
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Continuum Field Theory for the Deformations of Planar
Kirigami

Yue Zheng, Imtiar Niloy, Paolo Celli, Ian Tobasco, and Paul Plucinsky
Phys. Rev. Lett. 128, 208003 — Published 20 May 2022

DOI: 10.1103/PhysRevLett.128.208003

https://dx.doi.org/10.1103/PhysRevLett.128.208003


Continuum field theory for the deformations of planar kirigami1

Yue Zheng,1 Imtiar Niloy,2 Paolo Celli,2 Ian Tobasco,3, ∗ and Paul Plucinsky1, †
2

1Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90014, USA3

2Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA4

3Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA5

(Dated: April 19, 2022)6

Mechanical metamaterials exhibit exotic properties that emerge from the interactions of many
nearly rigid building blocks. Determining these properties theoretically has remained an open chal-
lenge outside a few select examples. Here, for a large class of periodic and planar kirigami, we provide
a coarse-graining rule linking the design of the panels and slits to the kirigami’s macroscale defor-
mations. The procedure gives a system of nonlinear partial differential equations (PDE) expressing
geometric compatibility of angle functions related to the motion of individual slits. Leveraging
known solutions of the PDE, we present an illuminating agreement between theory and experiment
across kirigami designs. The results reveal a dichotomy of designs that deform with persistent versus
decaying slit actuation, which we explain using the Poisson’s ratio of the unit cell.

Mechanical metamaterials are solids with exotic prop-7

erties arising primarily from the geometry and topology8

of their mesostructures. Recent studies have focused on9

creating metamaterials with unexpected shape-morphing10

capabilities [1, 2], as this property is advantageous in11

applications spanning robotics, bio-medical devices, and12

space structures [3–6]. A natural motif in this setting13

is a design that exhibits a mechanism [7–9] or floppy14

mode [10]: the pattern, when idealized as an assembly15

of rigid elements connected along perfect hinges, can be16

activated by a continuous motion at zero energy. Yet17

mechanisms, even when carefully designed, rarely occur18

as a natural response to loads [11]. Instead, the com-19

plex elastic interplay of a metamaterial’s building blocks20

results in an exotic soft mode of deformation. Charac-21

terizing soft modes is a difficult problem. Linear anal-22

ysis hints at a rich field theory [12, 13], the nonlinear23

version of which has been uncovered only in a few exam-24

ples. Miura-Origami [14], for instance, takes on a saddle25

like shape under bending, a feature linked to its auxetic26

behavior in the plane [15]. The Rotating Squares (RS)27

[16] pattern exhibits domain wall motion [17] and was28

recently linked to conformal soft modes [18].29

In this Letter, we go far beyond any one example to es-30

tablish a general coarse-graining rule determining the ex-31

otic, nonlinear soft modes of a large class of mechanism-32

based mechanical metamaterials inspired by kirigami.33

Our method includes the RS pattern as a special case,34

illuminating the particular nature of its conformal re-35

sponse. In general, we find a dichotomy between kirigami36

systems that respond by a nonlinear wave-like motion,37

and others including conformal kirigami that do not. We38

turn to introduce the specific systems treated here, and39

to describe our theoretical and experimental results.40

Setup and overview of results – Kirigami traditionally41

describes an elastic sheet with a pattern of cuts and folds42

[19–21]. More recently, the term has come to include cut43

patterns that, by themselves, produce complex deforma-44

tions both in and out-of-plane [22–30]. Here, we study the45

FIG. 1. Response of planar kirigami to the heterogeneous
loading conditions shown by the arrows. (a) Rotating Squares
pattern; (b) another pattern with rhombi slits. Insets depict
a typical unit cell before and after deformation. The central
slit opens through an angle 2ξ, and the cell rotates by γ.

2D response of patterns with repeating unit cells of four46

convex quadrilateral panels and four parallelogram slits.47

These patterns form a large model system for mechanism-48

based kirigami [31–33]; their pure mechanism deforma-49

tions are unit-cell periodic and counter-rotate the panels.50

Fig. 1 shows two examples, with the familiar RS pattern51

in (a). Each kirigami is free to deform as a mechanism52

under the loading, yet curiously neither does. Instead,53

exotic soft modes reveal themselves in the response.54

What determines soft modes? The key insight is that55

each unit cell is approximately mechanistic, yielding a56

bulk actuation that varies slowly from cell to cell. To57

characterize the response, then, one must solve the geom-58

etry problem of “fitting together” many nearly mechanis-59

tic cells. Coarse-graining this problem, we derive a con-60

tinuum field theory coupling the kirigami’s macroscopic61
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or effective deformation to the individual motion of its62

unit cells. For each cell, we track the change in the open-63

ing angle 2ξ of its central slit upon deformation, along64

with an angle γ giving the cell’s rotation as in Fig. 1. We65

derive a system of partial differential equations (PDEs)66

relating these angles, whose coefficients depend nonlin-67

early on ξ as well as on the unit cell design. Solving this68

system exactly, we demonstrate a convincing match with69

experiments of different designs.70

Our theory divides planar kirigami into two generic71

classes, which we term elliptic and hyperbolic based on72

the so-called type of the coarse-grained PDE [34, 35].73

Elliptic kirigami shows a characteristic decay in actua-74

tion away from loads. In contrast, hyperbolic kirigami75

deforms with persistent actuation, via a nonlinear wave-76

like response. Surprisingly, this dichotomy turns out to77

be directly related to the Poisson’s ratio of the unit cell—78

elliptic kirigami is auxetic, while hyperbolic kirigami is79

not. This result serves as a powerful demonstration of80

our continuum field theory, and adds to the emerging81

literature connecting Poisson’s ratio to the qualitative82

behavior of mechanical metamaterials [15, 36–38].83

Coarse-graining planar kirigami – We begin by intro-84

ducing a general kirigami pattern consisting of a peri-85

odic array of unit cells, each having four quad panels and86

four parallelogram slits as in Fig. 2(a). The most general87

setup is as follows: start by selecting a seed of two quad88

panels connected at a corner point, rotate a copy of this89

seed 180o, and connect it to the original seed to form a90

unit cell. Provided the resulting panels are disjoint, tes-91

sellating this unit cell along a Bravais lattice with basis92

vectors s = s1+s2+s3+s4 and t = t1+t2+t3+t4 gives a93

viable pattern. For an explanation of why this procedure94

is exhaustive, see supplemental section SM.1 [39]. We fix95

one such pattern and coarse-grain its kinematics.96

First, we consider mechanisms. Since our kirigami has97

parallelogram slits, its pure mechanism deformations are98

given by an alternating array of panel rotations speci-99

fied by the rotation matrices R(γ ± ξ) in Fig. 2(a); see100

SM.2 [39] for a derivation. As before, ξ is the change in101

the half-opening angle of the central slit, and γ parame-102

terizes a counterclockwise rotation. To coarse-grain, we103

view the deformation as distorting the underlying Bra-104

vais lattice: from the top half of the figure, the original105

lattice vectors s and t deform to106

sdef = R(γ)
(
R(−ξ)(s1 + s2) + R(ξ)(s3 + s4)

)
,

tdef = R(γ)
(
R(−ξ)(t1 + t4) + R(ξ)(t2 + t3)

)
.

(1)

This distortion can, in turn, be encoded into the two-by-107

two matrix Feff defined by Feffs = sdef and Fefft = tdef,108

concretely linking Fig. 2(a) and (b). We call Feff the109

coarse-grained or effective deformation gradient associ-110

ated with the mechanism. Evidently,111

Feff = R(γ)A(ξ) (2)

FIG. 2. Coarse-graining a mechanism. (a) Vectors si, ti define
the unit cell, which tessellates along s and t to produce the
pattern. (Note s1 = −t4 and s4 = t3.) In a mechanism,
panels rotate by the rotation matrices R(γ ± ξ). (b) Coarse-
graining through the lattice defines the effective deformation
gradient Feff. Soft modes agree locally with this picture.

for a shape tensor A(ξ) that depends only on ξ and on the112

vectors si and ti defining the unit cell. This tensor will113

be made explicit in the examples to come (see SM.2 [39]114

for the general formula).115

Having coarse-grained the pattern’s mechanisms, we116

now extend our viewpoint to its exotic soft modes of de-117

formation, whose elastic energy scaling is by definition118

less than bulk. We derive a PDE for the effective de-119

formation yeff(x) of the kirigami, a continuum field that120

tracks the cell-averaged panel motions. Specifically, we121

consider elastic effects accounting for the finite size and122

distortion of the inter-panel hinges, and show in SM.3 [39]123

that the kirigami’s energy per unit area vanishes with an124

increasing number of cells provided yeff(x) obeys125

∇yeff(x) = R(γ(x))A(ξ(x)). (3)

While this PDE is trivially solved by the pure mecha-126

nisms in (2), it admits many other solutions whose effec-127

tive deformation gradients ∇yeff(x) and angle fields γ(x)128

and ξ(x) vary across the sample. We find that (3) charac-129

terizes soft modes in a doubly asymptotic limit of finely130

patterned kirigami, where the hinges are small relative131

to the panels and the number of panels is large.132

As gradients are curl-free, it follows by taking the curl133

of (3) that (SM.4 [39])134

∇γ(x) = Γ(ξ(x))∇ξ(x) (4)
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for Γ(ξ) = AT (ξ)A′(ξ)
detA(ξ) R(π2 ). Eq. (4) is a PDE reflect-135

ing the geometric constraint that every closed loop in136

the kirigami must remain closed. This PDE can some-137

times be solved analytically for the angle fields, as we138

do in the examples below, but in general we imagine it139

will be solved numerically. After finding γ(x) and ξ(x),140

yeff(x) can be recovered from (3) uniquely up to a trans-141

lation. Eqs. (3-4) furnish a complete effective descrip-142

tion of the locally mechanistic kinematics of any planar143

kirigami with a unit cell of four quad panels and four144

parallelgram slits.145

Linear analysis, PDE type and Poisson’s ratio – While146

the effective description (3-4) is nonlinear, we can start147

to learn its implications for kirigami soft modes by lin-148

earizing about a pure mechanism. We do so first for149

rhombi-slit kirigami, before returning to general patterns150

at the end of this section. The Bravais lattices of rhombi-151

slit kirigami remain orthogonal throughout actuation, so152

that their shape tensors A(ξ) are diagonal. This simpli-153

fication greatly clarifies the exposition without compro-154

mising the generality of our results, as we shall see.155

Per Fig. 3, a rhombi-slit kirigami is defined by param-156

eters λ1, . . . , λ4 that can take any value in [0, 1], and an157

aspect ratio ar > 0. Their shape tensors satisfy158

A(ξ) = µ1(ξ)e1 ⊗ e1 + µ2(ξ)e2 ⊗ e2,

µ1(ξ) = cos ξ − α sin ξ, µ2(ξ) = cos ξ + β sin ξ,

α = ar(λ4 − λ2), β = a−1
r (λ1 − λ3).

(5)

Here, α and β encode the geometry of the unit cell, µ1(ξ)159

and µ2(ξ) give the stretch or contraction of its sides under160

a mechanism, and e1 and e2 are orthonormal vectors161

along the initial slit axes. Finally, Γ(ξ) in (4) satisfies162

Γ(ξ) = Γ12(ξ)e1 ⊗ e2 + Γ21(ξ)e2 ⊗ e1 (6)

for Γ12(ξ) = −µ′1(ξ)/µ2(ξ) and Γ21(ξ) = µ′2(ξ)/µ1(ξ).163

Eqs. (5-6) follow from (1-2) after choosing appropriate164

si= si(λ1, . . . , λ4, ar), ti= ti(λ1, . . . , λ4, ar) (SM.2 [39]).165

Proceeding perturbatively, we write ξ(x) = ξ0 + δξ(x)166

and γ(x) = δγ(x) for small angles δξ(x) and δγ(x), and167

let yeff(x) = A(ξ0)x+u(A(ξ0)x) for a displacement u(y)168

about a pure mechanism with constant slit actuation ξ0.169

(Taking γ0 = 0 fixes the frame of actuation without loss170

of generality.) Expanding (3) to linear order and com-171

puting the strain ε(y) = 1
2 (∇u(y) +∇uT (y)) yields172

ε(A(ξ0)x) = δξ(x)

(
ε1(ξ0) 0

0 ε2(ξ0)

)
(7)

with εi(ξ0) = µ′i(ξ0)/µi(ξ0), i = 1, 2. Similarly, expand-173

ing (4) to linear order and taking its curl gives that174

0 =
(
Γ21(ξ0)∂2

1 − Γ12(ξ0)∂2
2

)
δξ(x). (8)

Both equations must hold for the perturbation to be con-175

sistent with the effective theory.176

FIG. 3. Effective Poisson’s ratio as a function of slit actuation
ξ for different rhombi-slit kirigami. The plot fixes α = −0.9
and varies β from 0 to 0.9. The RS pattern on the lower left
sits at the lower extreme β = 0.9. It is purely dilational (ν21 =
−1) and is auxetic for all ξ. The upper extreme β = 0 arises
for the design on the upper left. It is non-auxetic (ν21 > 0) for
all relevant ξ > 0. Some designs transition between auxetic
and non-auxetic behavior as a function of ξ.

The ratio of principal strains in (7) defines an effective177

Poisson’s ratio which turns out to be directly related to178

the coefficients in (8):179

ν21(ξ0) := −ε2(ξ0)

ε1(ξ0)
=

Γ21(ξ0)

Γ12(ξ0)

µ2
1(ξ0)

µ2
2(ξ0)

. (9)

This link has remarkable implications. Writing (8) as180

∂2
2δξ(x) =

µ2
2(ξ0)

µ2
1(ξ0)

ν21(ξ0)∂2
1δξ(x) and applying standard181

PDE theory, we discover that the overall structure of the182

perturbations is governed by the sign of the Poisson’s183

ratio, i.e., by whether the pattern is auxetic or not:184 {
ν21(ξ0) < 0 elliptic and auxetic,

ν21(ξ0) > 0 hyperbolic and non-auxetic.
(10)

Fig. 3 plots ν21 for a family of designs and actuations.185

The terms hyperbolic and elliptic come from PDE the-186

ory where an equation’s type, found by linearization,187

informs the structure of its solutions [34, 35]. Here in188

the hyperbolic case, (8) is the classical wave equation189

with wave speed c = µ2(ξ0)
µ1(ξ0)

√
ν21(ξ0), the x1- and x2-190

coordinates being like “space” and “time”. Linearization191

predicts spatially modulated, temporally-static waves for192

small loads; motivated by this, we go on below to con-193

struct a branch of nonlinear wave solutions describing the194

hyperbolic kirigami in Fig. 1(b). In contrast, the RS pat-195

tern in Fig. 1(a) is auxetic and so is elliptic. Instead of196

waves, elliptic kirigami shows a decay in actuation away197

from loads. We highlight the strong maximum principle198

of elliptic PDEs [35]: the maximum and minimum actu-199

ation in an elliptic kirigami can only occur at its bound-200

ary, unless it deforms by a constant mechanism. No such201

principle holds for hyperbolic kirigami.202
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FIG. 4. Comparison between theory and experiments of rhombi-slit kirigami. (a,d) Two 16×16 cell patterns before deformation,
with opposite Poisson’s ratios and types. Top row is non-auxetic and hyperbolic. Bottom row is auxetic and elliptic. (b,e) Left
entries are experimental samples pulled along their centerlines. Right entries show theoretical panel motions, obtained from
exact solutions of the effective PDEs by the procedure in SM.3 [39]. (c,f) Annular deformations produced experimentally (left)
and using the theory (right). Colormaps show the slit actuation angle ξ(x), extracted from the experiment per SM.7 [39].

Remarkably, the same coupling in (10) between Pois-203

son’s ratio and PDE type continues to hold for the general204

class of quad-based kirigami patterns treated in this Let-205

ter. We sketch the main ideas to provide clarity on this206

important result (see SM.5 [39] for details). Linearizing207

about a mechanism leads in the general case to a strain208

ε(A(ξ0)x) with eigenvalues δξ(x)εi(ξ0), i = 1, 2. Passing209

to a principle frame, we find that the effective Poisson’s210

ratio of the pattern—which dictates its auxeticity—is211

still given by the first expression in (9). Eq. (8) becomes212

a general second order linear PDE: cij(ξ0)∂2
ijδξ(x) = 0213

with summation implied. It is elliptic or hyperbolic ac-214

cording to the sign of the discriminant of its coefficients.215

A coordinate transformation reveals (10).216

Nonlinear analysis and examples – The previous lin-217

ear analysis addresses the character of the kirigami’s re-218

sponse nearby a pure mechanism, but does not prescribe219

it at finite loads. We now present several exact solutions220

of the PDE system (3-4) that capture the nonlinear defor-221

mations of the kirigami in Fig. 4. Our solutions are based222

on known results from PDE theory, which we detail in223

SM.6 [39] and summarize here. Using them, we plot the224

panel motions with an ansatz that rotates and translates225

the panels to fit the solution. Due to the finiteness of the226

sample, one may expect slight deviations between theory227

and experiment, which scale with the relative panel size.228

See SM.3 [39] for more details.229

(i) Nonlinear waves – Fig. 4(a) shows the α = −0.9,230

β = 0 pattern from the top left of Fig. 3, which remains231

non-auxetic, and thus hyperbolic, for ξ ∈ (0, 0.235π).232

This hyperbolicity is borne out through the existence of233

nonlinear simple wave solutions to (4), defined by the234

criteria that ξ = ξ(θ(x)) and γ = γ(θ(x)) for a scalar235

function θ(x). As such, the angles vary across envelopes236

of straight line segments called characteristic curves. The237

term “simple wave” comes from compressible gas dynam-238

ics, where the same functional form governs gas densi-239

ties varying next to regions of constant density [40]. For240

kirigami, simple waves alleviate slit openings next to re-241

gions of uniform actuation.242

The left part of Fig. 4(b) shows the experimental spec-243

imen pulled at its left and right ends along its center-244

line. Slits open by an essentially constant amount in245

a central diamond region (orange), and recede towards246

the specimen’s corners. Note the “fanning out” of con-247

tours of constant slit actuation from where the loads are248

applied. The panel motions of a simple wave solution249

match these features on the right of Fig. 4(b). The so-250

lution’s straight line contours are characteristic curves;251

its innermost characteristics are chosen to match the slit252

actuation of the central diamond (SM.6 [39]).253

(ii) Conformal maps – Recent work [18] has noted the254

relevance of conformal maps for kirigami. Adding to this255

discussion, and as an example of the more general elliptic256

class, we note using (5) that the only rhombi-slit kirigami257

designs that deform conformally (µ1(ξ) = µ2(ξ) for all ξ258

by definition [41]) have α = −β and ν21(ξ) = −1. This259

includes the RS pattern in Fig. 4(d), fabricated accord-260

ing to the lower left α = −0.9 design in Fig. 3. We high-261

light the RS pattern due to its dramatic shape-morphing.262
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Conformal mappings are basic examples in complex anal-263

ysis [42], enabling numerous solutions to (4).264

The left part of Fig. 4(e) shows the RS pattern pulled265

at its left and right ends. Its slits open up dramatically266

at the loading points and remain closed at the corners:267

the largest and smallest openings are at the boundary,268

per the maximum principle. Contours of constant slit269

actuation form arcs around these points. On the right of270

Fig. 4(e), we fit the deformed boundary of the pattern to271

a conformal map (SM.6 [39]). The solution recovers the272

locations where the slits are most open and closed, and273

qualitatively matches their variations in the bulk.274

(iii) Annuli – Though one may think of hyerperbolic and275

elliptic kirigami as a dichotomy, and this is true as far276

as auxeticity is concerned, we close by pointing out the277

existence of some special effective deformations that are278

“universal” in that they occur for both. One example is279

the annular deformation in Fig. 4(c) and (f), which arises280

from (4) under the condition that ξ(x) is either only a281

function of x1 or of x2. All rhombi-slit kirigami patterns282

are capable of this deformation, as we demonstrate using283

the previous hyperbolic (c) and elliptic (f) designs. Note284

unlike the previous examples, these experiments are done285

using pure displacement boundary conditions.286

Discussion – Looking forward, while our emphasis here287

was on the derivation of coarse-grained PDEs captur-288

ing bulk geometric constraints for planar kirigami, we289

set aside the important question of the forces underlying290

them. Understanding the inter-panel forces more closely291

should eventually lead to a complete continuum theory292

predicting exactly which exotic soft mode will arise in293

response to a given load. We envision minimizing elastic294

energy at a higher order than done here, and deriving295

natural boundary conditions to supplement the PDEs.296

Nevertheless, our results show that the effective PDE sys-297

tem (3-4) plays the dominant, constraining role. This is298

consistent with the conformal elasticity of Ref. [18].299

More broadly, we expect that an effective PDE of a300

geometric origin exists to constrain the bulk behavior of301

mechanical metamaterials beyond kirigami. Such PDEs302

have been found for certain origami designs [36, 37], via a303

differential geometric argument akin to our passage from304

(3) to (4). In origami, one also finds a surprising cou-305

pling between the Poisson’s ratio of the mechanisms and306

certain fine features of exotic soft modes. Are such cou-307

plings universal? What about the role of heterogeneity308

[29, 30, 43, 44]? Can coarse-graining lead to constitutive309

models for mechanical metamaterials, common to prac-310

tical engineering [45, 46], or to effective descriptions of311

their dynamics [47]? While there are many avenues left312

to explore, our work on the soft modes of planar kirigami313

is a convincing step towards the discovery of a continuum314

theory for mechanical metamaterials at large.315
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