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We develop a rigorous theoretical framework based on principles from statistical mechanics that
allows one to predict the equilibrium response of classical non-Hermitian arrangements in the weakly
nonlinear regime. In this respect, we demonstrate that a pseudo-Hermitian configuration can al-
ways be driven into thermal equilibrium when a proper nonlinear operator is paired with the linear
Hamiltonian of the system. We show that, in this case, the system will thermodynamically settle
into an irregular pattern that does not resemble any known statistical distribution. Interestingly,
this stable equilibrium response is associated with a Rayleigh-Jeans law when viewed within an
appropriately transformed space that displays unitary dynamics. By considering a non-Hermitian
Su-SchriefferHeeger chain, our results indicate that the thermodynamic equilibrium will always favor
the edge modes instead of the ground state, in stark contrast to conventional nonlinear Hermitian
configurations. Moreover, non-Hermitian lattices are shown to exhibit unusually high heat capaci-
ties, potentially acting as optical heat reservoirs to other Hermitian systems, by employing only a
small number of sites and low power levels.

In the last decade, optics has witnessed a renewal of
interest in non-Hermitian settings with the advent of
now highly adopted concepts emerging from theories like
parity-time (PT)-symmetry [1, 2]. This led to a theoret-
ical and experimental burst of activities that unraveled
a host of novel phenomena that have no counterpart in
Hermitian environments [3–13].These include, for exam-
ple, the demonstration of the non-Hermitian skin effect
(NHSE), a process that can arise due to the unique topo-
logical structure associated with non-Hermiticity [14–
25]. In recent years, substantial effort has been devoted
to pseudo-Hermitian arrangements which can always be
associated with non-Hermitian Hamiltonians exhibiting
completely real eigenspectra [26, 27]. These configura-
tions are endowed with a richer set of properties, stem-
ming from their ability to form exceptional points in their
parameter space [28–33]. The unique set of attributes as-
sociated with pseudo-Hermiticity have been explored in
a variety of photonic settings [34–36].

The interplay between nonlinearity and non-
Hermiticity can lead to a wealth of novel optical
phenomena in a variety of photonic settings. Over
the years, it has been systematically explored, mainly
within the context of optical solitons [37–39], in various
amplifying systems governed by Ginzburg-Landau
equations as well as in pseudo-Hermitian arrangements
[40–48]. Meanwhile, a regime that to this day remains
largely unexplored emerges when considering multimode
non-Hermitian configurations under weak nonlinear
conditions, where intricate wave-mixing processes are at
play. In these settings, the analysis of their dynamic re-
sponse presents an utterly complex problem - especially
when hundreds or even thousands of modes are involved.

Consequently, the only pragmatic approach to decipher
the behavior of these configurations is by deploying
notions from thermodynamics and statistical mechanics
[49]. To this end, many challenges still remain, given
that the integrals of motion, a necessary ingredient for
the development of a thermodynamic theory [49–52],
do not always manifest themselves. Moreover, even
pseudo-Hermitian configurations can exhibit extreme
instabilities under nonlinear conditions which may result
in an exponential growth of power and consequently the
absence of an equilibrium response [53, 54].

To address these issues, in this Letter, we pursue a dual
objective; (i) the classification of non-Hermitian systems
that can display thermalization, and (ii) the development
of a consistent theoretical framework for predicting their
modal occupancy distribution at equilibrium. Here, the
first objective will be carried out by developing a uni-
versal set of rules that will dictate whether a classical
non-Hermitian system can be driven into thermal equi-
librium. In this respect, we focus on arrangements that
can self-thermalize in isolation, as opposed to open sys-
tems that are coupled to a heat bath. Although, in prin-
ciple, a non-Hermitian system cannot be isolated due to
gain and dissipation effects, the intrinsic invariants that
can manifest themselves in these arrangemeents will be
proven sufficient in describing the thermalization process.

In developing an optical thermodynamic theory for
nonlinear optical configurations, one must first define two
invariants of motion. In Hermitian systems, these can be
expressed using the projected amplitudes cn on the linear
eigenbasis as

P =
∑

n |cn|2, U = −
∑

n εn|cn|2 (1)

where n is the eigenmode index, εn represent the eigen-
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values of the linear spectrum, P is the total physical
power and U corresponds to the linear part of the to-
tal Hamiltonian HT = U + HNL (the nonlinear compo-
nent HNL is omitted in the weakly nonlinear regime).
The invariance requirement for P restricts the develop-
ment of such a thermodynamic theory to only conser-
vative and in extension fully Hermitian models. There-
fore, for non-Hermitian systems, one must identify new
integrals of motion. Such invariants are manifested in
pseudo-Hermitian arrangements due to their association
with a representation that displays unitary dynamics, a
property that is absent in structures with complex spec-
tra.

We begin our analysis by first defining a generic
pseudo-Hermitian nonlinear system with a real eigen-
spectrum {εn} described by the following equation.

i
dai
dt

= HL
ijaj +HNL

ij aj (2)

where the linear non-Hermitian Hamiltonian HL is ac-
companied by the non-linear operator HNL. This oper-
ator can be, for example, Kerr nonlinear γ|ai|2 where, γ
is normalized to unity. Here, the system will be operated
in the weakly non-linear regime by appropriately control-
ling the magnitude of the total optical power (P ). The
linear Hamiltonian HL in Eq. (1) is associated with a
biorthogonal basis |v〉 that acts as a reciprocal space to
the non-orthogonal eigenmode basis |u〉.

We analyze this configuration by adopting a similarity
transformation Q (i.e. Q(HL + HNL)Q−1), that ren-
ders the linear part of the Hamiltonian H ′L = QHLQ−1

into a fully Hermitian operator. Such a transformation
can always be found for pseudo-Hermitian arrangements
(such as a PT-symmetric system in the unbroken phase),
thus providing an equivalent conservative representation
that displays an identical spectrum with the original non-
Hermitian Hamiltonian [26, 27]. This property allows one
to monitor the underpinning dynamics in a Hermitian en-
vironment where linear integrals of motion exist.

To observe thermalization in pseudo-Hermitian ar-
rangements one must first impose two additional neces-
sary conditions, beyond the emergence of the linear in-
variants. The first is the presence of a physical mecha-
nism that can initiate the ergodic multi-wave mixing pro-
cess. Here, this role is undertaken by the nonlinear oper-
ator HNL which can lead to chaotic evolution and hence
thermalization - a process that is enabled irrespective of
the operators particular structure. The second condition
entails that the linear invariants must persist after engag-
ing HNL in Eq.(2). For this to be true, the nonlinear part
of the transformation, H ′NL = QHNLQ−1 must also cor-
respond to a Hermitian operator. Otherwise, one cannot
establish a proper representation associated with a uni-
tary evolution under nonlinear conditions and the linear
conserved quantities will no longer manifest themselves.
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FIG. 1. (a) A PT-symmetric configuration of optical cavi-
ties with alternating gain and loss (κ = 1, γ = 0.1). During
linear evolution, the physical power oscillates and the pseudo-
power now assumes the role of the invariant of motion. During
nonlinear evolution no invariant can be identified and power
is expected to grow indefinitely. The time in figures is mea-
sured in inverse coupling units. (b) An arrangement of optical
cavities with asymmetric couplings (κ1 = 1, κ2 = 2, δ = 0.2).
Two invariants of motion (Ps and Us) are now present in both
the linear and nonlinear regime. (c) The linear eigenspectrum
of the system in (b). (d) The average power occupancies of
the same system settle into a stable equilibrium state in the
original supermode basis.

To verify the validity of these claims we begin by ex-
amining two particular systems with a Kerr-type nonlin-
earity; a PT-symmetric one-dimensional chain of optical
elements and a non-Hermitian SSH model with asymmet-
ric couplings between nearest-neighbors (the real-space
Hamiltonians are given in Supplementary Note. II). A
Kerr nonlinearity corresponds to a Hermitian nonlinear
operator with diagonal elements given by |ai|2 (before
the transformation is applied). A sufficient condition for
preserving the Hermiticity of QHNLQ−1 is for Q to be
an orthogonal matrix (QTQ = QQT = I). However,
not both pseudo-Hermitian systems can transform un-
der an orthogonal matrix, a property that, as we will
see, restricts which of the two configurations can exhibit
thermalization.

In order to identify the presence of an equilibrium re-
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sponse, it is necessary to analyze the time evolution of
various relevant quantities. In Fig. 1 we plot the time
dynamics of four quantities by exciting simultaneously
10 out of the 21 linear lattice modes (supermodes) in a
lattice with N = 21 sites. These four quantities cor-
responds to the physical power P , the effective internal
energy U , the pseudo power Ps and the pseudo energy Us.
These two pairs are defined according to Eq.(1) within
the non-Hermitian and Hermitian representation, respec-
tively. In particular the two Hermitian quantities can
be expressed according to Eq.(1) by Ps =

∑
n |c′n|2 and

Us =
∑

n εn|cn′ |2 via the Hermitian projected amplitudes
c′n.

In the linear regime of Fig. 1a, the physical power
P oscillates in both systems, an expected consequence
of pseudo-Hermiticity, while the transformed power Ps

remains constant as imposed by the underlying unitary
evolution of the Hermitian representation. This picture
changes when the Kerr operator is involved. In this case,
the PT-symmetric system oscillates in both the physi-
cal and transformed representation while exponentially
gaining power as time progresses. On the other hand,
the dynamic evolution of the SSH non-Hermitian chain
remains stable for arbitrarily large times. These two dif-
ferent outcomes are directly correlated to the properties
of the transformation matrix Q. In the case of the SSH
chain, Q is an orthogonal matrix (and in particular diag-
onal), in agreement with the requirement imposed pre-
viously. The stability of the nonlinear SSH chain leads
to a well-defined equilibrium state for the average modal
occupancy strengths as shown in Fig. 1(d), for a lat-
tice of N = 21 sites. However, the distribution is not
associated with any familiar form (for example with the
Rayleigh-Jeans distribution encountered in optics [55])
and requires further investigation.

In what follows, we focus our study on arrangements
with anisotropic couplings due to the instability exhib-
ited by PT-symmetric systems that forbids thermaliza-
tion under Kerr-type nonlinearities. Nonetheless, the for-
malism that will be laid herein will be applicable to any
pseudo-Hermitian configuration if one finds a proper non-
linear operator that preserves Hermiticity under a simi-
larity transformation Q. In this respect, in Supplemen-
tary Note. IV, we outline a strategy that allows one
to properly identify such a nonlinear operator and we
showcase the emergence of thermalization and a stable
equilibrium response for the PT-symmetric chain of Fig.
1a. Therefore, we prove, in principle, that any classical
pseudo-Hermitian system can thermalize.

Having identified two integrals of motion we now seek
to derive an equilibrium distribution for the linear modal
amplitudes |cn|2. To this end, we begin in the Hermitian
representation and maximize the optical entropy defined
by S =

∑
ln|c′n|2 subjected to the two constrains via

the use of Lagrange multipliers (see Supplementary Note
I.). This process results in a Rayleigh-Jeans law for the
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FIG. 2. (a) A non-linear non-Hermitian SSH chain with κ1 =
1, κ2 = 2 and δ = 0.2 reaches equilibrium in the original linear
modal basis that matches a weighted RJ distribution. (b)
The |c′n|2 magnitudes in the Hermitian representation settle
into a regular RJ distribution. The blue shaded areas denote
the initial distribution, which is chosen to be uniform in the
Hermitian-projected space. (c) Equilibrium state of the SSH
chain with κ1 = 1, κ2 = 2 and random δn terms sampled
uniformly from [0, 1] (d) The modal occupancies are precisely
predicted for a 2D lattice with anisotropic couplings (κ1 = 1,
κ2 = 2, κ = 1 and δ = 0.5) employing 3 unit cells (36 sites)
through the corresponding Hermitian lattice.

average Hermitian modal amplitudes |c′n|, given by

〈|c′n|2〉 = −T/(εn + µ) (3)

where the two intensive variables T and µ correspond
to an effective optical temperature and optical chemical
potential associated with Us and Ps respectively.

To derive an equilibrium distibution in the original
eigenbasis we must first apply a reverse transformation
on the amplitudes |cn|. The modal occupancies between
the two representations are directly related via a ma-
trix operator, cn =

∑
mAnmc

′
m =

∑
m

〈
vn|Q−1|um

〉
c′m.

However, the distribution given by Eq.(3) corresponds to
a statistical average and therefore cannot be treated di-
rectly in this form, due to emergent correlations between
the modes. Nonetheless, considering that a similarity
transformation preserves the eigenstructure of HL, the
operator A reduces always into a purely diagonal matrix
(Anm = 0, Ann ≡ An 6= 0). In this respect, a direct
transformation of Eq.(3) can be performed, resulting in
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a weighted Raylegh-Jeans (RJ) law

〈|cn|2〉 = −(1/A2
n)T/(εn + µ) (4)

This equation provides a direct prediction of the aver-
age modal occupancies for a pseudo-Hermitian system in
the weakly non-linear regime, as expressed in the origi-
nal eigenbase. Likewise, the two integrals of motion can
be tranformed to the original eigenbasis, acquiring the
following forms

Ps =
∑

nA
2
n|cn|2, Us = −

∑
nA

2
nεn|cn|2 (5)

The intensive variables T and µ can be calculated by
combining Eqs. (4) and (5) and the universal equation
of state which is given by Us − µPs = MT , with M
representing the total number of lattice supermodes. In
this respect, one can always predict the equilibrium RJ
distribution for any initial excitation.

To validate this theoretical framework, we rely on nu-
merical simulations in the SSH non-Hermitian optical
chain of Fig. 1b. The lattice comprises a total of N = 21
sites with κ1 = 1, κ2 = 2, δ = 0.4 and is truncated appro-
priately so that a pair of topological edge states emerges
at zero energy. In order to observe an equilibrium state,
we obtain the modal occupancies by averaging over 200
individual ensembles. Each ensemble corresponds to a
separate simulation run, initiated by a light excitation
that uniformly populates a continuous set of supermodes
within the Hermitian representation (in this example, all
modes with eigenvalues in the range −4 < εn < 1) al-
beit with random phases. This enforces the same values
for the two invariants (Us and Ps of Eq.(5)), for each
simulation run. Alternatively, an equivalent result can
be extracted via a single simulation run, by averaging
or sampling on the time axis, a direct manifestation of
ergodicity.

Figure 2a illustrates a comparison between the the-
oretically predicted and simulated averages of the lin-
ear modal amplitudes at equilibrium for an initial state
with Ps = 6 and Us = −2. The projected amplitudes
within the linear mode basis are properly normalized at
unity (〈vn|un〉 = 1 and 〈un|un〉 = 1). After a sufficiently
long evolution time, the numerical results relax into the
weighted Rayleigh-Jeans distribution of Eq.(4). In this
particular example, the weights 1/A2

9, 1/A
2
10 that corre-

spond to the two topological edge states acquire higher
values in relation to the bulk modes and as a result the
edge modes accumulate more power at equilibrium. This
is in stark contrast to conventional Hermitian systems
where at thermal equilibrium the fundamental (ground
state) or highest order mode is always favored for nega-
tive and positive temperatures, respectively. Moreover,
in Fig. 2b we observe the evolution in the transformed
representation and verify the the equilibrium response
fully agrees with the RJ law given by Eq.(3).

We next proceed to study a number of more intri-
cate examples.A straightforward extension of the simple
non-Hermitian SSH chain can be established by includ-
ing random anisotropy terms δn. Figure 2c verifies the
correspondence between the theoretically predicted and
simulated outcome at equilibrium, considering a lattice
excitation with Ps = 6 and Us = −1. Due to the random-
ness of δn on the spatial axis, the weights An of Eq.(4)
become irregular, resulting in a RJ-like curve with strong
noise. Nonetheless, the prediction remains highly accu-
rate. Next, we consider a two-dimensional non-Hermitian
lattice that can exhibit a higher-order non-Hermitian
skin effect [56]. We simulate a highly anisotropic case
with coupling parameters (κ1 = 1, δ = 2, κ = 1) and ex-
tract the equilibrium distribution of power amongst the
linear modes of the system. The continuous curve of Fig.
2d corresponds to the theoretically predicted distribution
and provides once again an accurate estimate.

The previous examples showcased that a prediction of
the equilibrium response is attainable with high accu-
racy but did not yet reveal the true nature of the in-
tensive variables T and µ. To provide further insight
into this aspect, we explore multi-lattice interactions,
i.e. cases where two or more lattices are allowed to op-
tically interact and therefore exchange optical energies
Us. In Hermitian systems, this process causes a relax-
ation to a common final temperature in both lattices, an
outcome consistent with classical thermodynamics. In
this respect we introduce an additional nonlinear opera-
tor HCP to Eq.(2) that couples two oppositely polarized
lattices (with state vectors an and bn) via cross-phase
terms (HCP

a = |an|2bn, HCP
b = |bn|2an) (see Supplemen-

tary Note II.). The matrices HCP and HNL are both
diagonal which simultaneously guarantee the Hermiticity
of both the transformed nonlinear QHNLQ−1 and cross
phase QHCPQ−1 operators.

In the example of Fig. 3 we illustrate a comparison
between two cases, a Hermitian-to-Hermitian and a non-
Hemritian-to-Hermitian square lattice pairing. In either
case, both lattices comprise a total of 50 elements and in-
teract on the first and last row of sites which they share
in common. We excite all four lattices with the same
physical power P = 0.5 and different Us corresponding
to distinct optical temperatures. Figure 3c and 3d dis-
play the temperature variation over a long period of time
until a common value is attained. In the non-Hermitian-
to-Hermitian pairing, the final value for T ends up much
closer to the non-Hemritian system’s original value. This
effect is directly correlated to an unusually large opti-
cal heat capacity exhibited by the non-Hermitian sys-
tem (defined by C = ∂Us/∂T ), a measure that demon-
strates the amount of internal energy exchange required
for an infinitesimal variation of temperature. Figure 3f
displays the heat capacity of the two lattices, over the
temperature range [−0.7, 0.7], revealing a large difference
in magnitude between the two curves, an indication that
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FIG. 3. (a) Two Hermitian square lattices with κ = 1 are
excited with oppositely polarized light, sharing the column of
elements shaded in red. The cross-phase modulation operator
HCP allows exchange of optical internal energy between the
two arrangements. (b) A non-Hermitian lattice with κ = 1
and δ = 0.5 is paired to a Hermitian lattice with κ = 2. (c)
The lattices of (a), excited with power P = 0.5 (Ps = 0.5)
at different temperatures TLeft and TRight eventually reach
a common temperature T = 0.18. (d) The non-Hermitian
lattice of (b) acts as a heat bath to its Hermitian counterpart.
Both are excited with P = 0.5 (Ps = 6 and Ps = 0.5 for
the two lattices respectively). (e) The eigenmodes of the two
lattices in (b) sorted by their eigenvalues. The shaded regions
indicate the excitation used in (d). (f) Heat Capacity C =
∂Us/∂T of the two lattices in (b).

a similar variation in temperature requires a much larger
change for Us in the non-Hermitian lattice. Essentially,
a non-Hermitian system can potentially act as an optical
heat reservoir to a secondary optical system by employing
the same number of sites but a much lower power level
to an equivalent all-Hermitian heat bath configuration.

In this work, we developed a theoretical framework ca-
pable of describing thermalization dynamics over a broad
range of nonlinear non-Hermitian systems with on-site
nonlinearities. Within this context, one may explore
different non-Kerr or even nonlocal nonlinear operators
HNL that may allow thermalization in a wider class of
pseudo-Hermitian configurations.
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