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We experimentally engineer a moat-like dispersion in a system of weakly interacting bosons. By
periodically modulating the amplitude of a checkerboard optical lattice, the two lowest isolated
bands are hybridized such that the single particle energy displays a continuum of nearly degenerate
minima that lie along a circle in reciprocal space. The moat-like structure is confirmed by observing
a zero group velocity at nonzero quasimomentum and we directly observe the effect of the modified
dispersion on the trajectory of the center of mass position of the condensate. We measure the
lifetime of condensates loaded into different moat bands at different quasimomenta and compare
to theoretical predictions based on a linear stability analysis of Bogoliubov excitations. We find
that the condensate decay increases rapidly as the quasimomentum is decreased below the radius
of the moat minimum, and argue that such dynamical instability is characteristic of moat-like
dispersions, including spin-orbit coupled systems. The ground state of strongly interacting bosons
in such degenerate energy landscapes is expected to be highly correlated, and our work represents
a step toward realizing fractional quantum Hall-like states of bosons in an optical lattice.

The ground state of systems whose low energy single-
particle states have a continuous degeneracy are typi-
cally strongly correlated and exhibit novel behavior [1–4].
There is significant interest in engineering such continu-
ous ground state degeneracy, one of the simplest cases
being a moat-like dispersion, with a continuum of degen-
erate minima that lie along a closed loop in reciprocal
space. The determination of the interacting many-body
ground state for this simple 1D degeneracy, remains an
interesting problem [5–12]. Even in the weakly interact-
ing, mean field limit, where strong correlations are not
expected, the nature of the low energy states is unclear.
For non-interacting bosons in 3D with a moat dispersion,
the density of states is two-dimensional at low energy,
and Bose-Einstein condensation (BEC) at finite temper-
ature is not expected. Interactions play an important
role in the condensate stability, however, and BEC at fi-
nite temperature has been predicted for the interacting
system [13, 14].

Proposed approaches to produce moat-like energy dis-
persions include inducing Rashba spin-orbit coupling
(SOC) [15] and Floquet engineering the desired band in a
driven optical lattice [11]. In both cases, the modified dis-
persion results from hybridizing different motional states.
Experimentally, approximate moat-like dispersions have
been realized with ultracold atoms using SOC [15–18].
The resulting dispersions retain the discrete rotational
symmetry of the spin-orbit coupling beams, and the moat
minimum consists of 3 or 4 distinct minima instead of a
completely degenerate ring [20].

In this work, we employ a Floquet engineering ap-
proach to realize a system of interacting bosons with a
moat-like dispersion, similar to the proposal in Ref. [11].
The technique does not rely on having a specific atomic
species with a particular spin structure, and can hence
be applied to a range of bosonic and fermionic systems.

Using an optical lattice consisting of a two-dimensional
checkerboard array of one-dimensional tubes, we hy-
bridize [21] its two lowest energy bands [Fig. 1(a)] by

FIG. 1. Generation of a moat band via amplitude modulation.
(a) Lowest bare energy bands of the checkerboard lattice, plot-
ted versus quasimomentum ~q = (qx, qy) over the first Brillouin
zone. (b) Floquet-Bloch band with nearly degenerate moat-
like minima, resulting from hybridization of the bands in (a).
(c) Cross section along qy = 0 of the quasienergy spectrum
ε(~q ) showing both dressed bands. Left: adiabatic preparation
of a condensate, initially occupying the bare ground band,
into the upper band by sweeping the drive frequency down,
starting above resonance. Right: preparation into the lower
band by sweeping the frequency up. (d) Peak-to-peak vari-
ation of ε along the moat, ∆εMOAT, and moat flatness F
versus detuning of the drive. The moat radii are indicated in
the upper axis.
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FIG. 2. Dressed band spacing, bare band admixture and group velocity profiles of the Floquet bands as a function of quasimo-
mentum q, measured along a line passing through the center of the Brillouin zone (BZ1). (a) Spacing ∆ε between the Floquet
bands at two detunings, as measured from quench dynamics. Solid lines indicate calculated spacings. (For δ =−550Hz only,
αm = 0.18.) (b) Measured bare excited band admixture for Floquet states in the moat band. The solid (dashed) lines are
the admixture calculated with (without) mean-field interactions. Marker shapes correspond to different modulation detunings.
The inset shows an example of a single-shot two-dimensional admixture profile within BZ1, calculated from absorption images
of heated clouds like those shown in (c), where dashed lines outline BZ1. (d) Time-averaged group velocity 〈vg〉T for Floquet
states in the moat band. The solid and dashed colored lines are calculated numerically assuming interacting and non-interacting
particles, respectively (see [19]). The dashed (dotted) gray line indicates the group velocity associated with the bare lattice
(free-particle) dispersion.

modulating the lattice depth. The form of the resulting
dressed bands εi(~q ) depends on the frequency fm and
fractional amplitude αm of the modulation [Fig. 1(c)].
(Unless otherwise noted, αm = 0.12.) For drive frequen-
cies near the bare band gap, one of the hybrid bands
(which we denote the “upper” band) has a nearly circu-
lar minimum at nonzero radius qmin [Fig. 1(b)].
Our method is expected to possess a high intrinsic ro-

tational symmetry, allowing for smaller absolute energy
variation along the moat minimum than typical Raman
coupled SOC schemes [15–18]. Figure 1(d) presents two
measures of the moat degeneracy calculated as a function
of the detuning of fm relative to the ~q = 0 bare band gap.
The magnitude of the peak-to-peak amplitude of ε along
the moat, ∆εMOAT, is less than 21Hz over the entire
range. The predicted flatness F , defined as the ratio of
∆εMOAT relative to the local maximum of the band at
~q = 0, is similar to the flatness determined in Ref. [11].
Our experiment begins with a 87Rb BEC in the |F =

1,mF = −1〉 state held in a hybrid trap, consisting of
a crossed optical dipole trap and a vertically offset mag-
netic quadrupole trap. A 2D checkerboard lattice [22, 23]
with λ = 813nm is adiabatically loaded in 200ms to a
depth V0 = 5.9(1)ER, with a staggered offset 0.44(1)ER

between neighboring sites (here, ER = ~
2k2L/2m = h×

3.5 kHz is the single-photon recoil energy, kL = 2π/λ
is the single-photon wave-vector and m is the mass of
87Rb). See [19] for details. This results in the two
lowest bare bands having a spacing at ~q = 0 of h∆0

= h×3.2kHz, both separated from the next nearest
(weakly-coupled) excited band by at least h×5.2kHz.
In the presence of the lattice, the trap frequencies are
ω⊥/2π = 11(1)Hz, ωz/2π = 50(2)Hz, and the atomic
cloud (containing approximately 104 atoms) possesses
an average mean-field interaction energy on the order of
h×125Hz, which drops to h×70Hz in the absence of the

lattice.
We first demonstrate the effectiveness of amplitude

modulation to hybridize the lowest bare bands by mea-
suring the spacing between the dressed bands ∆ε(~q ) for
two different detunings, δ = fm − ∆0. To extract the
values of ∆ε, shown in Fig. 2(a), we observe the bare
band population dynamics after a sudden quench into
the dressed bands [19, 24]. To observe the dynamics, we
measure the relative populations after a band map [25],
where the lattice is ramped off in 800µs. For measure-
ments at nonzero quasimomenta, a kick is imparted to
the condensate before the modulation starts, by sud-
denly translating the magnetic quadrupole field. This
induces oscillatory motion of the cloud along a line pass-
ing through the center of the trap in the unmodulated
lattice. For detuning δ = −550Hz, the measured dressed
band spacing has a minimum ≃ 200Hz (0.06 ER/h) at
q ≃ 0.3 kL, as expected from calculations.
In order to adiabatically prepare the condensate in a

single dressed band, the amplitude modulation coupling
the two bands is slowly turned on, starting off-resonance.
The magnitude and frequency of the coupling are simul-
taneously ramped to their final values in 12 ms starting
at a detuning |δ| > 600Hz [19]. The direction of the fre-
quency sweep determines which dressed band the BEC
is loaded into: a sweep starting blue (red) detuned and
ending close to resonance prepares atoms in the upper
(lower) dressed band [see Fig. 1(c)].
We measure the bare band admixture of the exper-

imentally prepared state immediately after the 12 ms
ramp as a function of ~q and compare it to the expected
bare state populations, see Fig. 2(b). The theoretical pro-
files from a non-interacting Floquet calculation [Fig. 2(b),
dashed lines] capture the magnitude of the admixture,
particularly near the center of the band. A nonlin-
ear mean-field calculation based on the time-dependent
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Gross-Pitaevskii equation [19] improves the overall agree-
ment with the data [Fig. 2(b), solid lines]. The inset
shows an example of the 2D bare band admixture mea-
sured with a heated cloud having a significant spread
around the center of the first Brillouin zone (BZ1), show-
ing the 2D nature of the moat band. The admixture is
more azimuthally homogeneous than the raw populations
[Fig. 2(c)], whose distribution is affected by both stochas-
tic and systematic fluctuations of the initial momentum
of the BEC.

The dispersion ε(~q ) determines the condensate’s center
of mass velocity vg, which is related to the gradient of the
Floquet band according to ∇~q ε = ~〈vg〉T , where 〈. . . 〉T
indicates time-average over a single period T = 1/fm of
the modulation [26–28].

We measured vg under the same conditions used for the
admixture profile [Fig. 2(b)], except that the bare band
population detection was replaced by a diabatic snap-
off of the lattice, which projects the condensate onto its
plane-wave components. Micromotion during the drive
period gives rise to periodic instantaneous vg, which we
account for by averaging over different snap-off times rel-
ative to T . The values of vg were extracted from time-
of-flight (TOF) images by computing the mean velocity
of the momentum peaks, weighted by their populations.
The measured 〈vg〉T profile, presented in Fig. 2(d), is the
result of averaging vg at modulation phases 0, π/2 and π,
corresponding to maximum, average and minimum lat-
tice intensities. A vanishing group velocity for nonzero
~q, a feature easily recognized in the black and red data,
is a clear signature of a band with a moat-like shape.

Spectroscopic measurements like those in Fig. 2 pro-
vide information about dressed energies, but do not cap-
ture the modified dressed state behavior. While the data
in Fig. 2(d) directly show the velocity, it is an instanta-
neous measurement. The modification of vg should im-
pact the motional dynamics of the BEC in the trap, if
the heating of the BEC is sufficiently small relative to
the timescale of the trap.

Figure 3 shows the expected and observed motional dy-
namics of the BEC in the trap after adiabatic preparation
in the upper dressed state with an initial ~q 6= 0 for bands
with different moat radii. Theoretical calculations of the
time evolution of ~q, superimposed on the corresponding
dispersion, are presented in Fig. 3(a). These trajecto-
ries were computed using quasiclassical equations of mo-
tion [29]: d~q/dt = ~

−1ftrap(~rc), d~rc/dt = ~
−1∇~q ε, where

ftrap is the force exerted by the harmonic trap, ~rc is the
condensate’s position, and ε is the quasienergy spectrum
inferred from the calibration of lattice parameters. Ini-
tial conditions (~q0, ~rc0) are the same for all curves, and
were chosen so that the trajectories have a significant
dependence on the moat position. For the unmodulated
case, the trajectory is a standard ellipse associated with
the isotropic harmonic trap. For the modulated case, the
change in effective mass significantly modifies the atoms’
response to the restoring force of the trap.

We experimentally verified the effect of the dressed

FIG. 3. Time evolution of quasimomentum in different moat
bands for the same initial conditions. (a) Predicted quasi-
momentum trajectories, plotted on top of the respective
quasienergy spectrum. Yellow dots indicate the initial value of
~q. Blue, black and red curves correspond to moats with radii
0 kL (no modulation), 0.23 kL and 0.30 kL. (b) Position after
time-of-flight, (x

TOF
, y

TOF
), scaled by LTOF = ~kL/mTTOF,

for different times held in the effective moat band. Experi-
mental data taken under conditions that yield dressed bands
similar to those shown in (a). Blue points were obtained in
the absence of modulation. Modulation frequencies for the
black and red points are fm = 2.90 kHz and fm = 2.65 kHz,
respectively. Time elapsed for blue, black and red points is
130ms, 26ms and 21ms, respectively. Dashed lines are the
predicted position after time-of-flight for condensates held in
the bands shown in (a).

band dispersion on the dynamics of a condensate. Using
parameters that produce the effective bands in Fig. 3(a),
we measured the position after time-of-flight as a func-
tion of the time held in the moat band [see Fig. 3(b)],
using a two-kick sequence that results in elliptical mo-
tion for the unmodulated case. (The scaled time-of-flight
position is approximately equal to ~q/kL, with a small ad-
ditional contribution from the position ~rc, see [19].) Al-
though heating effects limited the longest hold time in
the dressed band to 26 ms (black curve) and 21 ms (red
curve), the effect of the modification of the dispersion on
the motion in the trap is evident.

Instabilities and heating are known to hamper the real-
ization of effective Hamiltonians using Floquet engineer-
ing [30]. We examined the heating that limits the life-
time of condensed dressed states in both Floquet bands.
Figure 4(a) shows the measured condensate fraction de-
cay rates for BECs loaded into the upper and lower hy-
bridized band as a function of the detuning δ, which
changes the moat radius qmin of the upper band. Rates
were measured for condensates prepared at |~q | = 0 kL
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FIG. 4. Instabilities of a condensate in the dressed bands.
(a) Observed condensate fraction decay rates for BECs in
lower and upper bands. For each band, we measured rates
for |~q | = 0 kL and |~q | ≃ 0.2 kL. The solid (dashed) vertical
gray line indicates the frequency at which the moat radius
qmin is 0.2 kL (0 kL). (b) Calculation of the growth rate of
the most unstable mode, based on a Floquet-Bogoliubov lin-
ear stability analysis for conditions similar to those in (a).
The instability rate calculated for |~q | = 0.2 kL including only
contributions from the single BEC-occupied band are shown
with open symbols. The unoccupied band induces increased
decay for |~q | near resonance.

and |~q | ≃ 0.20 kL. To keep an approximately constant
value of |~q | during the decay measurement, we carefully
prepare the initial condition so that the resulting tra-
jectory is circular. We find that the decay rates in the
upper band increase dramatically when |~q | approaches
qmin, becoming difficult to measure for |~q | < qmin.

To understand the condensate decay, we modeled the
system with a periodically driven Gross-Pitaevskii equa-
tion and calculated condensate depletion rates using
a linear stability analysis similar to the technique in
Refs. [31, 32] (see [19]). In Figure 4(b) we present the
theoretical condensate depletion rates, which are calcu-
lated as the largest growth rate of the unstable modes,
for the frequency range used for the data in Fig. 4(a).
The frequencies at which the condensate in the upper
and lower bands are most unstable differ substantially,
due to the opposite band curvatures [33]. We find that
there are two contributions to the decay: intra-band scat-
tering processes within the dressed band and inter-band
scattering between the bands. The intra-band processes

are fundamentally related to the shape of the band, and
dynamical instabilities [34, 35] for a moat-like dispersion
generally arise for |~q | < qmin, where the band curvature
becomes negative along the direction perpendicular to ~q.
On the other hand, the inter-band processes are not re-
stricted to |~q | & qmin. Figure 4(b) (open triangles) shows
the stability analysis restricted to the single moat band,
and it shows no decay until the sudden turn on of loss
at |~q | = qmin. Despite the fact that the mode stability
analysis is only applicable to the initial exponential dy-
namics that are dominated by decay into a single mode,
the model captures the overall scale of the condensate
decay rate and its dependence on detuning.

Previous theoretical work [13, 14] in the Rashba SOC
system with similar moat-like dispersion indicates that a
single-momentum condensate is stable exactly at |~q | =
qmin. This is consistent with the absence of inter-band
processes contributing to the decay for |~q | ≥ qmin for the
Rashba case. However, while the stability analysis shows
that the condensate is stable at the moat minima, we
note that, as with our case, the Rashba SOC system is
also unstable for |~q | < qmin, and therefore sits at a critical
point in momentum space [19, 36]. The |~q | < qmin insta-
bility is related to the curvature of the moat band, and
is generally present, regardless of the underlying mecha-
nism for generating the moat. It is indicative of the fact
that the BEC is not a many-body eigenstate of the static
effective Halmiltonian. The fact that the moat minima
coincide with the boundary of the instability region likely
has implications for the ground state of the system, even
in the weakly-interacting limit. The |~q | & qmin instabil-
ity is due to resonant coupling to the second band and
depends on the specific lattice configuration used. It can
be avoided under configurations lacking resonant disper-
sion conditions [19].

The instability at |~q | < qmin can be seen in Figure 4(b)
where we show the single-band linear stability analysis
calculation (open triangles). The decay rate increases
sharply from near-zero at |~q | = qmin. The contribution
from the lower band induces more loss in the region |~q | &
qmin, as shown by the two-band calculation (blue filled
triangles).

In conclusion, we have engineered a moat-like disper-
sion for ultracold atoms in an optical lattice, and con-
firmed the dispersion by measuring the dynamics of a
BEC in the modulated lattice. We measured conden-
sate lifetimes under various moat conditions. Besides the
condensate decay inherent to the moat band shape, our
model suggests that interactions coupling to the other
dressed band can be significant and need to be consid-
ered in systems involving near resonant hybridization.

The many-body ground state of interacting bosons in
the low density, strongly correlated limit in such a moat
remains an open question [5–11]. It has been argued [8–
11] that the low density ground state in a moat-like dis-
persion is a composite-fermion-like state leading to a
chiral spin liquid, and it will be interesting to explore
this limit experimentally. Reaching the highly correlated
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regime requires confinement in the transverse direction
(attainable with the addition of an out-of-plane optical
lattice) to ensure the system is fully 2D. Additionally,
the density would need to be much lower; for example,
with qmin . 0.3 kL, the density should not exceed one

atom per ten lattice sites [11]. It remains an outstanding
experimental and theoretical question as to how to pre-
pare a low energy state in such a system, as well as how
and how quickly the correlated system heats.
We acknowledge stimulating conversations with Victor

Galitski and Ian Spielman.
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