

We check the necessary assumptions for our technique

against what is potentially available for experiments. The iso-

metric extension of the channel TrX(·) is simply the identity.

If we have copies of σXB then our algorithm is applicable, but

it is more efficient in the case when we can prepare a purifi-

cation of σXB. Applying Theorem 1, we arrive at a quantum

algorithm implementing the pretty good instrument with per-

formance guarantees as in (10) and (11), where

dE = |X|, κN(σ) = κσ, κσ = min
x

pX(x)κσx
B
. (21)

Conclusion—We have developed a quantum algorithm for

implementing the Petz recovery channel and the pretty good

measurement. This solves an important open problem in

quantum computation, and more generally, it opens up a new

research paradigm for realizing fully quantum Bayesian infer-

ence on quantum computers.
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