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The weak acoustic phonon scattering in graphene monolayer leads to high mobilities even at
room temperatures. We identify the dominant role of the shear phonon mode scattering on the
carrier mobility in AB-stacked graphene bilayer, which is absent in monolayer graphene. Using a
microscopic tight-binding model, we reproduce experimental temperature dependence of mobilities
in high-quality boron nitride (BN) encapsulated bilayer samples at temperatures up to ∼ 200 K. At
elevated temperatures, the surface polar phonon (SPP) scattering from BN substrate contributes
significantly to the measured mobilities of 15,000–20,000 cm2/Vs at room temperature and carrier
concentration n ∼ 1012 cm−2. A screened SPP potential for a dual-encapsulated bilayer and trans-
ferable tight-binding model allows us to predict mobility scaling with temperature and bandgap for
both electrons and holes in agreement with the experiment.

Graphene has enabled novel electronic devices with
excellent electronic properties [1]. Graphene hexagonal
boron nitride (BN) encapsulation allows device fabrica-
tion with the state of the art electrical performance [2, 3].
The weak acoustic phonon scattering leads to extraor-
dinary high mobilities even at room temperatures, as
shown experimentally [2, 4–9] and theoretically [10–14].
The high-energy optical phonons are not thermally ex-
cited at room temperatures and have minimal contribu-
tion to the scattering. However, the lower energy surface
polar phonons (SPP) in polar substrates can scatter car-
riers in graphene [15–19] or carbon nanotubes [20, 21].
In multilayer graphene, the role of additional vibra-
tional modes on electrical transport and superconduc-
tivity [22, 23] has not been fully understood.

In this letter, we report temperature-dependent mo-
bility measurements of high-quality h-BN encapsulated
AB stacked graphene bilayers at different bandgap val-
ues. The experimental data are used to fine-tune the
electron-phonon model Hamiltonian parameters [24] and
to revisit the screening model for the SPP scattering in
dual-encapsulated 2D materials. The calculations reveal
the dominant contribution to the scattering of the low
energy shear phonon mode, corresponding to the layer’s
lateral displacements relative to each other. A combina-
tion of the intrinsic phonon and SPP phonon (from the
BN substrate) scatterings reproduces the observed room-
temperature mobility values of 15,000–20,000 cm2/Vs in
AB stacked bilayers. The reported mobility values are
significantly lower than the intrinsic phonon limited mo-
bilities in graphene monolayer devices fabricated under
similar conditions resulting in minimal impurity scatter-
ing.

Sample fabrication has been described elsewhere [25].
The AB-stacked bilayer transistors are encapsulated by
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30 nm thick hexagonal boron nitride, as schematically
shown in Fig. 1a. This device design allows indepen-
dent variation of the bandgap and doping level in bilayer
graphene [26, 27]. The mobility is measured using a six-
terminal configuration, eliminating the contact resistance
contribution. Ref. [25] shows that the ambipolar hydro-
dynamic regime determines the transport properties at
low carrier densities. However, at high carrier densities,
i.e., n & 1012 cm−2, corresponding to the Fermi levels
above 30 meV, the standard band theory applies for elec-
trical transport description up to room temperatures [25],
the regime of interest here.

The electron and hole mobilities are shown in Fig. 1b
and 1c, respectively, for different bandgap values. The
sources of the temperature dependence of the mobil-
ity include intrinsic and extrinsic phonons [15, 28] and
temperature-dependent screening of the Coulomb impu-
rity scattering [29, 30]. In the high-quality samples, the
Coulomb impurity limited mobility is not a dominant
scattering mechanism, and we neglect its temperature
dependence in the data analysis. We solve the Boltz-
mann Transport Equation (BTE) numerically for the mo-
bility [12, 31] as a function of temperature for different
bandgap values, using electron-phonon scattering matrix
elements discussed in detail below [32]. The results are
compared with the experiment in Fig. 1b and 1c

To provide a microscopic theory for the phonon-limited
mobility in bilayer graphene, we employ a first-neighbor
tight-binding model with in-plane π-orbitals overlaps t,
which depend on the distance rij between the atoms:
t(rij) = t0 − gδrij , where t0 = 3.1 eV and g = 5.3

eV/Å [33]. For the interlayer coupling, we use a long-
range model applicable for twisted bilayer graphene [24]:

tij = t⊥ exp

{(
−rij − h0

λz

)}
exp

{(
−
(
ξij
λxy

)α)}
, (1)

where h0 = 3.35 Å is the equilibrium interlayer distance
and ξij = ((xi − xj)

2 + (yi − yj)
2)1/2 is the in-plane

distance between the atoms. Parameters λz = 0.6 Å
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FIG. 1. (a) Schematic illustration of the device structure. Carbon atoms are located at ±h0/2. The temperature dependence
of the inverse (b) electron and (c) hole mobilities for various bandgap values. The experimental data are shown by the marks
and the BTE calculations by the lines, respectively. According to Matthiessens rule, the Coulomb limited mobilities given in
table I were added to the calculated phonon-limited mobilities (see text).

and t⊥ = 0.4 eV are chosen to reproduce the inter-
layer distance dependence of the interband energy ∆12

(see Fig. 2a) from density functional theory (DFT), i.e.,
d∆12/dh0 ∼ ∆12/λz [24]. In the absence of the lat-
eral screening, i.e., λxy = ∞, Eq. (1) would predict
the separation between the two conduction bands of
∆12(h = h0) = 0.145 eV unless a much smaller value
of λz than the DFT value is used. That value of ∆12 is
much smaller than a canonical value of ∼ 0.4 eV [34, 35],
consistent with the spectroscopic data [36]. We keep pa-
rameter λxy = 1.7 Å as in Ref. [24] and we adjust pa-
rameter α from the value of α = 1.65 to α = 2.0 to get a
better match with the transport data in Fig. 1. The band
structure is shown in Fig. 2a. The separation between the
bands in our model is ∆12 = 0.36 eV, as shown in Fig. 2a.
Note that tight-binding models with interlayer hoppings
described by several exponents [37, 38] also reproduce the
DFT value of ∆12.

The effective mass difference due to the electron-hole
asymmetry in Fig. 2a translates to larger electron mobili-
ties in agreement with the experiment. Our Hamiltonian
Eq. (1) predicts me = 0.030 m0 and mh = 0.035 m0,
which matches well the available experimental values in
the literature [39] with the correct sign for the electron-
hole asymmetry, i.e., mh > me. Note that the band
structure masses do not include electron-electron renor-
malization, which reduces with increasing carrier den-
sity [40].

The phonons are calculated using an atomistic valence
force model [41] for the in-plane interactions and the
Lennard-Jones (LJ) 6-12 potential [42] between atoms
in adjacent layers. The LJ parameters are determined
by setting the van der Waals adhesion energy to Ea = 60
meV per atom [42] and interlayer spacing to h0 = 3.35
Å. The shear mode energy of 32 cm−1 [43–45] is sub-
stantially underestimated in the LJ model. Therefore,
we added a restoring force for the in-plane sliding distor-
tions to the atomic potential to match the experimental
shear mode energy [43–45]. The resulting phonon disper-
sions are shown in Fig. 2b.

We find that the intrinsic phonon scattering reproduces
experimental mobilities reasonably well at temperatures
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FIG. 2. (a) electronic band structure of AB-stack bilayer
graphene with a zero bandgap. The band separation is de-
picted by ∆12. (b) Phonon dispersion of the low energy
phonons (from bottom to top at Γ point): flexural phonon,
transverse and longitudinal acoustic phonons, doubly degen-
erate shear phonons corresponding to sliding in lateral direc-
tions, out-of-plane breathing phonon mode. (c) Normalized
spectra function S(~ω) from Eq. 9 at room temperature for
n-doped bilayer with a gap of ∆ = 3.3 meV and concentration
of 9 × 1011 cm−2. The integral of S(~ω) gives the scattering
rate, and integrals over specific energy windows give relative
phonon contributions to scattering.

below 200 K. However, to account for the nonlinear tem-
perature dependence in Fig. 1b and 1c at higher tem-
peratures, we need to add SPP scattering from the h-
BN phonons [12]. Following Ref. [46, 47], we extend the
theory for the electron-SPP coupling in graphene struc-
tures on polar substrates [48] to dual-encapsulated bi-
layer graphene, shown in Fig. 1a. We look for a solution
of Maxwell’s equation for the spatial dependence of the
electric potential due to the SPP phonon using the fol-
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lowing ansatz [46]:

ϕ(~ξ, z) =
∑
~q

ϕ(z)ei~q.
~ξ (2)

where ~q is the in-plane 2D phonon wavevector and ~ξ is
the in-plane vector. In isotropic materials, Poisson equa-
tion ∇ε∇ϕ = 0 requires that ϕ(z) ∝ e±qzz with out-
of-plane wavevector qz being equal to its in-plane coun-
terpart, i.e., qz = |~q| = q. However, in an isotropic di-
electric material with ε‖ 6= ε⊥, Poisson’s equation so-

lution requires that qz = q
√
ε‖/ε⊥. Earlier papers on

SPP scattering in graphene used unscreened SPP po-
tential [12, 16, 17, 49], when the electron-SPP coupling
is proportional to ∝ (1/(ε∞ + 1)− /(ε0 + 1)), where ε0
and ε∞ are low- and high-frequency dielectric constants
of the polar substrate, respectively. The follow-up works
accounted for screening by reducing the unscreened ma-
trix element by ε‖ as in Ref. [50] or by employing more
sophisticated calculations as in Ref. [51, 52].

Note that the electric field of the SPP mode is propor-
tional to ∇ϕ and, hence, in an isotropic material, SPP
electric field is tilted at 45◦ to the normal of the po-
lar material. Therefore, it is natural to expect bilayer
graphenes in-plane and out-of-plane dielectric constants
to contribute to screening. To achieve that, we treat
bilayer graphene as a finite width dielectric of thick-
ness 2hs, as shown in Fig. 1a, where hs = h0 is an
effective width of the electron π-orbitals. In perpen-
dicular to the plane direction, we choose ε⊥ = 6 ap-
propriate for bilayer graphene interface [53]. For the
in-plane direction, we choose static dielectric function
ε‖ = 1 + vcΠ(q, kF ), where vc = 2πe2/q is the Fourier
transform of the Coulomb potential and Π(q, kF ) is the
polarization function which depends on carrier density n
via the Fermi wavevector as kF =

√
πn at zero temper-

ature. We use static, zero-temperature limit to evaluate
Π(q, kF ) in the Random Phase Approximation [54, 55].

The solution for ϕ(z) has the form:

ϕ(z) =


ϕ0 cosh (qzz) |z| < hs
A eq(z−d) +B e−q(z−hs) hs 6 z < d

C e−q(z−d) d 6 z

(3)

where coefficients A, B, C and dispersion relation for
SPP phonons are found using the boundary conditions:
ϕ+ = ϕ−, ε+dϕ+/dz = ε−dϕ−/dz at z = hs and z = d,
where superscripts “+” and “−” reflect corresponding
functions to the right and to the left of the boundaries.
The SPP dispersion is given by ε(ω) = −γ(q), where
γ(q) = γ1(q)/γ2(q):

γ1(q) = tanh (q(d− hs)) +
√
ε‖ε⊥ tanh (qzhs)

γ2(q) = 1 +
√
ε‖ε⊥ tanh (q(d− hs)) tanh (qzhs), (4)

The BN dielectric function ε(ω) is modeled as:

ε(ω) =
ε∞ω

2 − ε0ω2
TO

ω2 − ω2
TO

, (5)

where ε0 = 5.09, ε∞ = 4.575, and ~ωTO = 97.3 meV [12,
56]. We omit the higher energy SPP phonon branch at
∼200 meV. The resulting SPP dispersion is given by:

ωSPP (q) = ωTO

√
ε0 + γ(q)

ε∞ + γ(q)
, (6)

We find the constant ϕ0 in Eq. 3 from the normaliza-
tion condition [47, 48]:

1

L2

~
2ω

=

∫
1

4π

1

2ω
(
∂ε

∂ω
|E⊥|2 +

∂ε

∂ω
|E‖|2)dr, (7)

where E(r) = −∇ϕ(r), L2 = NkAC is the sample area,
AC is the primitive two-atom unit cell area, and Nk is
a number of k-points. Finally, the electron-SPP matrix
element Mkq can be obtained as

|Mkq|2 = (eϕ0)2| 〈ψk|ψk+q〉 |2

(eϕ0)2 =
πe2

qACNk
~ω
(

1

ε∞ + γ(q)
− 1

ε0 + γ(q)

)
f2

f−1 = cosh (qzhs) cosh (q(d− hs))γ2(q), (8)

where γ2(q) is given by Eq. (4), ψk are single-particle
wavefunctions. The inner product in Eq. (8) should be
understood as the wavefunction overlap in a primitive
unit cell, not the entire sample. In the low-energy model
at zero gap, the wavefunction overlap is | 〈ψk|ψk+q〉 |2 =
(1 + cos (2θkk+q))/2, where θkk+q is the angle between
the two wavevectors k and k + q [57]. Note that the un-
screened potential can be obtained by setting hs = 0 in
Eq. (8). The fast 1/q decay of the SPP matrix element
suppresses large momentum scattering, such as interval-
ley and Umkplapp scattering.

It is natural to expect that SPP scattering would dou-
ble in dual-encapsulated devices since an SPP phonon
can occur on either side in h-BN substrates. Indeed, this
is the case in the limit of qd� 1. However, in the oppo-
site limit qd � 1, the scattering matrix element is half
of what one would expect in the case of bilayer trans-
ferred on h-BN with the top side exposed to air. We
use d = 1.5h0 as shown in Fig. 1a. The results of BTE
simulations with intrinsic and SPP phonon scattering are
shown in Fig. 1b and 1c together with the experiment.
The Coulomb mobilities µC are added to the simulated
phonon-limited mobilities µph according to Matthiessen’s

rule [58]: µ−1 = µ−1ph + µ−1C , where µC values are given
in table I.

One way to identify phonon specific contributions to
the scattering is to use a spectral function S(~ω):

S(~ω) =
∑
k

(
−∂f0k
∂Ek

)∑
qµ

Sµkq
1− f0k+q
1− f0k

(
1− cos (θkk+q)

)
×δ(~ω − ~ω−qµ)

/∑
k

(
−∂f0k
∂Ek

)
Sµkq = |〈ψk|Hµ

e−ph|ψk+q〉|
2[n−qµδ(Ek+q − Ek + ~ω−qµ)

+(1 + nqµ)δ(Ek+q − Ek − ~ωqµ)] (9)
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FIG. 3. Phonon-limited mobility for (a) electrons and (b)
holes as a function of bandgap at room temperature and 150
K. The markers and solid curves represent experimental and
theoretical mobilities, respectively. (c) and (d) depict room
temperature mobilities calculated for one type of scattering
in the Boltzmann Transport equation for electrons and holes,
respectively.

where ~ωqµ are phonon energies with band index µ =
1 . . . 12 for intrinsic phonons. For SPP phonons, the
electron-phonon matrix element |〈ψk|Hµ

e−ph|ψk+q〉| =

|Mkq| is given by Eq. (8). The electron-phonon Hamil-
tonian for intrinsic phonons is obtained by expanding
Eq. (1) to linear order in the normal modes of phonon
displacements. The equilibrium Fermi-Dirac distribution
f0k(EF − Ek, T ) depends on temperature T and Fermi
energy EF . The Bose-Einstein phonon occupation num-
ber nqµ depends on phonon energy ~ωqµ and temper-
ature. The wavevector index k absorbs both wavevec-
tor direction and electron band index. The integral of∫
S(~ω)d~ω gives the scattering rate for the low-field

transport [11, 13, 14]. The dominant contribution to
the scattering of about 49% at room temperature comes
from the shear phonon mode, as shown in Fig. 2c. The
second-largest contribution comes from the SPP phonons
of about 44%. The remaining 4% and 3% are contributed
by the low energy flexural phonons and high energy (∼
200 meV) optical phonons. Note that relative contri-
butions obtained from the analysis of function S(ω) in
Eq. (9) are similar but not the same as those obtained
from the full BTE solutions with the modified scattering
rates discussed below.

The bandgap dependencies of the phonon-limited mo-
bilities are shown in Fig. 3 together with the experimental
mobilities corrected for the Coulomb impurity scatter-
ing according to Matthiessen’s rule: µ−1exp − µ−1C , where
µexp are the measured values shown in Fig. 1a and 1b,

∆(meV ) 3.3 16.3 29.8 42.4
µe
C(m2/V s) 8.5 7.3 7.8 6.4
µh
C(m2/V s) 6.9 7.9 6.0 6.3

TABLE I. Impurity-limited mobilities for electrons and holes
for various values of the bandgaps.

and µC values are given in table I. The nearly constant
room temperature mobilities in Fig. 3a and Fig. 3b are in
excellent agreement with the calculations for both elec-
trons and holes. However, simulations using one type
of phonon scattering show the opposite dependencies on
the bandgap. The intrinsic phonon-limited mobility de-
creases with increasing bandgap, while the SPP mobil-
ity increases. The larger the density of electronic states
at the Fermi level at larger bandgaps, the lower the
intrinsic-phonon limited mobility. However, SPP mobil-
ity is determined by the density of final states at energies
EF ± ~ωSPP . As the bandgap opens, the scattering in-
volving phonon emission becomes suppressed due to the
lack of the final states falling into the bandgap. As a
result, the mobility increases with increasing bandgap
roughly by a factor of two, as shown in Fig. 3c and
Fig. 3d. At the small temperature of T = 150 K, the
SPP scattering is suppressed due to the infinitesimal SPP
phonon occupation number, and the experimental mo-
bility demonstrates a decrease with increasing bandgap
according to the theoretical predictions in Fig. 3a and
Fig. 3b. Due to the long-range interaction of the tight-
binding model Eq. 1, the electron-hole asymmetry in the
band structure results in the systematically lower hole
mobilities in agreement with the experiment.

In Fig. 4a, we demonstrate relative contributions to
the total mobility from the SPP phonons, impurity scat-
tering, and intrinsic phonons scattering. The latter has
contributions from the shear, flexural, and residual con-
tributions from the acoustic and optical phonons calcu-
lated when the electron-phonon contribution from the
interlayer coupling in Eq. (1) is set to zero. The flexural
and shear phonon contributions are calculated from the
BTE solution with the electron-phonon coupling from the
in-plane hopping matrix element distance dependence set
to zero, i.e., in-plane t(rij) = t0, and choosing appropri-
ate phonon energies for scattering according to Fig. 2c.
In Fig. 4a, the solid curve shows the BTE simulations,
including all phonon scatterings, and it falls on top of the
experimental data points after including Coulomb scat-
tering using Matthiessens rule. The impurity scattering
is assumed to be temperature independent.

The dashed curves in Fig. 4a show results of the BTE
solutions with only one type of phonon scatterings. We
find deviations of 10-20% in the mobility values using
the BTE solution with all types of phonon scattering and
those obtained from Matthiessen’s rule using BTE mo-
bilities from the individual types of scattering. Note that
at the intermediate temperature of 150 K, the Coulomb
impurity scattering is comparable to the phonon scatter-



5

n
104

105

106

ResidualFlexural SPP

Shear

Intrinsic

C

Experiment
Theory

Co
nt

rib
ut

io
n 

(%
)

(a)

(b) (c)

Residual

Flexural
SPP

= 42.4 meV

Shear

Residual

Flexural SPP

Shear

= 3.3 meV

FIG. 4. (a) Overall experimentally measured and theoreti-
cally calculated electron mobilities as a function of temper-
ature for n-doped bilayer with a gap of ∆ = 3.3 meV and
concentration 9× 1011 cm−2. The intrinsic, SPP, shear, flex-
ural, and residual phonon-limited mobilities are shown by the
dashed curves from bottom to top (at room temperature), re-
spectively. (b) and (c) show relative phonon contributions to
the total mobility as a function of temperature for ∆ = 3.3
meV and ∆ = 42.4 meV, correspondingly.

ing, unlike the case at room temperatures, when phonons
dominate. Therefore, we expect an error introduced by
Matthiessen’s rule in extracting phonon-limited mobility
from the experimental data at 150 K to be responsible for
a larger discrepancy between the theory and the experi-
ment in Fig. 3a and b. Finally, we implemented a tight-
binding model from Ref. [38] for the intrinsic phonon
scattering and found mobilities larger than reported here
by only 20%.

In Fig. 4b and c, we show relative contributions of
different phonon modes to the total phonon-limited mo-
bility as a function of temperature for small and large
bandgap bilayers, respectively. When the gap is large,
the shear phonon dominates over an entire temperature
range. SPP dominates at room temperature in a small
gap bilayer, although the sum of all intrinsic phonons

overwhelms SPP contribution, which is consistent with
Fig. 3c. In monolayer graphene, flexural phonons cou-
ple to electrons in the second-order perturbation the-
ory [4, 8, 59], while in bilayer graphene, flexural phonons
have non-vanishing electron-phonon coupling in linear
order. According to Fig. 4a, if the SPP, shear, and
flexural phonon scatterings were suppressed, then bi-
layer graphene mobility at room temperature would have
fallen in the range of 500,000-1000,000 cm2/Vs, consis-
tent with the monolayer mobility calculations using the
same model [12].

In conclusion, we have shown theoretically and ex-
perimentally that, at high carrier densities, intrinsic
phonons and extrinsic h-BN SPP phonon scatterings
are responsible for the temperature-dependent mobility
in AB-stacked bilayer graphene. Using the long-range
tight-binding model, we identified the dominant scat-
tering mechanism due to the low energy shear phonon
mode, corresponding to the layers sliding relative to each
other. The shear phonon scattering is absent in mono-
layer graphene, which explains high mobilities in mono-
layer devices fabricated under similar conditions result-
ing in minimal Coulomb impurity scattering. At room
temperatures, the second-largest scattering contribution
is due to the h-BN SPP phonons. We developed a
model for screened electron-SPP phonon scattering in
dual-encapsulated structures.

Our findings resolve a decade-old question of why bi-
layers graphene mobility is systematically lower than that
in monolayers. Our relatively simple electron-phonon
models in Eq. (1) and (8) are transferable to other lay-
ered carbon structures and can be used to study su-
perconductivity and electrical transport in twisted bi-
layer graphene or other carbon-based van der Waals het-
erostructures [60]. The shear phonons are generic to
many other layered 2D materials [61], such as polar tran-
sition metal dichalcogenides, and their role in carrier mo-
bility is largely unexplored.
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