This is the accepted manuscript made available via CHORUS. The article has been published as:

Continuum Field Theory for the Deformations of Planar Kirigami

Yue Zheng, Imtiar Niloy, Paolo Celli, Ian Tobasco, and Paul Plucinsky Phys. Rev. Lett. 128, 208003 — Published 20 May 2022 DOI: 10.1103/PhysRevLett.128.208003

Continuum field theory for the deformations of planar kirigami

Yue Zheng, ${ }^{1}$ Imtiar Niloy, ${ }^{2}$ Paolo Celli, ${ }^{2}$ Ian Tobasco, ${ }^{3, *}$ 暒 and Paul Plucinsky ${ }^{1, \dagger}$
${ }^{1}$ Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90014, USA
${ }^{2}$ Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA
${ }^{3}$ Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

(Dated: April 19, 2022)

Abstract

Mechanical metamaterials exhibit exotic properties that emerge from the interactions of many nearly rigid building blocks. Determining these properties theoretically has remained an open challenge outside a few select examples. Here, for a large class of periodic and planar kirigami, we provide a coarse-graining rule linking the design of the panels and slits to the kirigami's macroscale deformations. The procedure gives a system of nonlinear partial differential equations (PDE) expressing geometric compatibility of angle functions related to the motion of individual slits. Leveraging known solutions of the PDE, we present an illuminating agreement between theory and experiment across kirigami designs. The results reveal a dichotomy of designs that deform with persistent versus decaying slit actuation, which we explain using the Poisson's ratio of the unit cell.

Mechanical metamaterials are solids with exotic proprties arising primarily from the geometry and topology of their mesostructures. Recent studies have focused on creating metamaterials with unexpected shape-morphing capabilities [1, 2], as this property is advantageous in applications spanning robotics, bio-medical devices, and space structures [3-6]. A natural motif in this setting is a design that exhibits a mechanism [7-9] or floppy mode 10]: the pattern, when idealized as an assembly of rigid elements connected along perfect hinges, can be activated by a continuous motion at zero energy. Yet mechanisms, even when carefully designed, rarely occur as a natural response to loads [11]. Instead, the complex elastic interplay of a metamaterial's building blocks results in an exotic soft mode of deformation. Characterizing soft modes is a difficult problem. Linear analysis hints at a rich field theory [12, [13], the nonlinear version of which has been uncovered only in a few examples. Miura-Origami [14, for instance, takes on a saddle like shape under bending, a feature linked to its auxetic behavior in the plane [15]. The Rotating Squares (RS) [16] pattern exhibits domain wall motion [17] and was recently linked to conformal soft modes [18].

In this Letter, we go far beyond any one example to establish a general coarse-graining rule determining the exotic, nonlinear soft modes of a large class of mechanismbased mechanical metamaterials inspired by kirigami. Our method includes the RS pattern as a special case, illuminating the particular nature of its conformal response. In general, we find a dichotomy between kirigami systems that respond by a nonlinear wave-like motion, and others including conformal kirigami that do not. We turn to introduce the specific systems treated here, and to describe our theoretical and experimental results.
Setup and overview of results - Kirigami traditionally describes an elastic sheet with a pattern of cuts and folds [19-21. More recently, the term has come to include cut patterns that, by themselves, produce complex deformations both in and out-of-plane $[22]$. Here, we study the

(b)

FIG. 1. Response of planar kirigami to the heterogeneous loading conditions shown by the arrows. (a) Rotating Squares pattern; (b) another pattern with rhombi slits. Insets depict a typical unit cell before and after deformation. The central slit opens through an angle 2ξ, and the cell rotates by γ.

2 D response of patterns with repeating unit cells of four convex quadrilateral panels and four parallelogram slits. These patterns form a large model system for mechanismbased kirigami 31 33; their pure mechanism deformations are unit-cell periodic and counter-rotate the panels. Fig. 1 l shows two examples, with the familiar RS pattern in (a). Each kirigami is free to deform as a mechanism under the loading, yet curiously neither does. Instead, exotic soft modes reveal themselves in the response.
What determines soft modes? The key insight is that each unit cell is approximately mechanistic, yielding a bulk actuation that varies slowly from cell to cell. To characterize the response, then, one must solve the geometry problem of "fitting together" many nearly mechanistic cells. Coarse-graining this problem, we derive a continuum field theory coupling the kirigami's macroscopic

$$
\begin{align*}
& \mathbf{s}_{\mathrm{def}}=\mathbf{R}(\gamma)\left(\mathbf{R}(-\xi)\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)+\mathbf{R}(\xi)\left(\mathbf{s}_{3}+\mathbf{s}_{4}\right)\right), \tag{1}\\
& \mathbf{t}_{\mathrm{def}}=\mathbf{R}(\gamma)\left(\mathbf{R}(-\xi)\left(\mathbf{t}_{1}+\mathbf{t}_{4}\right)+\mathbf{R}(\xi)\left(\mathbf{t}_{2}+\mathbf{t}_{3}\right)\right) .
\end{align*}
$$

$$
\begin{equation*}
\mathbf{F}_{\text {eff }}=\mathbf{R}(\gamma) \mathbf{A}(\xi) \tag{2}
\end{equation*}
$$

FIG. 2. Coarse-graining a mechanism. (a) Vectors $\mathbf{s}_{i}, \mathbf{t}_{i}$ define the unit cell, which tessellates along \mathbf{s} and \mathbf{t} to produce the pattern. (Note $\mathbf{s}_{1}=-\mathbf{t}_{4}$ and $\mathbf{s}_{4}=\mathbf{t}_{3}$.) In a mechanism, panels rotate by the rotation matrices $\mathbf{R}(\gamma \pm \xi)$. (b) Coarsegraining through the lattice defines the effective deformation gradient $\mathbf{F}_{\text {eff. }}$. Soft modes agree locally with this picture.

for a shape tensor $\mathbf{A}(\xi)$ that depends only on ξ and on the vectors \mathbf{s}_{i} and \mathbf{t}_{i} defining the unit cell. This tensor will be made explicit in the examples to come (see SM. 2 [39] for the general formula).

Having coarse-grained the pattern's mechanisms, we now extend our viewpoint to its exotic soft modes of deformation, whose elastic energy scaling is by definition less than bulk. We derive a PDE for the effective deformation $\mathbf{y}_{\text {eff }}(\mathbf{x})$ of the kirigami, a continuum field that tracks the cell-averaged panel motions. Specifically, we consider elastic effects accounting for the finite size and distortion of the inter-panel hinges, and show in SM. 3 39 that the kirigami's energy per unit area vanishes with an increasing number of cells provided $\mathbf{y}_{\text {eff }}(\mathbf{x})$ obeys

$$
\begin{equation*}
\nabla \mathbf{y}_{\mathrm{eff}}(\mathbf{x})=\mathbf{R}(\gamma(\mathbf{x})) \mathbf{A}(\xi(\mathbf{x})) \tag{3}
\end{equation*}
$$

While this PDE is trivially solved by the pure mechanisms in (2), it admits many other solutions whose effective deformation gradients $\nabla \mathbf{y}_{\text {eff }}(\mathbf{x})$ and angle fields $\gamma(\mathbf{x})$ and $\xi(\mathbf{x})$ vary across the sample. We find that (3) characterizes soft modes in a doubly asymptotic limit of finely patterned kirigami, where the hinges are small relative to the panels and the number of panels is large.

As gradients are curl-free, it follows by taking the curl of (3) that (SM. 4 [39])

$$
\begin{equation*}
\nabla \gamma(\mathbf{x})=\boldsymbol{\Gamma}(\xi(\mathbf{x})) \nabla \xi(\mathbf{x}) \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \mathbf{A}(\xi)=\mu_{1}(\xi) \mathbf{e}_{1} \otimes \mathbf{e}_{1}+\mu_{2}(\xi) \mathbf{e}_{2} \otimes \mathbf{e}_{2} \\
& \mu_{1}(\xi)=\cos \xi-\alpha \sin \xi, \quad \mu_{2}(\xi)=\cos \xi+\beta \sin \xi \tag{5}\\
& \alpha=a_{r}\left(\lambda_{4}-\lambda_{2}\right), \quad \beta=a_{r}^{-1}\left(\lambda_{1}-\lambda_{3}\right) \tag{9}
\end{align*}
$$

Here, α and β encode the geometry of the unit cell, $\mu_{1}(\xi)$ and $\mu_{2}(\xi)$ give the stretch or contraction of its sides under a mechanism, and \mathbf{e}_{1} and \mathbf{e}_{2} are orthonormal vectors along the initial slit axes. Finally, $\boldsymbol{\Gamma}(\xi)$ in (4) satisfies

$$
\begin{equation*}
\boldsymbol{\Gamma}(\xi)=\Gamma_{12}(\xi) \mathbf{e}_{1} \otimes \mathbf{e}_{2}+\Gamma_{21}(\xi) \mathbf{e}_{2} \otimes \mathbf{e}_{1} \tag{6}
\end{equation*}
$$

${ }_{63}$ for $\Gamma_{12}(\xi)=-\mu_{1}^{\prime}(\xi) / \mu_{2}(\xi)$ and $\Gamma_{21}(\xi)=\mu_{2}^{\prime}(\xi) / \mu_{1}(\xi)$. ${ }_{64}$ Eqs. (5-6) follow from (1-2) after choosing appropriate
puting the strain $\varepsilon(\mathbf{y})=\frac{1}{2}\left(\nabla \mathbf{u}(\mathbf{y})+\nabla \mathbf{u}^{T}(\mathbf{y})\right)$ yields

$$
\varepsilon\left(\mathbf{A}\left(\xi_{0}\right) \mathbf{x}\right)=\delta \xi(\mathbf{x})\left(\begin{array}{cc}
\varepsilon_{1}\left(\xi_{0}\right) & 0 \tag{7}\\
0 & \varepsilon_{2}\left(\xi_{0}\right)
\end{array}\right)
$$

${ }_{73}$ with $\varepsilon_{i}\left(\xi_{0}\right)=\mu_{i}^{\prime}\left(\xi_{0}\right) / \mu_{i}\left(\xi_{0}\right), i=1,2$. Similarly, expand${ }_{74}$ ing (4) to linear order and taking its curl gives that

$$
\begin{equation*}
0=\left(\Gamma_{21}\left(\xi_{0}\right) \partial_{1}^{2}-\Gamma_{12}\left(\xi_{0}\right) \partial_{2}^{2}\right) \delta \xi(\mathbf{x}) \tag{8}
\end{equation*}
$$

${ }_{75}$ Both equations must hold for the perturbation to be con${ }_{176}$ sistent with the effective theory.

FIG. 3. Effective Poisson's ratio as a function of slit actuation ξ for different rhombi-slit kirigami. The plot fixes $\alpha=-0.9$ and varies β from 0 to 0.9 . The RS pattern on the lower left sits at the lower extreme $\beta=0.9$. It is purely dilational $\left(\nu_{21}=\right.$ $-1)$ and is auxetic for all ξ. The upper extreme $\beta=0$ arises for the design on the upper left. It is non-auxetic $\left(\nu_{21}>0\right)$ for all relevant $\xi>0$. Some designs transition between auxetic and non-auxetic behavior as a function of ξ.

The ratio of principal strains in (7) defines an effective Poisson's ratio which turns out to be directly related to the coefficients in (8):

$$
\left.\nu_{21}\left(\xi_{0}\right):=-\frac{\varepsilon_{2}\left(\xi_{0}\right)}{\varepsilon_{1}\left(\xi_{0}\right)}=\frac{\Gamma_{21}\left(\xi_{0}\right)}{\Gamma_{12}\left(\xi_{0}\right)}\right) \frac{\mu_{1}^{2}\left(\xi_{0}\right)}{\mu_{2}^{2}\left(\xi_{0}\right)} .
$$

This link has remarkable implications. Writing (8) as $\partial_{2}^{2} \delta \xi(\mathbf{x})=\frac{\mu_{2}^{2}\left(\xi_{0}\right)}{\mu_{1}^{2}\left(\xi_{0}\right)} \nu_{21}\left(\xi_{0}\right) \partial_{1}^{2} \delta \xi(\mathbf{x})$ and applying standard PDE theory, we discover that the overall structure of the perturbations is governed by the sign of the Poisson's ratio, i.e., by whether the pattern is auxetic or not:

$$
\begin{cases}\nu_{21}\left(\xi_{0}\right)<0 & \text { elliptic and auxetic, } \tag{10}\\ \nu_{21}\left(\xi_{0}\right)>0 & \text { hyperbolic and non-auxetic. }\end{cases}
$$

Fig. 3 plots ν_{21} for a family of designs and actuations.
The terms hyperbolic and elliptic come from PDE theory where an equation's type, found by linearization, informs the structure of its solutions [34, 35]. Here in the hyperbolic case, (8) is the classical wave equation with wave speed $c=\frac{\mu_{2}\left(\xi_{0}\right)}{\mu_{1}\left(\xi_{0}\right)} \sqrt{\nu_{21}\left(\xi_{0}\right)}$, the $x_{1^{-}}$and $x_{2^{-}}$ coordinates being like "space" and "time". Linearization predicts spatially modulated, temporally-static waves for small loads; motivated by this, we go on below to construct a branch of nonlinear wave solutions describing the hyperbolic kirigami in Fig. 1(b). In contrast, the RS pattern in Fig. 1] (a) is auxetic and so is elliptic. Instead of waves, elliptic kirigami shows a decay in actuation away from loads. We highlight the strong maximum principle of elliptic PDEs [35]: the maximum and minimum actuation in an elliptic kirigami can only occur at its boundary, unless it deforms by a constant mechanism. No such principle holds for hyperbolic kirigami.

FIG. 4. Comparison between theory and experiments of rhombi-slit kirigami. (a,d) Two 16×16 cell patterns before deformation, with opposite Poisson's ratios and types. Top row is non-auxetic and hyperbolic. Bottom row is auxetic and elliptic. (b,e) Left entries are experimental samples pulled along their centerlines. Right entries show theoretical panel motions, obtained from exact solutions of the effective PDEs by the procedure in SM. 3 [39. (c,f) Annular deformations produced experimentally (left) and using the theory (right). Colormaps show the slit actuation angle $\xi(\mathbf{x})$, extracted from the experiment per SM. 7 39.

217 Nonlinear analysis and examples - The previous lin${ }_{218}$ ear analysis addresses the character of the kirigami's re219 sponse nearby a pure mechanism, but does not prescribe 220 it at finite loads. We now present several exact solutions 221 of the PDE system $(3-4)$ that capture the nonlinear defor222 mations of the kirigami in Fig. 4. Our solutions are based ${ }_{223}$ on known results from PDE theory, which we detail in 224 SM. 639 and summarize here. Using them, we plot the ${ }_{225}$ panel motions with an ansatz that rotates and translates 226 the panels to fit the solution. Due to the finiteness of the ${ }_{227}$ sample, one may expect slight deviations between theory ${ }_{228}$ and experiment, which scale with the relative panel size. ${ }_{229}$ See SM. 3 [39] for more details.
${ }_{230}$ (i) Nonlinear waves - Fig. 4 (a) shows the $\alpha=-0.9$, ${ }_{231} \beta=0$ pattern from the top left of Fig. 3, which remains 232 non-auxetic, and thus hyperbolic, for $\xi \in(0,0.235 \pi)$.
${ }_{233}$ This hyperbolicity is borne out through the existence of 234 nonlinear simple wave solutions to (4), defined by the ${ }_{235}$ criteria that $\xi=\xi(\theta(\mathbf{x}))$ and $\gamma=\gamma(\theta(\mathbf{x}))$ for a scalar 236 function $\theta(\mathbf{x})$. As such, the angles vary across envelopes ${ }_{237}$ of straight line segments called characteristic curves. The 238 term "simple wave" comes from compressible gas dynam${ }_{239}$ ics, where the same functional form governs gas densi240 ties varying next to regions of constant density 40]. For ${ }_{241}$ kirigami, simple waves alleviate slit openings next to re242 gions of uniform actuation.
${ }_{243}$ The left part of Fig. 4 (b) shows the experimental spec${ }_{244}$ imen pulled at its left and right ends along its center${ }_{245}$ line. Slits open by an essentially constant amount in 246 a central diamond region (orange), and recede towards 247 the specimen's corners. Note the "fanning out" of con${ }_{248}$ tours of constant slit actuation from where the loads are 249 applied. The panel motions of a simple wave solution ${ }_{250}$ match these features on the right of Fig. 4 (b). The so251 lution's straight line contours are characteristic curves; 252 its innermost characteristics are chosen to match the slit 253 actuation of the central diamond (SM. 6 39]).

254 (ii) Conformal maps - Recent work 18 has noted the ${ }_{255}$ relevance of conformal maps for kirigami. Adding to this ${ }^{256}$ discussion, and as an example of the more general elliptic ${ }_{257}$ class, we note using (5) that the only rhombi-slit kirigami ${ }_{258}$ designs that deform conformally $\left(\mu_{1}(\xi)=\mu_{2}(\xi)\right.$ for all ξ 259 by definition [41]) have $\alpha=-\beta$ and $\nu_{21}(\xi)=-1$. This 260 includes the RS pattern in Fig. 4(d), fabricated accord${ }_{261}$ ing to the lower left $\alpha=-0.9$ design in Fig. 3. We high${ }_{262}$ light the RS pattern due to its dramatic shape-morphing.

Conformal mappings are basic examples in complex analysis 42, enabling numerous solutions to (4).
The left part of Fig. 4 (e) shows the RS pattern pulled at its left and right ends. Its slits open up dramatically at the loading points and remain closed at the corners: the largest and smallest openings are at the boundary, per the maximum principle. Contours of constant slit actuation form arcs around these points. On the right of Fig. 4(e), we fit the deformed boundary of the pattern to a conformal map (SM. 6 [39]). The solution recovers the locations where the slits are most open and closed, and qualitatively matches their variations in the bulk.
(iii) Annuli - Though one may think of hyerperbolic and elliptic kirigami as a dichotomy, and this is true as far as auxeticity is concerned, we close by pointing out the existence of some special effective deformations that are "universal" in that they occur for both. One example is the annular deformation in Fig. 4 (c) and (f), which arises from (4) under the condition that $\xi(\mathbf{x})$ is either only a function of x_{1} or of x_{2}. All rhombi-slit kirigami patterns are capable of this deformation, as we demonstrate using the previous hyperbolic (c) and elliptic (f) designs. Note unlike the previous examples, these experiments are done using pure displacement boundary conditions.

Discussion - Looking forward, while our emphasis here was on the derivation of coarse-grained PDEs capturing bulk geometric constraints for planar kirigami, we set aside the important question of the forces underlying them. Understanding the inter-panel forces more closely should eventually lead to a complete continuum theory predicting exactly which exotic soft mode will arise in response to a given load. We envision minimizing elastic energy at a higher order than done here, and deriving natural boundary conditions to supplement the PDEs. Nevertheless, our results show that the effective PDE system (3) plays the dominant, constraining role. This is consistent with the conformal elasticity of Ref. [18].

More broadly, we expect that an effective PDE of a geometric origin exists to constrain the bulk behavior of mechanical metamaterials beyond kirigami. Such PDEs have been found for certain origami designs [36, 37, via a differential geometric argument akin to our passage from (3) to (4). In origami, one also finds a surprising coupling between the Poisson's ratio of the mechanisms and certain fine features of exotic soft modes. Are such couplings universal? What about the role of heterogeneity [29, 30, 43, 44]? Can coarse-graining lead to constitutive models for mechanical metamaterials, common to practical engineering [45, 46, or to effective descriptions of their dynamics [47]? While there are many avenues left to explore, our work on the soft modes of planar kirigami is a convincing step towards the discovery of a continuum theory for mechanical metamaterials at large.

Acknowledgment. YZ and PP acknowledge support through PP's start-up package at University of Southern California. IN and PC acknowledge the support of

* tobasco@uic.edu
\dagger plucinsk@usc.edu
[1] T. Mullin, S. Deschanel, K. Bertoldi, and M. C. Boyce, Phys. Rev. Lett. 99, 084301 (2007)
[2] K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke, Nat. Rev. Mater. 2, 17066 (2017).
[3] A. Rafsanjani, K. Bertoldi, and A. R. Studart, Sci. Robot. 4, eaav7874 (2019)
[4] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, and M. Sasaki, Mater. Sci. Eng. A 419, 131 (2006)
[5] P. Velvaluri, A. Soor, P. Plucinsky, R. L. de Miranda, R. D. James, and E. Quandt, Sci. Rep. 11, 1 (2021).
[6] S. A. Zirbel, R. J. Lang, M. W. Thomson, D. A. Sigel, P. E. Walkemeyer, B. P. Trease, S. P. Magleby, and L. L. Howell, J. Mech. Des. 135, 111005 (2013)
[7] S. Pellegrino and C. R. Calladine, Int. J. Solids Struct. 22, 409 (1986).
[8] R. G. Hutchinson and N. A. Fleck, J. Mech. Phys. Solids 54, 756 (2006).
[9] G. W. Milton, J. Mech. Phys. Solids 61, 1543 (2013).
[10] T. C. Lubensky, C. L. Kane, X. Mao, A. Souslov, and K. Sun, Rep. Prog. Phys. 78, 073901 (2015).
[11] C. Coulais, C. Kettenis, and M. van Hecke, Nat. Phys. 14, 40 (2018).
[12] J.-J. Alibert, P. Seppecher, and F. DellIsola, Math. Mech. Solids 8, 51 (2003).
[13] H. Abdoul-Anziz and P. Seppecher, Math. Mech. Complex Syst. 6, 213 (2018).
[14] M. Schenk and S. D. Guest, Proc. Natl. Acad. Sci. U.S.A. 110, 3276 (2013)
[15] Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang, and L. Mahadevan, Phys. Rev. Lett. 110, 215501 (2013)
[16] J. N. Grima and K. E. Evans, J. Mater. Sci. Lett. 19, 1563 (2000)
[17] B. Deng, S. Yu, A. E. Forte, V. Tournat, and K. Bertoldi, Proc. Natl. Acad. Sci. U.S.A. 117, 31002 (2020)
[18] M. Czajkowski, C. Coulais, M. van Hecke, and D. Z. Rocklin, Nat. Commun. 13, 211 (2022)
[19] S. J. P. Callens and A. A. Zadpoor, Mater. Today 21, 241 (2018)
[20] D. M. Sussman, Y. Cho, T. Castle, X. Gong, E. Jung, S. Yang, and R. D. Kamien, Proc. Natl. Acad. Sci. U.S.A. 112, 7449 (2015)

21] F. Wang, X. Guo, J. Xu, Y. Zhang, and C. Q. Chen, J. Appl. Mech. 84, 061007 (2017)
[22] Y. Cho, J.-H. Shin, A. Costa, T. A. Kim, V. Kunin, J. Li, S. Y. Lee, S. Yang, H. N. Han, I.-S. Choi, and D. J. Srolovitz, Proc. Natl. Acad. Sci. U.S.A. 111, 17390 (2014).

23] A. Rafsanjani and D. Pasini, Extreme Mech. Lett. 9, 291 (2016).
[24] Y. Tang and J. Yin, Extreme Mech. Lett. 12, 77 (2017).
[25] M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, et al., Nature 524, 204 (2015).

381
382
383 [2
384
385 [2
386
387

389
390
391 [32
392
393
394
395 3

378 [26] A. Rafsanjani and K. Bertoldi, Phys. Rev. Lett. 118,
379084301 (2017)
380 [27] M. A. Dias, M. P. McCarron, D. Rayneau-Kirkhope,
${ }_{388}$ [30] G. P. T. Choi, L. H. Dudte, and L. Mahadevan, Nat.

400 [36] H. Nassar, A. Lebée, and L. Monasse, Proc. Royal Soc. 401 A 473, 20160705 (2017).
02 [37] A. Lebée, L. Monasse, and H. Nassar, in 7th InternaP. Z. Hanakata, D. K. Campbell, H. S. Park, and D. P. ${ }^{406}$ Holmes, Soft Matter 13, 9087 (2017).

407
28] M. Konaković-Luković, J. Panetta, K. Crane, and 408 M. Pauly, ACM Trans. Graph. 37, 106 (2018).

409
29] P. Celli, C. McMahan, B. Ramirez, A. Bauhofer, 410 C. Naify, D. Hofmann, B. Audoly, and C. Daraio, Soft 411 Mater. 18, 999 (2019).
[31] Y. Yang and Z. You, J. Mech. Robot. 10, 021001 (2018)
[32] N. Singh and M. van Hecke, Phys. Rev. Lett. 126, 248002 (2021).
[33] X. Dang, F. Feng, H. Duan, and J. Wang, Phys. Rev. Lett. 128, 035501 (2022).
[34] R. Courant and D. Hilbert, Methods of mathematical 420 physics: partial differential equations (John Wiley \& ${ }^{421}$ Sons, 2008).
35] L. C. Evans, Partial differential equations (American Mathematical Society, Providence, R.I., 2010).

423
424
425
426
${ }_{4}^{427}$
tional Meeting on Origami in Science, Mathematics and Education (7OSME), Vol. 4 (Tarquin, 2018) p. 811.
[38] D. Z. Rocklin, S. Zhou, K. Sun, and X. Mao, Nat. Commun. 8, 1 (2017).
[39] See Supplemental Material for further theoretical and experimental details.
[40] R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Vol. 21 (Springer Science \& Business Media, 1999).
[41] M. P. Do Carmo, Differential geometry of curves and surfaces: revised and updated second edition (Courier Dover Publications, 2016).
[42] J. W. Brown and R. V. Churchill, Complex variables and applications eighth edition (McGraw-Hill Book Company, 2009).
[43] L. H. Dudte, E. Vouga, T. Tachi, and L. Mahadevan, Nat. Mater. 15, 583 (2016)
[44] X. Dang, F. Feng, P. Plucinsky, R. D. James, H. Duan, and J. Wang, International Journal of Solids and Structures 234, 111224 (2022).
[45] R. Khajehtourian and D. M. Kochmann, J. Mech. Phys. Solids 147, 104217 (2021)
46] C. McMahan, A. Akerson, P. Celli, B. Audoly, and C. Daraio, arXiv preprint arXiv:2107.01704 (2021).
[47] B. Deng, J. R. Raney, V. Tournat, and K. Bertoldi, Phys. Rev. Lett. 118, 204102 (2017)

