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Thermal Fluctuations of Singular Bar-Joint Mechanisms1
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A bar-joint mechanism is a deformable assembly of freely-rotating joints connected by stiff bars. Here4
we develop a formalism to study the equilibration of common bar-joint mechanisms with a thermal bath.5
When the constraints in a mechanism cease to be linearly independent, singularities can appear in its6
shape space, which is the part of its configuration space after discarding rigid motions. We show that the7
free-energy landscape of a mechanism at low temperatures is dominated by the neighborhoods of points8
that correspond to these singularities. We consider two example mechanisms with shape-space singularities9
and find that they are more likely to be found in configurations near the singularities than others. These10
findings are expected to help improve the design of nanomechanisms for various applications.11

Introduction.— Bar-joint mechanisms constitute one of12
the simplest, widely-employed models to understand a vari-13
ety of mechanical structures ranging from viruses [1], col-14
loidal clusters [2–5], crystals [6] and minerals [7], and robots15
and machines [8, 9]. More recently, DNA origami has made16
the direct fabrication of miniaturized mechanisms possi-17
ble at the nanoscale, where thermal fluctuations due to the18
surrounding medium cannot be neglected [10, 11]. More19
generic examples of thermally-driven mechanisms include20
ordered and disordered lattices [12–14], polymerized mem-21
branes [15, 16], and polyhedral nets [17–19]. There is, there-22
fore, an arising need to understand how thermal excitations23
affect the physical properties of these mechanisms, but only24
some attempts have been made so far [3, 20].25

The effect of thermal fluctuations on a physical system26
is often represented by its free-energy landscape in terms27
of collective variables that provide a coarse-grained descrip-28
tion of its slowest dynamics. In theory [21, 22], one can29
obtain the free energy of a mechanism by integrating out30
the fast modes that are transverse to its shape space, i.e., the31
subset of its configuration space once rigid-body motions32
are removed. Doing this, however, becomes nontrivial when33
the mechanism has shape-space singularities [9, 23, 24].34
For concreteness, consider the shape space of the planar35
four-bar linkage with freely rotating joints [25–27] (Fig. 1).36
Though this linkage has one degree of freedom up to Eu-37
clidean motions, it has two modes of deformation, one38
where the angle θ1 = θ2 and another where θ1 6= θ2, meeting39
at two isolated singular points (θ1,θ2) = (0,0) and (π,π). One40
generically expects the mechanism to be soft at these singu-41
larities, and indeed the free energy diverges in a harmonic42
approximation of the elastic energy [20]. These divergences43
must be cut off by higher-order nonlinear effects, yet how44
this happens and to what extent remains to be understood.45

In this Letter, we develop a formalism to understand the46
thermal equilibration of common bar-joint mechanisms47
that have isolated shape-space singularities. We show that48
the divergent contributions to the free energy arising in49
the harmonic approximation to the energy are suppressed50
by anharmonic corrections. These findings show the exis-51
tence of energetic free-energy barriers between configura-52
tions near the singularities and configurations farther from53
the singularities. Our results are consistent with a closely-54
related work [3, 4] on singular colloidal clusters, but allow55
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FIG. 1. Shape space of the planar four-bar linkage visualized as two
intersecting curves on a torus, each curve representing a “branch”
of the shape space. The poloidal and toroidal angles along the
branches correspond to the angles θ1 and θ2 of the linkage, which
has two modes of deformation with θ1 = θ2 (blue curve) and θ1 6=
θ2 (red curve).

for isolated singularities of the shape space. We demon-56
strate our results using both the four-bar linkage as well57
as a flat, triangulated origami [28]. Our analysis has direct58
consequences in the design and employment of nanoscale59
mechanisms in applications ranging from self-assembly [29]60
to drug delivery [30], where relative thermodynamic stabil-61
ity of different configurations is of paramount importance.62

Mechanisms and singularities.— We consider bar-joint63
mechanisms made of N ≥ 3 point-like joints in d dimen-64
sions connected by m < N d− 1

2 d(d+1) freely-rotating, mass-65
less bars. If the joints have position vectors r1,r2, . . . ,rN ∈66
Rd in the lab frame, the mechanism’s configuration can be67
fully described at any given moment using a configuration68
vector r ∈RN d defined by r = (r1,r2, . . . ,rN ). We assume the69
bars in the mechanism to be stiff but compressible with an70
energy that depends on the bar lengths so that the total en-71
ergy of the mechanism is U (r ) =∑m

i=1φi (`i (r )). Here `i (r )72
is the length of the i th bar with an energy φi (`i ), which is73
assumed to have a minimum value of zero at `i = ¯̀

i , the74
natural length of the i th bar.7576

With the above form of the energy, all nontrivial ground77
states of a mechanism belong to its shape space Σ [31–33],78
which is the set of all deformed configurations of the mech-79
anism with the length of each bar equal to its natural length,80
once rotations and translations are removed. To practically81
identify Σ, we first switch to a Cartesian body frame at-82
tached to the mechanism so that all 1

2 d(d + 1) rigid mo-83

tions are eliminated [22, 34]. We require n = N d − 1
2 d(d +1)84



coordinates to specify the state of the mechanism in the85
body frame and let q ∈ Rn be its configuration vector in86
this frame. Now consider m holonomic constraint func-87
tions fi : Rn → R, i = 1,2, . . . ,m, each associated with a88
single bar, and defined by fi (q) = (`2

i (q)− ¯̀2
i )/(2 ¯̀

i ). The89
m scalar constraint functions can also be considered to-90
gether as a single constraint map f : Rn → Rm defined by91
f (q) = (

f1(q), f2(q), . . . , fm(q)
)
. Then, the shape space is the92

zero level set Σ= {
q ∈Rn : f (q) = 0

}
. In the absence of exter-93

nal forces, each point in Σ is a ground-state configuration94
of the mechanism with a distinct shape.95

The compatibility matrix C(q) [35, 36] at a configuration96
q ∈ Σ is the m × n Jacobian matrix ∇ f of the constraint97
map f . If C has full rank for all points in Σ, then Σ is an98
(n −m)-dimensional submanifold of Rn [37, 38]. When Σ99
has a “branched” structure, e.g., like in Fig. 1, C(q) drops100
rank at the singularity where the branches meet [39, 40],101
and the constraints cease to be linearly independent. Such102
singularities are the most common singularities [39, 41]103
found in a mechanism and here we consider the situation104
where they occur only at isolated points of Σ.1 The branches105
of Σ, being (n −m)-dimensional submanifolds of Rn , can106
be individually parameterized using a set of coordinates107
ξ ∈Rn−m , called shape coordinates [43] as they capture the108
shape changes of the mechanism as it moves on Σ. We also109
assume that n is small enough that such parameterizations110
can be found without much difficulty and that the branches111
are linearly independent at the singularity [39]. Zero-energy112
shape changes constitute the slowest dynamics in a mecha-113
nism, so it follows that the shape coordinates ξ are the most114
natural collective variables (CVs) for a low-dimensional de-115
scription of a thermally excited mechanism.116

Thermal fluctuations.— Let us assume that the value of117
the chosen CV for any configuration q ∈ Rn of the mech-118
anism can be measured using the CV map ξ̂(q). (In the119
case of the four-bar linkage, for example, if we choose θ1120
as the CV, then ξ̂(q) is the map that computes θ1 for any q ,121
whether or not it lies on the branches of the linkage’s shape122
space.) The free energy associated with the CV ξ is [44]123

Aξ̂(ξ) =−β−1 lnPξ̂(ξ), (1)

where β is the inverse temperature and Pξ̂(ξ) is the marginal124
probability density of the CV, which, aside from factors of125
normalization, is126

Pξ̂(ξ) =
∫
Rn

dq I (q)δ
[
ξ̂(q)−ξ]exp

[−βU (q)
]

. (2)

Here δ[·] is the (n − m)-dimensional Dirac delta func-127
tion, which restricts the domain of integration to the m-128
dimensional CV level set ξ̂−1(ξ) = {

q ∈Rn : ξ̂(q) = ξ} [45],129
and I (q) is a Jacobian factor introduced by the change of130
coordinates from the lab frame to the body frame. When131
ξ̂ has full rank in ξ̂−1(ξ), the coarea formula [44] lets us ex-132
press Pξ̂(ξ) as an exact high-dimensional surface integral133

1 For other, less common singularities that can occur in a mechanism, see
Refs. [39, 40, 42], and references therein.

over ξ̂−1(ξ), but evaluating it is a difficult task in practice.134
Hence, we resort to asymptotic methods for its evaluation.135

At low temperatures (i.e., large β) we can asymptotically136
evaluate the integral in Eq. (2) by expanding the energy U (q)137
around the ground-state configurations in ξ̂−1(ξ). Since all138
ground states belong to the shape space Σ, they could be139
regular (i.e., nonsingular) points or singularities of Σ. We140
call ξ a regular value of the CV if ξ̂−1(ξ) does not contain141
singularities of Σ and vice-versa. For now, let us assume142
that ξ is a regular value of the CV and that ξ̂−1(ξ) contains143
just one ground state q̄ . If q is a point near q̄ , after setting144
q → q̄ +q , we expand the energy to the lowest order around145
q̄ and find the harmonic energy U ≈ 1

2 qTCTKCq = 1
2 qTDq .146

Here D=CTKC is the dynamical matrix evaluated at q̄ [36]147
(assuming joints of unit mass) and K is the diagonal ma-148
trix of bar stiffnesses φ′′

i ( ¯̀
i ), which we set equal to κ for all149

bars for simplicity. See the Supplemental Material (SM) [46]150
for details. Since q̄ is a regular point of Σ, C has full rank,151
and D has n −m independent zero modes that belong to152
kerC= {

u ∈Rn : Cu = 0
}

[36]. These zero modes are all tan-153
gent to Σ and represent a degree of freedom [37]. Hence, to154
asymptotically evaluate Eq. (2) in the neighborhood of a reg-155
ular point, we can safely use the harmonic approximation156
since any divergence [20, 47, 48] due to these zero modes is157
regularized by the delta function, which suppresses all con-158
tributions to the integral that are tangent to Σ [49]. Then,159
the asymptotic marginal density for a regular value ξ of the160
CV is (SM [46])161

Pξ̂(ξ) ∼ I (ξ)

(
2π

β

)m/2 ∣∣∣∣det[∇ψ(ξ)]T∇ψ(ξ)

det D⊥(ξ)

∣∣∣∣1/2

. (3)

Here ψ :Rn−m →Rn is a parameterization of Σ near q̄ ∈Σ in162
terms of the CV ξ, and compatible with the CV map, such163
that q̄ =ψ(ξ) and ξ̂(q̄) = ξ. Also, det(∇ψ)T∇ψ is the deter-164
minant of the induced metric on Σ and D⊥ is the diagonal165
matrix of the m nonzero eigenvalues of D at q̄ .166

Now, consider the situation at a shape-space singularity,167
where C has rank deficiency. At such a point, using the168
Maxwell–Calladine count [50, 51], we find that the number169
of zero modes increases to n −m + s, where s is the num-170
ber of independent self stresses σ ∈ kerCT—each self stress171
being a set of bar tensions that leave the mechanism in172
equilibrium [36]. The zero modes at a singularity are not173
all tangent to Σ, which means that the delta function in174
Eq. (2) fails to suppress the divergences due to these zero175
modes when the harmonic approximation is used. Further-176
more, as one approaches the singularity along Σ, the lowest177
s nonzero eigenvalues of the dynamical matrix D become178
small leading to an effective softening of the mechanism.179
This causes Eq. (3) to break down even for regular ground180
states in the vicinity of the singularity. For instance, for the181
four-bar linkage, using Eq. (3) we find Pθ̂1

(θ1) ∼ |sinθ1|−1182
(SM [46]), which diverges as θ1 → 0,±π.183

To resolve the problem, we need to consider higher-order184
contributions to the energy due to the excess zero modes at185
the singularity. Consider a singularity q̄∗ ∈Σ, where the CV186
has the value ξ∗. For now, let us also assume that the only187
ground state in the CV level set ξ̂−1(ξ∗) is q̄∗. For a point q188

2



close to q̄∗ ∈Σ, we set q → q̄∗+q and write q = u +v . Here189
u ∈ kerC is a zero mode, v ∈ (kerC)⊥ is a fast vibrational190
mode of the system, and (kerC)⊥ is the orthogonal com-191
plement of kerC in Rn . Expanding the energy to the lowest192
order in u and v around q̄∗ [3, 12, 13] we find (SM [46])193

U ≈ 1

2
[Cv +w (u)]TK[Cv +w (u)]. (4)

Here w (u) ∈ Rm is a vector such that its i th component194
is 1

2 uT∇∇ fi u, with ∇∇ fi being the Hessian matrix of the195
i th constraint function fi , evaluated at q̄∗. This makes the196
above energy expansion quartic in the zero modes u.197

Equation (4) is only valid when the expansion is around198
the singularity q̄∗, and a similar expansion does not exist for199
ground states in ξ̂−1(ξ) for ξ close to ξ∗, where the harmonic200
approximation is not applicable either. Thus, for ξ→ ξ∗, we201
choose to find Pξ̂(ξ) by directly evaluating the integral over202

ξ̂−1(ξ) using the coarea formula. To simplify the evaluation,203
we make two assumptions: (i) for points close to q̄∗, the CV204
map ξ̂ can be approximated by its Taylor expansion around205
q̄∗: ξ̂ = ξ∗ + (∇ξ̂)q +O(‖q‖2), with ∇ξ̂ being the Jacobian206
matrix of ξ̂ at q̄∗; (ii) fast modes that belong to (kerC)⊥207
do not change the value of the CV to linear order at q̄∗,208
i.e., (∇ξ̂)v = 0. Assumption (i) linearizes the CV map and209
turns its level sets near the singularity into hyperplanes,210
simplifying the evaluation of Eq. (2). Although assumption211
(ii) is stringent on the shape coordinate we use as the CV, it212
is true for most reasonable choices and a good CV should213
mainly be sensitive to the slow modes [52]. This makes it214
possible to use the quartic energy expansion and integrate215
over the fast modes. Note that in the above steps, we do not216
make use of any parameterization of Σ, unlike in Eq. (3).217

Using the linearized CV map and the quartic expansion218
for the energy (Eq. 4) in Eq. (2), we integrate out the fast219
vibrational modes v to find (SM [46])220

Pξ̂(ξ) ∼ I (ξ∗)∣∣detD⊥det∇ξ̂(∇ξ̂)T
∣∣1/2

(
2π

β

)(m−s)/2

×
∫
Ξξ

dΩ(u)exp

{
−1

2
βκ

∑
σ

[σ ·w (u)]2
}

, ξ→ ξ∗,

(5)

where σ ∈ kerCT are the self stresses and D⊥ is the diag-221
onal matrix of the m − s nonzero eigenvalues of D at q̄∗.222
Also, dΩ(u) is the area element on the integration domain223
Ξξ, which is geometrically an s-dimensional hyperplane224
formed by the intersection of kerC and the level set of the225
linearized CV map (∇ξ̂)−1(ξ−ξ∗) = {u ∈Rn : ξ∗+ (∇ξ̂)u = ξ}.226
On choosing a basis for kerC, the term in the exponential227
of the above integral becomes a quartic polynomial, making228
further simplification difficult. We discuss the convergence229
criteria for Eq. (5) in the SM [46].230

On the basis of how Pξ̂(ξ) in Eqs. (3) and (5) scales with β,231
we can show that the free-energy barriers between regular232
and singular values of the CV have a temperature/stiffness233
dependence ∼ lnβκ, making the barriers energetic in na-234
ture. This is not surprising considering the overall softening235
of the mechanism near the singularities. Also, for both the236
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FIG. 2. Free-energy difference ∆A
θ̂1

(θ1) of a four-bar linkage with

parameters a = 1 and λ= 2 in units of β−1 at β= 104. The inset
shows the absolute errors between the numerical and asymptotic
results using the harmonic approximation (Eq. 6, blue curve) and
quartic approximation (Eq. 7, red curves).

quartic and harmonic approximations for Pξ̂(ξ), we expect237
the range of validity (in ξ) to increase with increasing β,238
along with an increase in the range where both approxima-239
tions produce similar results.240

So far we have only considered cases where the CV level241
set ξ̂−1(ξ) contains only one regular point or a singularity of242
Σ. However, as Σ has a branched structure, ξ need not iden-243
tify a configuration in Σ uniquely. Indeed, for the four-bar244
linkage, we see that there are as many as two configurations245
with a given value of θ1 (Fig. 1). Nonetheless, it is easy to246
find the asymptotic marginal density for more general cases247
by using combinations of Eqs. (3) and (5) to add the con-248
tribution of each ground state in ξ̂−1(ξ) individually, noting249
that Eq. (5) gives the collective contribution from all the250
branches meeting at a singularity.251252

Examples and discussion.— We now use our formalism253
to find the free-energy profiles of two example mechanisms254
with one-dimensional shape spaces with isolated singulari-255
ties and compare them with results from Monte Carlo sim-256
ulations. (Also see the SM [46] for an example mechanism257
with a two-dimensional shape space and a mechanism with258
a permanent state of self stress, which is unlike the case259
where it appears only at isolated singularities.) Motivated260
by typical DNA origami structures that have lengths in the261
range of a few hundred nanometers with stiffness in the262
range 0.1–1 pN/nm [11], we choose a nondimensional in-263
verse temperature of β= 104 and use a potential of the form264
φi (`i ) = (`2

i − ¯̀2
i )2/(8 ¯̀2

i ) so that φ′′
i ( ¯̀

i ) = κ= 1. Further de-265
tails on the simulations are given in the SM [46].266

The four-bar linkage we consider (Fig. 1) is made out267
of two sets of bars of lengths a and λa, where λ > 0 is a268
dimensionless aspect ratio. For λ 6= 1, the linkage has shape-269
space singularities at θ1 = 0 and θ1 = ±π where the bars270
become collinear and support a state of self stress.2 The271

2 For simplicity, we do not discuss the square four-bar linkage with λ= 1
in this Letter as it has additional singularities at (θ1,θ2) = (0,±π) [53].
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FIG. 3. (a) A triangulated origami modeled as a bar-joint mechanism and (b) its shape space visualized in the space of fold angles ρ1,ρ2,
and ρ3. (c) Free-energy difference ∆Aρ̂1 (ρ1) in units of β−1 at β= 104. The inset shows the absolute errors between the numerical and
asymptotic results using the harmonic and quartic approximations (blue and red curves respectively).

shape space can be fully parameterized using the angle θ1,272
which we use as our CV and choose θ1 = 0 as the point273
of zero free energy. For θ1 far from the singular values we274
use Eq. (3) to find the free-energy difference ∆Aθ̂1

(θ1) =275
Aθ̂1

(θ1)−Aθ̂1
(0) as (SM [46])276

∆Aθ̂1
(θ1) ∼β−1 ln

[
X 1/2D−1/2(0)|sinθ1|

]
, 0 ¿|θ1|¿π, (6)

where D−1/2(·) is the parabolic cylinder function [54] and277
X =√

βκλa/(8|λ−1|) is a dimensionless term that is inde-278
pendent of θ1. As expected, Eq. (6) diverges when θ1 is close279
to the singular values θ1 = 0 or θ1 =±π. For θ1 → 0, using280
Eq. (5), the free-energy difference takes the form (SM [46])281

∆Aθ̂1
(θ1) ∼β−1

{
X 2θ4

1 − ln

[
D−1/2(−2Xθ2

1)

D−1/2(0)

]}
, θ1 → 0. (7)

A similar expression is derived in the SM [46] for θ→±π.282
A comparison between the numerical results and asymp-283
totic expressions in Eqs. (6) and (7) (Fig. 2) shows excellent284
agreement for all values of θ1.285

For further testing our methods, we consider an origami286
made by triangulating a unit square [28] and embedded287
in three dimensions [Fig. 3(a)]. To make the origami more288
realistic, in simulations, we avoid all configurations that re-289
sult in face intersections. The one-dimensional shape space290
[Fig. 3(b)] of this origami can be visualized as four inter-291
secting branches in the space of the fold angles, i.e., the292
supplement of the dihedral angle at a fold. The intersection293
point is the singular flat state of the origami, where all the294
fold angles are zero. After numerically parameterizing the295
branches of the shape space in terms of the fold angle ρ1,296
which we use as our CV, we utilize Eq. (3) to find the free en-297
ergy Aρ̂1 (ρ1) for |ρ1|À 0. We next find Aρ̂1 (ρ1) as ρ1 → 0 us-298
ing Eq. (5) and choose ρ1 = 0 as the point of zero free energy.299
A comparison between the numerical and the asymptotic300
results for the free-energy difference ∆Aρ̂1 (ρ1) shows good301
agreement in both regimes of ρ1 [Fig. 3(c)]. Self-avoidance302
of the faces forces us to consider only a part of each branch303
of the shape space for our analysis. Since the extent of these304
parts (in ρ1) vary for the four branches [Fig. 3(b)], it results305
in discontinuous jumps in the free-energy curves.306

The free-energy landscapes of the four-bar linkage and307
the triangulated origami [Figs. 2 and 3(c)] demonstrate that308
the measured values of the CV tend to be closer to their309
values near the singularities. Yet, as free-energy landscapes310
(and even their extrema) do not always have a CV-agnostic311
interpretation [55–57], to draw conclusions we should also312
consider the physical meaning of the chosen CV. The CVs313
we picked for both the example mechanisms were internal314
angles whose values dictate the overall shape of the mecha-315
nism. Specifically, according to our results, we expect the316
bars of the four-bar linkage to tend to be collinear, as mea-317
sured by the angle θ1 being close to 0 or π. Similarly, the318
origami will tend towards being flat, as measured by the fold319
angle ρ1. This tendency increases at lower temperatures as320
the free-energy barriers become larger. Finally, we remark321
on the apparent double-well nature of the landscapes near322
singular values of the CV. Due to the branched nature of the323
shape spaces, when θ1 → 0, ±π or when ρ1 → 0, there are324
multiple ground states where the mechanism is also rela-325
tively soft. This is illustrated by the widening of the sublevel326
sets of the energy as one moves away from the singularity327
(e.g., see Fig. S4 the SM [46]). The net result is an increase328
in the number of thermodynamically favorable states with329
θ1 close to 0 or ±π (and ρ1 close to 0), causing an apparent330
lowering of the free energy.331

Conclusion.— In this Letter we have described a formal-332
ism to find the free-energy landscapes of common bar-joint333
mechanisms with isolated singularities in their shape spaces.334
Our results indicate that configurations in the neighborhood335
of the singularities have relatively lower free energy com-336
pared to configurations farther from the singularities. This337
could help in programming the conformational dynamics of338
nanomechanisms [58]. Our findings also highlight the inter-339
play between the geometry of a mechanism’s shape space340
and its thermodynamic properties. Open questions include341
the behavior of these mechanisms in the thermodynamic342
limit [59, 60], where configuration-space topology is often343
known to play a role [61], their behavior in the presence of344
active (nonthermal) noise [13], and methods to bias their345
dynamics towards desired states [62], e.g., by introducing346
CV-dependent bias potentials [63].347
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