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Abstract: The Elliott-Yafet theory of spin relaxation in nonmagnetic metals predicts 

proportionality between spin and momentum relaxation times for scattering centers such as 

phonons. Here, we test this theory in Al nanowires over a very large thickness range (8.5-300 nm), 

finding that the Elliott-Yafet proportionality “constant” for phonon scattering in fact exhibits a 

large, unanticipated finite-size effect. Supported by analytical and numerical modeling, we explain 

this via strong phonon-induced spin relaxation at surfaces/interfaces, driven in particular by 

enhanced spin-orbit coupling. 
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The relaxation of electron spins in nonmagnetic (N) metals after injection from ferromagnetic (F) 

materials is foundational in spintronics, impacting spin valves, spin pumping, spin torques, etc. [1–

4]. In light metals, the Elliott-Yafet (EY) mechanism is understood to control this process, leading 

to s = e, where s is the spin lifetime (related to the spin diffusion length and diffusivity via N 

= (Ds)
1/2) and e is the momentum relaxation time [5,6]. The EY constant  = (E/SO)2 is thus an 

inverse probability of spin relaxation per scattering event, with E being the energy difference 

between bands involved in scattering and SO the spin-orbit coupling [5–8]. In real materials, 

multiple scattering sources lead to a generalized EY relation 𝜏𝑠
−1 = ∑ 𝛽𝑖

−1 𝜏𝑒,𝑖
−1

𝑖 , where the spin 

relaxation rate is expressed in terms of momentum relaxation rates at each scattering source (e,i
 -

1) and their individual i [9–12]. The i for phonons and common defects (grain boundaries, point 

defects, etc.) are poorly understood, however, even in simple N metals, significantly limiting this 

approach [9–12].   

Understanding of EY spin relaxation is progressing, however, particularly in non-local spin valves 

(NLSVs) [13,14]. In these devices, spins are injected from an F contact into an N nanowire, then 

diffuse a lateral distance d, before detection at a second F through a non-local resistance. Vitally, 

NLSVs generate pure, diffusive spin currents [13–15], minimizing artifacts and enabling reliable 

extraction of s(T) and e(T), and thus EY constants [9-12,16-23]. In Cu films, for example, the i 

for phonon scattering (ph  750) has been separated from the i for defects (def), def being 

subsequently decomposed into grain boundary and magnetic impurity components (GB  250 and 

K  1.5) [12]. The latter was enabled by the discovery of a spin-transport Kondo effect [24], in 

which, remarkably, spin relaxation at magnetic impurities can also be cast in EY form [25]. The 

extremely low K in Cu, however (500 times smaller than ph), i.e., the extraordinary efficiency 
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of Kondo spin relaxation, means that even part-per-million magnetic impurities obscure other spin 

relaxation processes [12,20,24,26,27].   

Due to low Z and negligible Kondo effects [24,28], Al is highly attractive for metallic spin 

relaxation studies. We refer here to the fact that Al does not support local moments on dilute 

transition-metal impurities, eliminating spin relaxation due to Kondo scattering [24,28]. 

Remarkably, however, ph in polyvalent metals such as Al and Mg is orders of magnitude beneath 

EY predictions, evading understanding for 40 years [6,29]. Fabian and Das Sarma addressed this 

by noting that large Fermi surfaces in polyvalent metals inevitably cross Brillouin zone boundaries, 

special symmetry points, and other degeneracy lines, creating momentum-space regions where E 

 0 and spin relaxation rates diverge [30,31]. Fermi surface “hot spots” thus dominate spin 

relaxation in Al, calculations with sufficient accuracy to achieve agreement with experiment on 

ph emerging only in the 1990s [30,31]. For 20 years, phonon-mediated EY spin relaxation in this 

model elemental metal has therefore appeared to be understood. Experimental characterization of 

phonon-induced spin relaxation in Al is surprisingly limited, however. NLSV determinations of 

ph often hinge on only 300 and 4.2 K data points [11,32], defect-induced spin relaxation is often 

emphasized over phonon-induced relaxation [9,10], and historical conduction electron spin 

resonance (CESR) data are limited to <100 K [7,29,33].      

Here, we provide extensive T-dependent measurements of s and N in Al NLSVs, thus 

determining ph over a previously unexplored range of N film thickness (tN), from 8.5-300 nm. 

Remarkably, ph is not constant; it in fact decreases from 26,000 in the high-tN limit to as low as 

1,000 at tN  10 nm, revealing a prominent, unanticipated finite-size effect. Related tN dependence 

is found in the Debye temperature (D) from T-dependent resistivity, implicating lattice softening 



4 

 

and surface/interface effects. We proceed to develop analytical and numerical models 

demonstrating that reduced surface/interface ph of 600, applied within only 0.5 nm of the 

surface/interface, quantitatively reproduces experimental data. We thus deduce strong phonon-

induced spin relaxation at surfaces/interfaces, driven in particular by enhanced SO. In addition to 

uncovering a broadly significant phenomenon, these results impact spintronic devices. NLSV-

based spin accumulation sensors, for example, are contenders for next-generation hard drive read 

heads [34–36], but require tN < 10 nm, where our findings substantially modify performance 

predictions.  

Fig. 1(a) shows a scanning electron microscopy (SEM) image of a representative Co/Al NLSV, 

fabricated (and measured) via methods described in Supplemental Material Section A [37]. 

Briefly, a charge current I is injected from one F Co contact into the N Al channel, generating a 

non-equilibrium spin population and a pure, diffusive spin current between the Fs. A non-local 

voltage VNL is then detected between the channel and the second F, leading to a non-local resistance 

RNL = VNL/I, shown vs. magnetic field (H) in Fig. 1(b). The two Fs have differing coercivities, 

enabling toggling between parallel (P) and antiparallel (AP) magnetizations, the resulting RNL 

(Fig. 1(b)) being a direct measure of the spin population at distance d. Measurements of RNL(d) 

thereby determine N and s.  

The NLSVs here have similar dimensions for the F Co contacts (Supplemental Material Section 

A  [37]), but Al channels with tN from 8.5-300 nm. (At low tN we report thicknesses after 

accounting for oxidation of 1.5 nm of Al; the channels are thus capped with AlOx, while the 

bottom interface is with Si/Si-N). Fig. 1(c) shows the tN evolution of the T-dependent N resistivity 

(N(T)). N(T) shifts uniformly upwards with decreasing tN, indicating increasing residual 
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resistivity 0, as expected from grain size reduction, surface/interface scattering, etc. [40,41]. 0 in 

fact increases over ten-fold, from 0.7 to 9.5 cm, while the phonon contribution to N remains 

constant. Fig. 1(d) shows the impact on RNL(T) at an illustrative d = 250 nm. At high tN (e.g., 300 

nm), RNL approaches 2 m, is flat at low T (confirming Kondo effects are absent [24]), and rolls 

off at high T. This occurs due to increased N at higher T, and thus decreased e and s. As tN is 

decreased, RNL(T0) decreases by 300 times, reflecting the defect-induced spin relaxation we 

will discuss elsewhere [42]; we focus here on phonon-induced EY spin relaxation. The latter also 

evolves with tN, as illustrated by the noticeably different RNL(T) for tN  16.5 nm. At the highest 

T and lowest tN, RNL falls to a few , reaching our noise floor.     

As shown in Fig. 2(a,b) for illustrative tN of 300 and 16.5 nm, RNL(d) measurements at various T 

enable extraction of N(T) via fitting to the Takahashi-Maekawa formula [15] based on Valet-Fert 

theory (solid lines) [43], under the (verified [24,27,44]) assumption of transparent F/N interfaces. 

Details are provided in Supplemental Material Section B  [37], but we note that all dimensions and 

the F resistivity are directly measured, and the F spin diffusion length is accounted for via 

resistivity scaling [24,26,44,27,12,18,45]. Only the spin polarization () and N remain as fitting 

parameters, and these are independent as the Takahashi-Maekawa formula reduces to exp(-d/N) 

at high d (see the straight-line behavior on the log10-linear plots in Fig. 2(a,b)). The resulting N(T) 

are shown in Fig. 2(c). At high tN (e.g., 300 nm), N increases substantially on cooling, from 600 

nm at 275 K to 1500 nm at low T, before saturating. This is qualitatively consistent with EY spin 

relaxation: As N(T) decreases on cooling (Fig. 1(c)), e(T) grows and saturates, meaning that s(T) 

and N(T) should also. Also qualitatively consistent with EY relaxation, as tN is decreased, 

N(T0) decreases, N eventually becoming notably T-independent at the lowest tN.   
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Quantitative testing of EY behavior was done by extracting e(T) from N(T) (Fig. 1(c)) using e(T) 

= 3D(T)/vF
2 (where vF = 2.03  106 ms-1 is the Al Fermi velocity), and D(T) = [N(EF)e2N(T)]-1 

(where N(EF) = 2.4  1028 eV-1m-3 is the density-of-states at the Fermi level and e is the electronic 

charge) [46]. N(T) (Fig. 2(c)) is then converted to s(T) = N
2(T)/D(T), enabling direct comparison 

of s(T) and e(T) (see Supplemental Material Section C [37]). This is done using the generalized 

EY relation to separate phonon and defect (T-independent) contributions, writing              

 𝜏𝑠
−1(𝑇) = 𝛽𝑝ℎ

−1 𝜏𝑒,𝑝ℎ
−1 (𝑇) + 𝛽𝑑𝑒𝑓

−1  𝜏𝑒,𝑑𝑒𝑓
−1 , (1) 

where e,ph
-1(T) and e,def

-1 are phonon and defect contributions to the momentum relaxation rate [9-

12,16-23]. As in Fig. 3(a), s
-1 can thus be plotted vs. e,ph

-1 with T as the implicit variable (higher 

T increases e,ph
-1) [12,22]. Fits to Eqn. (1) (solid lines in Fig. 3(a)), thus yield ph

-1 as the slope 

and def
-1e,def

-1 as the intercept. Eqn. (1) indeed describes the data at all tN (no low-T deviation 

occurs, again ruling out Kondo relaxation [12]), with s
-1 increasing as tN is decreased. Focusing 

on phonon-induced spin relaxation, Fig. 3(b) shows the tN dependence of the 275-K s,ph
-1 (left 

axis) and e,ph
-1 (right axis). As discussed with Fig. 1(c), e,ph

-1 is essentially constant (see 

Supplemental Material Section C [37])). s,ph
-1, however, is not at all constant. It increases from 

0.006 ps-1 at tN = 300 nm, to 0.04 ps-1 at tN  10 nm, i.e., by 10 times, particularly below 100 

nm. As ph is the proportionality constant between these two rates, clearly, the EY “constant” for 

phonon scattering is actually size-dependent.  

Fig. 3(c) reinforces the above by plotting ph vs. tN. At high tN, e.g., tN  150 nm, ph is 

approximately constant, the error-weighted average being 26,000. This is within a factor of two of 

the “hot spot” calculation of Fabian and Das Sarma (ph = 12500) [30], but 3-6 times above CESR 

estimates, although those were determined below 100 K [33,47]. At lower tN in Fig. 3(c), 
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however, ph decreases, reaching 11,000 at tN = 50 nm, in good agreement with the 12600 and 

13200 from other Al NLSVs at this tN [11,32,48]. Further decreases occur below this, ph 

eventually reaching 1000 at tN = 12.5 nm. The full variation in ph is thus a factor of 26, i.e., a 

26-fold increase in phonon-induced spin relaxation probability as tN decreases from 300 to 10 

nm. This is not readily visible in Fig. 3(a) due to the log10 scale and large variation in intercept 

(due to defect-induced spin relaxation [42]), but is striking in Figs. 3(b,c).   

Hints to the origin of this effect are provided by Fig. 3(d), which shows the tN dependence of D 

extracted from Bloch-Grüneisen analysis of N(T) (Supplemental Material Section D  [37]). 

Comparing Figs. 3(c,d), D decreases on a similar length scale to ph, specifically below tN  100-

150 nm. This is the well-known lattice softening effect in metallic films and nanowires [49–51], 

immediately suggesting a role for surfaces/interfaces in the tN dependence of ph. Specifically, we 

propose that metallic spin relaxation induced by phonons at surfaces/interfaces is distinctly 

different from that induced by bulk phonons. We test this via a simple analytical model in which 

an effective ph (ph,eff) is expressed in terms of ph,bulk in the Al interior (constrained to 26,000 

from Fig. 3(c)) and a smaller ph,surf applied only within tsurf of the surface/interface. A thickness-

weighted average then yields 

𝛽𝑝ℎ,𝑒𝑓𝑓 =
𝜏𝑒,𝑝ℎ

−1

𝜏𝑠,𝑝ℎ,𝑒𝑓𝑓
−1 =

𝜏𝑒,𝑝ℎ
−1

(
𝑡𝑁 − 2𝑡𝑠𝑢𝑟𝑓

𝑡𝑁
) 𝜏𝑠,𝑝ℎ,𝑏𝑢𝑙𝑘

−1 + (
2𝑡𝑠𝑢𝑟𝑓

𝑡𝑁
) 𝜏𝑠,𝑝ℎ,𝑠𝑢𝑟𝑓

−1

 (2), 

where s,ph,eff
-1 is the effective spin relaxation rate due to phonon scattering and s,ph,bulk

-1 and 

s,ph,surf
-1 are related to e,ph

-1 (160 ps-1 from Fig. 3(b)) via ph,bulk and ph,surf. The data of Fig. 3(c) 

can then be fit with Eqn. (2) with ph,surf as the only parameter, provided tsurf is fixed. We set tsurf 

by noting that both the length scale for surface structural relaxation in Al  [52], and the Debye 
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wavelength (D = hvs/kBD, where D = 394 K and the phonon velocity for the relevant acoustic 

modes vs = 4.2 km s-1) [53,54], are 0.5 nm. We thus set tsurf = 0.5 nm in Eqn. (2) as a simple 

estimate of the length scale over which ph could be surface/interface-modified, resulting in the 

green dashed line fit in Fig. 3(c), where ph,surf = 600, i.e., 40 times smaller than bulk. The fit is 

reasonable, demonstrating that imposing lower ph,surf within only 0.5 nm of the surface/interface 

can reproduce the data, with no need to invoke, e.g., enhanced spin relaxation at grain boundaries.        

These conclusions are reinforced by simulations. As in prior work, we employ 3D Monte Carlo 

simulations [44], numerically solving the spin-diffusion equation for the geometry in Fig. 4(a). 

Details are provided in Ref. [44] and Supplemental Material Section E [37], but, briefly, spins are 

injected from the F (red) into the Al channel of length LN = 10N, width wN = 160 nm, and thickness 

tN. The channel is broken into cells of (N/3)  40  0.5 nm3, the spin relaxation rate in each cell 

being s
-1 =  

s,def
-1 +  

s,ph,i
-1.  

s,def
-1 is fixed from experiment (Fig. 3(a)) and  

s,ph,i
-1 = ph,i

-1 
e,ph

-1, 

assigning ph,bulk = 26,000 in the interior (grey) cells and a distinct ph,surf in the surface/interface 

(blue) cells. The model is then iterated to find the steady-state spin polarization profile [44] and 

thus ph,eff =  
e,ph

-1/s,ph,eff
-1. Fig. 4(b) shows the resulting ph,eff(ts) at an illustrative tN = 25 nm, for 

ph,surf = 5000, 3000, and 600. Reproducing the experimental ph = 5000 at this tN (horizontal gray 

line) requires unphysically large ts at large ph,surf, but only ts  1 nm when ph,surf = 600. A full tN 

dependence is shown in Fig. 4(c), which plots ph,eff (log10-log10 scale) from experiment (black 

points), Eqn. 2 (green line), and simulation (red points), the latter two with tsurf = 0.5 nm and ph,surf 

= 600. Analytical and numerical results coincide, validating Eqn. (2), and displaying good 

agreement with experiment. We thus conclude that the finite-size effect in ph(tN) (Figs. 3(c), 4(c)) 
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can be quantitatively understood in terms of efficient phonon-induced spin relaxation (low ph) 

within 1 nm of the Al surface/interface.     

The EY expectation that  = (E/SO)2 suggests several potential contributors to reduced ph at 

surfaces/interfaces. First, and most importantly, SO is well known to be enhanced under 

dimensional confinement and at surfaces/interfaces, the accompanying inversion symmetry 

breaking in films, 2D materials, and heterostructures leading to Rashba effects, Dzyaloshinskii-

Moriya interactions, skyrmions, etc.  [1–3]. Increased SO therefore likely plays a significant role 

in rendering ph,surf << ph,bulk; in essence, phonon scattering near surfaces/interfaces occurs in 

environments with SO enhanced over bulk, lowering ph. We emphasize that while the intrinsic 

SO in Al is weak, EY spin relaxation via hot spots is extremely sensitive to SO, and any 

enhancement of it, such as at the surfaces/interfaces deduced here. Second, it has recently been 

reported that inversion symmetry breaking at surfaces/interfaces can add D’yakanov-Perel’ (DP) 

contributions to spin relaxation in thin metal films [55]. While this is more likely in higher Z 

metals  [56], and may manifest through def rather than ph, future work exploring this in Al would 

be worthwhile. Third, surface/interface phonons with character distinct from the bulk could play a 

role, as in certain transport phenomena in metallic films  [50]. Modified electronic structure could 

also contribute, both surface/interface electronic and phononic effects potentially reducing E, and 

thus ph. Future theoretical work is needed to assess the relative importance of these effects.   

Finally, we emphasize that our findings may also be relevant beyond metals. EY spin relaxation is 

important in graphene, for example (where DP is also active) [58-60], which exists in a limit where 

surface/interface effects are anticipated, and enhanced ph may be the norm. In addition, the 

general approach in this work could also be powerful in 2D spin transport. Specifically, thickness 
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tuning is used here to vary e
-1 and s

-1 (Fig. S3 [37]), combined with T-dependent analysis (e.g., 

Fig. 3)) to separate phonon- and defect-induced contributions to s
-1 and thus determine ph and 

def. Related parametric tuning could be employed in graphene and other 2D materials, varying e
-

1 and s
-1

 via gate voltage [58,59], impurity adsorption [60], etc., then utilizing differing expected 

dependencies for EY and DP mechanisms to separate their contributions.          

In summary, we have presented a detailed picture of phonon-induced EY spin relaxation in the 

model light metal Al, spanning a previously unexplored thickness range (8.5-300 nm). An 

unanticipated finite size effect emerges, where the EY “constant” for phonon scattering decreases 

over ten-fold below 100 nm. Based on analytical and numerical modeling, this was understood 

in terms of a reduced EY constant (enhanced spin relaxation) within 1 nm of the surface/interface, 

implicating enhanced surface/interface spin-orbit coupling and posing well-defined challenges to 

theory.    
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Fig. 1. (a) SEM image of a Co/Al NLSV illustrating the measurement configuration (I, V denote 

current and voltage). (b) Representative background-subtracted [57] RNL vs. H for a Co/Al NLSV 

with tN = 300 nm, d = 500 nm, at 5 K. Red and blue denote different sweep directions. (c) T 

dependence (linear-log10 scale) of N for Al nanowires with tN = 8.5–300 nm. (d) T dependence of 

RNL (log10-log10 scale) for Co/Al NLSVs with the same tN (and color scheme); all data are for d 

= 250 nm, except tN = 100 nm (open points), for which d = 500 nm.   
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Fig. 2. (a,b) RNL(d) vs. T for Co/Al NLSVs with tN = 300 and 16.5 nm. Solid lines are Takahashi-

Maekawa fits [15]. (c) T dependence of N for tN from 8.5 to 300 nm. Representative uncertainties 

are shown on first and last points. 
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Fig. 3. (a) s
-1 vs. e,ph

-1 from Co/Al NLSVs with tN from 12.5 to 300 nm (8.5 nm data were excluded 

due to lack of data significantly above the noise at high T (see Fig. 1(d), Supplemental Material 

Section F [37]). Solid lines are fits to Eqn. 1. (b) 275-K tN dependence of s,ph
-1 (black, left axis) 

and e,ph
-1 (blue, right axis), with the axis scales chosen such that points coincide at high tN. (c) tN 

dependence of ph; the green dashed line is a fit to Eqn. 2. (d) tN dependence of D from N(T) of 

Al nanowires and films (open points); the bulk D is marked. In (b-d) multiple points are plotted 

at some tN, from repeat devices.      
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Fig. 4. (a) Numerical simulation schematic. (b) Simulated ph,eff vs. ts for tN = 25 nm, for ph,s of 

5000, 3000 and 600. (c) ph,eff vs. tN (log10-log10 scale) from experiment (black points), Eqn. 2 with 

ph,s = 600, ts = 0.5 nm (green dashed line), and simulations with the same parameters (red points).  
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