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Abstract

Resistivity in the quantum-critical fluctuation region of several metallic compounds such as the

cuprates, the heavy-fermions, Fe-chalogenides and pnictides, Moiré bi-layer graphene (MBLG) and

WSe2, is linear in temperature T as well as in the magnetic field Hz perpendicular to the planes.

Scattering of fermions by the excitations of a time-reversal odd polar vector field Ω has been shown

to give a linear in T resistivity and other marginal Fermi liquid properties. An extension of this

theory to an applied magnetic field is presented. Magnetic field is shown to generate a density

of vortices in the field Ω proportional to Hz. The elastic scattering of fermions from the vortices

gives a resistivity linear in Hz with the coefficient varying as the marginal fermi-liquid susceptibility

ln(ωcT ). Quantitative comparison with experiments is presented for cuprates and MBLG .
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High temperature cuprates [1] [2] have a linear in T resistivity for doping in the region

above Tc which is bounded by a phase with a ”pseudo-gap” on one side and cross-over to a

Fermi-liquid on the other. This and related anomalies [3] in this region suggested a quantum-

critical origin for the anomalies [4] [5] and the prediction that the pseudogap phase breaks

time-reversal and inversion symmetries. Linear in T resistivity and other anomalies, similar

to those in the cuprates, are also found in several Fe-based compounds in the fluctuation

region of their antiferromagnetic (AFM) quantum-critical point [6–9], in heavy fermion

compounds [10, 11], as well as more recently in twisted bi-layer graphene [12, 13] and in

the twisted bi-layer compound WSe2 [14] with hitherto un-discovered order parameters. An

important recent discovery [15] [16] [17] [14] is that in all of them the resistivity is linear

also in an applied magnetic field |H|. The magnitude of the magneto-resistivity is similar

to the zero-field resistivity at temperature T for µBH of O(kBT ). Where investigated [18],

[19] the linear in |H| resistivity is found only for the component Hz applied perpendicular

to the planes.

Three important general points should be noted: First, a transport scattering rate linear

in |H| and independent of temperature can only be due to elastic scattering of fermions from

time-reversal odd axial objects induced by the magnetic field. Second, the fact that only the

component of the field orthogonal to the high conducting plane in all these metals is effective

excludes magnetic moment due to spins in favor of magnetic moments due to orbital loop

currents. Third, the magnitude mentioned above implies that the theory of the linear in |H|
resistivity must be closely related to the theory which gives linear in T resistivity.

A theory that gives linear in T resistivity and other anomalies in cuprates rests on the

theory of quantum critical fluctuations [20, 21] which are prelude to a state of loop current

order. The new experiments invite extension of this theory to the effects of a magnetic field.

The occurrence of the linear in T and in H resistivity as well as the associated T ln(ωc/πT )

entropy in the quantum-critical regions in at least all the other compounds where results

are available [7, 10] is to be expected if their quantum-criticality is described by a model

which maps to the quantum-xy model coupled to fermions (QXY-F). The mapping has

been shown [22] for the planar ferro or antiferro-magnetic model or an incommensurate

Ising model. Here, I will first present a theory for the magnetic field dependence of the

resistivity in the cuprate compounds for which more quantitative information is available

than the other compounds and briefly comment on the other cases.

2



Loop-current order in cuprates can be represented as a time-reversal odd polar vector

Ω on a lattice, sketched in Fig. (1 - A). Using conservation laws alone Else and Senthil

[23] have recently shown that to get resistivity proportional to T for T → 0 in the pure

limit, the critical fluctuations must be of an order parameter of such a symmetry. Such an

order parameter has indeed been found to be consistent with experiments using a variety of

different techniques [24–28].

The orbital magnetic susceptibility of the model is obtained from the fluctuations already

derived in Refs. [20, 29–31]. The model at H = 0 is specified by the interaction energy of the

angles θi,τ of Ωi at neighboring sites, by the kinetic energy due to their angular momentum

Lzi, and the coupling of spatial and temporal fluctuations in θi,τ to the fermions. The

QXY-F model, just as the classical XY model, does not belong to the universality class of

the Ginzburg-Landau-Wilson theories and their quantum extensions. The quantum-critical

fluctuations are driven by proliferation of topological defects, 2D spatial vortices, and warps

which are spatially local events interacting logarithmically in imaginary time [20]. The

critical correlations, C(r, τ) ≡< e−iθ(r,τ)eiθ(0,0) >, have been obtained by quantum-monte-

carlo calculations [29, 30] as well as derived by renormalization group [31]. It is shown in

an Appendix in Ref. [32] that the orbital magnetic susceptibility χLL(r, τ) defined by (1),

are proportional to those of C(r, τ). Near criticality the (dimensionless) dynamic orbital

magnetic susceptibility is

χLL(r, τ) ≡ µ2
B < L+

z (r, τ)Lz(0, 0) >= µ2
B < L2

z >
τ 2c
τ
e−(τ/ξτ )

1/2

ln
r

a
e−r/ξr . (1)

µ2
B < L2

z > is the expectation value of the square of the magnitude of the orbital magnetic

moment per unit-cell volume. We take this to be given by the amplitude of the measured

[25] ordered staggered moment per unit-cell (`zµB)2. The amplitude < L2
z > is nearly

temperature independent in the region of interest. τc is the short time cut-off obtainable

from experiments. The spectral function (1) is of the form proposed phenomenologically

[33] to give the fluctuations of marginal Fermi-liquid, rather than the 1/τ 2 of the Landau

Fermi-liquid. In terms of the frequency ω and temperature T ,

χLL(ω, T ) =
µ2
B < L2

z >

ωc

(
ln
∣∣ ωc
max(ω, πT )

∣∣− i tanh
ω

2T

)
, (2)

at criticality. ωc = 1/τc is the ultra-violet cut-off. This functional form is also the principal

result of theories on interesting models of mathematical interest such as the SYK model [34],
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small parameters, a parameter φ << 1 related to the phase
difference across the nearest neighbor bonds and the inverse
period 1/2P << 1, that such a periodic loop-current order
leads to a one-particle spectra is consistent with the symmetry
and magnitude of the pseudogap and the Fermi arcs observed
by ARPES.

The new idea is consistent with the experiments which
have observed loop-current order without apparent alteration
of translation symmetry within their present resolution. It also
does not introduce features which are ruled out by any avail-
able experiments. The present neutron scattering experiments
put a lower limit to the periodicity of about 8 × 8 lattice
constants (Bourges, private communications Sept. 2018). Ex-
periments to look for longer periods with very high resolution
diffraction are suggested. The applicability of the present idea
and calculations lives or dies depending on the outcome of
such experiments.

An important aspect to the pseudogap is to be learned from
the successful fit to the ARPES data provided very early by
Norman, Campuzano, Ding, and Randeria [27]. Motivated by
the idea that the pseudogap may be due to preformed BCS
pairs, a d-wave BCS spectral function with a large relaxation
rate was proposed. Various details of such an ansatz have been
tested in even more detail recently [28]. We know now for
a number of years from direct experiments that there are not
even noticeable superconducting fluctuations for temperatures
below T ∗(x) to about 20 K above Tc(x). But the success of the
fit provides the lesson that one must have an angle-dependent
gap tied to the entire erstwhile Fermi surface as in the BCS
theory. The BCS theory of course is based on the perfect
nesting in the particle-particle channel of states p and −p
near the Fermi-wave vectors. (The spin labels will be dropped
where unnecessary.) No other phase is known fulfilling this
condition. Other well known phases, charge density waves or
spin-density waves, have gaps related to the magnitude and
symmetries of the nesting wave-vectors Q besides the Fermi
surface. In a two-dimensional fermion problem, they give a
gap all around the Fermi surface [except at ±(π/2,π/2)] only
for nearest neighbor hopping on a square lattice at half-filling.
In general, they produce many different gaps and/or open
Fermi surfaces which are not observed in the cuprates either
in ARPES or magneto-oscillations [5]. Moreover, no CDW
or SDW with large enough correlation length and amplitude
to give the magnitude of the gap observed is known to exist
universally in the pseudogap region. Small Fermi surfaces do
arise in models of CDWs with finite fields, likely giving the
small Fermi surfaces observed in magneto-oscillation experi-
ments [6]. But an independent unknown mechanism must then
be invoked [5] for the lack of observation of the additional
Fermi surfaces, closed or open which are inevitably predicted.

Suppose the period of the envisaged variation of the loop-
current order is 2P × 2P, and P $ 1. The gap due to the
periodic variations of loop-current order will be shown to
be tied to the erstwhile Fermi-surface pF to the accuracy
better than (1/2P)pF . The geometry of the currents at the
domain boundaries is such that the gap also has the angular
dependence of the observed pseudogap which vanishes in
the clean limit in the (π ,π ) directions, and has an angular
width (the Fermi arc) related to the linewidth. Additional
features, O(P2) in number, besides the principal feature with

FIG. 1. Left: Representation of loop-current order in cuprates.
Right: The simplified current pattern of loop-current order with the
same symmetries as on the left.

the pseudogap and the Fermi arc on which we concentrate in
this paper, occur but the spectral weight in any of them on the
average is proportional to φ/P2. These aspects are all shown
and explained by calculations below.

II. PERIODIC VARIATION OF LOOP-CURRENT ORDER

The vector potential (or current in bonds) representing
the previously proposed loop-current order [7] is sketched
in Fig. 1 (left). In a unit cell this has the same symmetry
as the simpler representation [29] in Fig. 1 (right), which is
adopted for the calculations. The order parameter !, shown
as an arrow in the figure, is odd under time reversal and under
inversion and so has the symmetry of a current or a vector
potential. The flux integrated over a unit cell is zero.

There are four directions in which ! can lie. A modifica-
tion of the translation preserving order is considered whereby
the four possible domains of order are arranged in a periodic
pattern of period 2Pa in both x and y directions, as in Fig. 2.

A. Hamiltonian

The loop-current order was shown to be a possible ground
state of the three-orbital model for cuprates [7] by express-
ing the electron interaction operator between sites in terms
of the product of current operator on bonds. A mean-field
theory with the expectation value of the current operators
organized in specific symmetries on the bonds as the order
parameter was shown to have a stationary point. Such a
calculation is not repeated here. We will assume the same
many-body Hamiltonian and assume that a local minima with
translational symmetry preserved arises as a starting point. We
then consider the reorganization of the four possible domains
of the loop-current order in a periodic manner with period
2P × 2P and calculate the one-particle spectra. We assume
the magnitude of the current in the bonds is similar to what
was obtained earlier or deduced from the magnitude of the
moment discovered by polarized neutron scattering.

Let us represent the lattice points by (ix, nx; iy, ny). (ix, iy)
denotes the points on the supercell and in each supercell
(nx, ny) = (−P, . . . , P)a denote the lattice points of the origi-
nal unit cells in the supercell. The Hamiltonian has two parts
H0 and H1. We take H0 just to be the one-particle kinetic
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Figure 2: The four Possible “classical” domains of the loop ordered state are shown. In the classical ordered phase, one of these
configurations is found in every unit-cell.

higher energy branch of excitations which has not yet
been discovered. A brief report of this work has already
been published20.

The observed broken symmetry is consistent with
spontaneous moments due to a pair of orbital current
loops within each unit-cell preserving overall transla-
tional symmetry. It breaks both time-reversal and inver-
sion symmetry, preserving their product. The “classical”
order parameter21 may be characterized by the anapole
vector22 L

L =

∫

cell

d2r(M(r) × r̂) ≈
∑

µ

Mµ × rµ (1)

where the moment distribution M(r) is formed due to
the currents on the four O-Cu-O triangles per unit-cell
as shown in Fig. (2). This figure also shows the four
possible “classical” domains of the loop current ordered
state. In the classical ground state, ordering occurs in
one of the domains shown.

Quantum-mechanics allows local fluctuations among
the four configurations in Fig (2). This leads, as shown
in this paper to a ground state in which each unit-cell has
a finite admixture of all the four configurations. It also
leads to three branches of collective modes of the order
parameter at finite energies at all momenta q for T < T ∗.
The finite energy follows from the fact that the ground
state has symmetry consistent with that of a generalized
(transverse-field) Ising model. In this paper these modes
will be derived. One can argue that there should be three
because each of the four configurations can make transi-
tions to the other three as pictorially shown in Fig. (3).

This paper is organized as follows: In the next sec-
tion, we introduce the classical AT model for the loop
current order and generalize it to the quantum model in
the SU(4) representation rather than the SU(2)×SU(2)
of the classical AT model. The quantum terms are cho-
sen from considerations of the internal and lattice sym-
metries of the classical model. In the following section,
the ground state of the quantum model is evaluated in
mean-field and the dispersion is calculated using the gen-
eralization of the Holstein-Primakoff transformation. We

Figure 3: The schematic figure shows that there are only 3
collective modes.

compare with the results from experiments. We conclude
by discussing the significance of the experimental discov-
ery of the collective modes and the further possible effects
which arise from the calculations here. In four Appen-
dices, we discuss the necessity for casting the problem in
the SU(4) representation, some technical details, and the
theory for inelastic neutron scattering from the collective
modes.

II. MODEL FOR QUANTUM-STATISTICAL
MECHANICS OF LOOP-CURRENTS

The order parameter L and an effective Hamiltonian
for this collective variable has been derived11,12,23 start-
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FIG. 1. (Color online) Schematic figure of loop currents connect-
ing the A sub-lattice and the B sub-lattice within the unit-cells of a
hexagonal lattice which preserves inversion about the center of the
hexagonal cell. A state which such loop currents has an anomalous
hall effect.

and doing a mean-field calculation, one finds an additional
kinetic-energy term,

H ′
int = ircxcyp

†
x,kpy,k + H.c. (6)

If r "= 0 is a stable state, it describes loop currents flowing
clockwise (or counterclockwise) around the oxygens in each
unit cell as shown in Fig. 2. This is one of the five possible loop-
current states with nonoverlapping loops in the Cu-O lattice,
all of which preserve translational symmetry.18 In Eq. (2),
the flux has one sign in the square formed by the nearest-
neighbor oxygens which surround a Cu and another sign in
the square formed by the nearest-neighbor oxygens which do
not surround a Cu. As pointed out by Fradkin and Sun,13

such a time-reversal violating state, which does not change
translational symmetry or break inversion symmetry, satisfies
all the conditions of a Haldane state for the Cu-O lattice. The
other four loop-current states do not. One of those is just the
photon on a lattice and cannot order. The other three can order
and indeed order consistent with the symmetry of two of them
(in different domains) is observed in underdoped cuprates. So,
our consideration of states such as those in Fig. 2 is only a
specific example to illustrate the nature of anomalous Hall
(AH) states in three-orbital models.

We will consider the Haldane state (quantized anomalous
Hall effect) of the Cu-O model and therefore the singularities
of the model with the Hamiltonian H = HKE + H ′

int. Before
we do that, let us consider the simpler case of two orbitals per
unit cell.

III. TWO-BAND MODELS

A general Hamiltonian in the space of two orbitals per unit
cell may be written as, ignoring an overall shift of the energy
that does not affect the Berry phase and assuming that there is
no basis of the Bravais lattice,

H = R(k) · σ =
(

R3 R1 − iR2

R1 + iR2 −R3

)
. (7)

Here Ri for i = 1,2,3 are some smooth functions of kx and
ky with period 2π . For now, we do not need the detailed

CuCu

Cu Cu

OO

O

O

FIG. 2. (Color online) Schematic figure of a loop current state in
the Cu-O lattice, which has an anomalous Hall effect. This is not the
state which is realized in the Cuprates but is discussed in this paper
for its interest as a simple model for possible anomalous Hall effect
in a three band model.

form of these functions. It is easy to diagonalize the above
Hamiltonian to find that there are two bands, E = ±R, with
R =

√
R2

1 + R2
2 + R2

3 .
Consider the lower band, E = −R(k). The eigenstate can

be written in two ways corresponding to two different choices
of gauge (the point of studying apparent consequences of the
choice of gauge will be clear in a later section of the paper):

|ψA〉 = 1√
2R(R − R3)

(
R3 − R

R1 + iR2

)
, (8)

|ψB〉 = 1√
2R(R + R3)

(
R1 − iR2

−R − R3

)
. (9)

They are connected by a U (1) gauge transformation

|ψB〉 = eiφ|ψA〉,

with eφ = −R1 + iR2√
R2

1 + R2
2

, φ = − arctan
(

R2

R1

)
. (10)

Then the Berry phase, Aµ, is also gauge dependent, given for
the two choices respectively by

AA
µ ≡ −i〈ψA|∇µ|ψA〉

= − 1
2R(R − R3)

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
, (11)

AB
µ ≡ −i〈ψB |∇µ|ψB〉

= 1
2R(R + R3)

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
. (12)

Aµ’s are also connected by a U (1) gauge transformation:

AB
µ = AA

µ + ∇µφ,

∇µφ = 1
R2 − R2

3

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
. (13)

The Berry curvature is gauge invariant and given by

Fxy = ∂Ay

∂kx

− ∂Ax

∂ky

= 1
2R3

εabcRa

∂Rb

∂kx

∂Rc

∂ky

= 1
2
εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

. (14)
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Figure 11. Adiabatic deformation of the periodic domains of Fig. (2) by weak disorder preserving

the essential topology of the domain boundaries. This is a variant of the four-color problem in

which two pairs of four colors meet only at points while the other two have non-zero boundaries.

Then, it appears that filling of any arbitrarily large area with these rules enforces vortex structure

at the points of intersection of the domains.

A test of the approximations used is shown in the top in Fig. (10). The partial spectral

weight in the eigenvector of the principal mBZ and the four nearby mBZs is shown at

the anti-nodal point. The latter is systematically O(�) of the total spectral weight. At

the bottom of the same figure, the spectral function at the erstwhile Fermi-momentum at

di↵erent angles is shown at ! = µ and for two di↵erent small damping coe�cients �. The

spectral weight is increasingly concentrated along the diagonal direction as the damping is

decreased so that in the pure limit only a Fermi-point remains.
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0
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P-P

-P

Figure 3. Currents at Boundaries of the periodic structure in Fig. (2) chosen so that they form

closed periodic loops. The figure illustrates the case of P = 5 or 10 ⇥ 10 unit-cells in a super-cell.

The restriction in the sum in H1(A) specifies � in the bonds at the boundaries. The restric-

tions that two of the bonds at the boundaries be removed to remove the over-counting can

be put in two ways:

(1) The bonds in the y� direction are removed from the sum in (4) at nx = 0 for 0 6 ny 6 P ,

and in the x� direction are removed at ny = 0 for 0 6 nx 6 P . The other two boundaries

are left un-changed. Together with the restrictions on the adjoining domains, the currents

along the boundaries are then as shown in Fig. (3).

(2) The bonds in the x� direction are removed from the sum in (4) at nx = 0 for 0 6 ny 6 P ,

and in the y� direction are removed at ny = 0 for 0 6 nx 6 P . The other two boundaries

are left un-changed. For good reason, (1) and (2) have identical e↵ects as will be seen below.

The currents along the boundaries are then as shown in Fig. (4)
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small parameters, a parameter φ << 1 related to the phase
difference across the nearest neighbor bonds and the inverse
period 1/2P << 1, that such a periodic loop-current order
leads to a one-particle spectra is consistent with the symmetry
and magnitude of the pseudogap and the Fermi arcs observed
by ARPES.

The new idea is consistent with the experiments which
have observed loop-current order without apparent alteration
of translation symmetry within their present resolution. It also
does not introduce features which are ruled out by any avail-
able experiments. The present neutron scattering experiments
put a lower limit to the periodicity of about 8 × 8 lattice
constants (Bourges, private communications Sept. 2018). Ex-
periments to look for longer periods with very high resolution
diffraction are suggested. The applicability of the present idea
and calculations lives or dies depending on the outcome of
such experiments.

An important aspect to the pseudogap is to be learned from
the successful fit to the ARPES data provided very early by
Norman, Campuzano, Ding, and Randeria [27]. Motivated by
the idea that the pseudogap may be due to preformed BCS
pairs, a d-wave BCS spectral function with a large relaxation
rate was proposed. Various details of such an ansatz have been
tested in even more detail recently [28]. We know now for
a number of years from direct experiments that there are not
even noticeable superconducting fluctuations for temperatures
below T ∗(x) to about 20 K above Tc(x). But the success of the
fit provides the lesson that one must have an angle-dependent
gap tied to the entire erstwhile Fermi surface as in the BCS
theory. The BCS theory of course is based on the perfect
nesting in the particle-particle channel of states p and −p
near the Fermi-wave vectors. (The spin labels will be dropped
where unnecessary.) No other phase is known fulfilling this
condition. Other well known phases, charge density waves or
spin-density waves, have gaps related to the magnitude and
symmetries of the nesting wave-vectors Q besides the Fermi
surface. In a two-dimensional fermion problem, they give a
gap all around the Fermi surface [except at ±(π/2,π/2)] only
for nearest neighbor hopping on a square lattice at half-filling.
In general, they produce many different gaps and/or open
Fermi surfaces which are not observed in the cuprates either
in ARPES or magneto-oscillations [5]. Moreover, no CDW
or SDW with large enough correlation length and amplitude
to give the magnitude of the gap observed is known to exist
universally in the pseudogap region. Small Fermi surfaces do
arise in models of CDWs with finite fields, likely giving the
small Fermi surfaces observed in magneto-oscillation experi-
ments [6]. But an independent unknown mechanism must then
be invoked [5] for the lack of observation of the additional
Fermi surfaces, closed or open which are inevitably predicted.

Suppose the period of the envisaged variation of the loop-
current order is 2P × 2P, and P $ 1. The gap due to the
periodic variations of loop-current order will be shown to
be tied to the erstwhile Fermi-surface pF to the accuracy
better than (1/2P)pF . The geometry of the currents at the
domain boundaries is such that the gap also has the angular
dependence of the observed pseudogap which vanishes in
the clean limit in the (π ,π ) directions, and has an angular
width (the Fermi arc) related to the linewidth. Additional
features, O(P2) in number, besides the principal feature with

FIG. 1. Left: Representation of loop-current order in cuprates.
Right: The simplified current pattern of loop-current order with the
same symmetries as on the left.

the pseudogap and the Fermi arc on which we concentrate in
this paper, occur but the spectral weight in any of them on the
average is proportional to φ/P2. These aspects are all shown
and explained by calculations below.

II. PERIODIC VARIATION OF LOOP-CURRENT ORDER

The vector potential (or current in bonds) representing
the previously proposed loop-current order [7] is sketched
in Fig. 1 (left). In a unit cell this has the same symmetry
as the simpler representation [29] in Fig. 1 (right), which is
adopted for the calculations. The order parameter !, shown
as an arrow in the figure, is odd under time reversal and under
inversion and so has the symmetry of a current or a vector
potential. The flux integrated over a unit cell is zero.

There are four directions in which ! can lie. A modifica-
tion of the translation preserving order is considered whereby
the four possible domains of order are arranged in a periodic
pattern of period 2Pa in both x and y directions, as in Fig. 2.

A. Hamiltonian

The loop-current order was shown to be a possible ground
state of the three-orbital model for cuprates [7] by express-
ing the electron interaction operator between sites in terms
of the product of current operator on bonds. A mean-field
theory with the expectation value of the current operators
organized in specific symmetries on the bonds as the order
parameter was shown to have a stationary point. Such a
calculation is not repeated here. We will assume the same
many-body Hamiltonian and assume that a local minima with
translational symmetry preserved arises as a starting point. We
then consider the reorganization of the four possible domains
of the loop-current order in a periodic manner with period
2P × 2P and calculate the one-particle spectra. We assume
the magnitude of the current in the bonds is similar to what
was obtained earlier or deduced from the magnitude of the
moment discovered by polarized neutron scattering.

Let us represent the lattice points by (ix, nx; iy, ny). (ix, iy)
denotes the points on the supercell and in each supercell
(nx, ny) = (−P, . . . , P)a denote the lattice points of the origi-
nal unit cells in the supercell. The Hamiltonian has two parts
H0 and H1. We take H0 just to be the one-particle kinetic
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Figure 2: The four Possible “classical” domains of the loop ordered state are shown. In the classical ordered phase, one of these
configurations is found in every unit-cell.

higher energy branch of excitations which has not yet
been discovered. A brief report of this work has already
been published20.

The observed broken symmetry is consistent with
spontaneous moments due to a pair of orbital current
loops within each unit-cell preserving overall transla-
tional symmetry. It breaks both time-reversal and inver-
sion symmetry, preserving their product. The “classical”
order parameter21 may be characterized by the anapole
vector22 L

L =

∫

cell

d2r(M(r) × r̂) ≈
∑

µ

Mµ × rµ (1)

where the moment distribution M(r) is formed due to
the currents on the four O-Cu-O triangles per unit-cell
as shown in Fig. (2). This figure also shows the four
possible “classical” domains of the loop current ordered
state. In the classical ground state, ordering occurs in
one of the domains shown.

Quantum-mechanics allows local fluctuations among
the four configurations in Fig (2). This leads, as shown
in this paper to a ground state in which each unit-cell has
a finite admixture of all the four configurations. It also
leads to three branches of collective modes of the order
parameter at finite energies at all momenta q for T < T ∗.
The finite energy follows from the fact that the ground
state has symmetry consistent with that of a generalized
(transverse-field) Ising model. In this paper these modes
will be derived. One can argue that there should be three
because each of the four configurations can make transi-
tions to the other three as pictorially shown in Fig. (3).

This paper is organized as follows: In the next sec-
tion, we introduce the classical AT model for the loop
current order and generalize it to the quantum model in
the SU(4) representation rather than the SU(2)×SU(2)
of the classical AT model. The quantum terms are cho-
sen from considerations of the internal and lattice sym-
metries of the classical model. In the following section,
the ground state of the quantum model is evaluated in
mean-field and the dispersion is calculated using the gen-
eralization of the Holstein-Primakoff transformation. We

Figure 3: The schematic figure shows that there are only 3
collective modes.

compare with the results from experiments. We conclude
by discussing the significance of the experimental discov-
ery of the collective modes and the further possible effects
which arise from the calculations here. In four Appen-
dices, we discuss the necessity for casting the problem in
the SU(4) representation, some technical details, and the
theory for inelastic neutron scattering from the collective
modes.

II. MODEL FOR QUANTUM-STATISTICAL
MECHANICS OF LOOP-CURRENTS

The order parameter L and an effective Hamiltonian
for this collective variable has been derived11,12,23 start-
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FIG. 1. (Color online) Schematic figure of loop currents connect-
ing the A sub-lattice and the B sub-lattice within the unit-cells of a
hexagonal lattice which preserves inversion about the center of the
hexagonal cell. A state which such loop currents has an anomalous
hall effect.

and doing a mean-field calculation, one finds an additional
kinetic-energy term,

H ′
int = ircxcyp

†
x,kpy,k + H.c. (6)

If r "= 0 is a stable state, it describes loop currents flowing
clockwise (or counterclockwise) around the oxygens in each
unit cell as shown in Fig. 2. This is one of the five possible loop-
current states with nonoverlapping loops in the Cu-O lattice,
all of which preserve translational symmetry.18 In Eq. (2),
the flux has one sign in the square formed by the nearest-
neighbor oxygens which surround a Cu and another sign in
the square formed by the nearest-neighbor oxygens which do
not surround a Cu. As pointed out by Fradkin and Sun,13

such a time-reversal violating state, which does not change
translational symmetry or break inversion symmetry, satisfies
all the conditions of a Haldane state for the Cu-O lattice. The
other four loop-current states do not. One of those is just the
photon on a lattice and cannot order. The other three can order
and indeed order consistent with the symmetry of two of them
(in different domains) is observed in underdoped cuprates. So,
our consideration of states such as those in Fig. 2 is only a
specific example to illustrate the nature of anomalous Hall
(AH) states in three-orbital models.

We will consider the Haldane state (quantized anomalous
Hall effect) of the Cu-O model and therefore the singularities
of the model with the Hamiltonian H = HKE + H ′

int. Before
we do that, let us consider the simpler case of two orbitals per
unit cell.

III. TWO-BAND MODELS

A general Hamiltonian in the space of two orbitals per unit
cell may be written as, ignoring an overall shift of the energy
that does not affect the Berry phase and assuming that there is
no basis of the Bravais lattice,

H = R(k) · σ =
(

R3 R1 − iR2

R1 + iR2 −R3

)
. (7)

Here Ri for i = 1,2,3 are some smooth functions of kx and
ky with period 2π . For now, we do not need the detailed

CuCu

Cu Cu

OO

O

O

FIG. 2. (Color online) Schematic figure of a loop current state in
the Cu-O lattice, which has an anomalous Hall effect. This is not the
state which is realized in the Cuprates but is discussed in this paper
for its interest as a simple model for possible anomalous Hall effect
in a three band model.

form of these functions. It is easy to diagonalize the above
Hamiltonian to find that there are two bands, E = ±R, with
R =

√
R2

1 + R2
2 + R2

3 .
Consider the lower band, E = −R(k). The eigenstate can

be written in two ways corresponding to two different choices
of gauge (the point of studying apparent consequences of the
choice of gauge will be clear in a later section of the paper):

|ψA〉 = 1√
2R(R − R3)

(
R3 − R

R1 + iR2

)
, (8)

|ψB〉 = 1√
2R(R + R3)

(
R1 − iR2

−R − R3

)
. (9)

They are connected by a U (1) gauge transformation

|ψB〉 = eiφ|ψA〉,

with eφ = −R1 + iR2√
R2

1 + R2
2

, φ = − arctan
(

R2

R1

)
. (10)

Then the Berry phase, Aµ, is also gauge dependent, given for
the two choices respectively by

AA
µ ≡ −i〈ψA|∇µ|ψA〉

= − 1
2R(R − R3)

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
, (11)

AB
µ ≡ −i〈ψB |∇µ|ψB〉

= 1
2R(R + R3)

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
. (12)

Aµ’s are also connected by a U (1) gauge transformation:

AB
µ = AA

µ + ∇µφ,

∇µφ = 1
R2 − R2

3

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
. (13)

The Berry curvature is gauge invariant and given by

Fxy = ∂Ay

∂kx

− ∂Ax

∂ky

= 1
2R3

εabcRa

∂Rb

∂kx

∂Rc

∂ky

= 1
2
εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

. (14)
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Figure 11. Adiabatic deformation of the periodic domains of Fig. (2) by weak disorder preserving

the essential topology of the domain boundaries. This is a variant of the four-color problem in

which two pairs of four colors meet only at points while the other two have non-zero boundaries.

Then, it appears that filling of any arbitrarily large area with these rules enforces vortex structure

at the points of intersection of the domains.

A test of the approximations used is shown in the top in Fig. (10). The partial spectral

weight in the eigenvector of the principal mBZ and the four nearby mBZs is shown at

the anti-nodal point. The latter is systematically O(�) of the total spectral weight. At

the bottom of the same figure, the spectral function at the erstwhile Fermi-momentum at

di↵erent angles is shown at ! = µ and for two di↵erent small damping coe�cients �. The

spectral weight is increasingly concentrated along the diagonal direction as the damping is

decreased so that in the pure limit only a Fermi-point remains.
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Figure 3. Currents at Boundaries of the periodic structure in Fig. (2) chosen so that they form

closed periodic loops. The figure illustrates the case of P = 5 or 10 ⇥ 10 unit-cells in a super-cell.

The restriction in the sum in H1(A) specifies � in the bonds at the boundaries. The restric-

tions that two of the bonds at the boundaries be removed to remove the over-counting can

be put in two ways:

(1) The bonds in the y� direction are removed from the sum in (4) at nx = 0 for 0 6 ny 6 P ,

and in the x� direction are removed at ny = 0 for 0 6 nx 6 P . The other two boundaries

are left un-changed. Together with the restrictions on the adjoining domains, the currents

along the boundaries are then as shown in Fig. (3).

(2) The bonds in the x� direction are removed from the sum in (4) at nx = 0 for 0 6 ny 6 P ,

and in the y� direction are removed at ny = 0 for 0 6 nx 6 P . The other two boundaries

are left un-changed. For good reason, (1) and (2) have identical e↵ects as will be seen below.

The currents along the boundaries are then as shown in Fig. (4)
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small parameters, a parameter φ << 1 related to the phase
difference across the nearest neighbor bonds and the inverse
period 1/2P << 1, that such a periodic loop-current order
leads to a one-particle spectra is consistent with the symmetry
and magnitude of the pseudogap and the Fermi arcs observed
by ARPES.

The new idea is consistent with the experiments which
have observed loop-current order without apparent alteration
of translation symmetry within their present resolution. It also
does not introduce features which are ruled out by any avail-
able experiments. The present neutron scattering experiments
put a lower limit to the periodicity of about 8 × 8 lattice
constants (Bourges, private communications Sept. 2018). Ex-
periments to look for longer periods with very high resolution
diffraction are suggested. The applicability of the present idea
and calculations lives or dies depending on the outcome of
such experiments.

An important aspect to the pseudogap is to be learned from
the successful fit to the ARPES data provided very early by
Norman, Campuzano, Ding, and Randeria [27]. Motivated by
the idea that the pseudogap may be due to preformed BCS
pairs, a d-wave BCS spectral function with a large relaxation
rate was proposed. Various details of such an ansatz have been
tested in even more detail recently [28]. We know now for
a number of years from direct experiments that there are not
even noticeable superconducting fluctuations for temperatures
below T ∗(x) to about 20 K above Tc(x). But the success of the
fit provides the lesson that one must have an angle-dependent
gap tied to the entire erstwhile Fermi surface as in the BCS
theory. The BCS theory of course is based on the perfect
nesting in the particle-particle channel of states p and −p
near the Fermi-wave vectors. (The spin labels will be dropped
where unnecessary.) No other phase is known fulfilling this
condition. Other well known phases, charge density waves or
spin-density waves, have gaps related to the magnitude and
symmetries of the nesting wave-vectors Q besides the Fermi
surface. In a two-dimensional fermion problem, they give a
gap all around the Fermi surface [except at ±(π/2,π/2)] only
for nearest neighbor hopping on a square lattice at half-filling.
In general, they produce many different gaps and/or open
Fermi surfaces which are not observed in the cuprates either
in ARPES or magneto-oscillations [5]. Moreover, no CDW
or SDW with large enough correlation length and amplitude
to give the magnitude of the gap observed is known to exist
universally in the pseudogap region. Small Fermi surfaces do
arise in models of CDWs with finite fields, likely giving the
small Fermi surfaces observed in magneto-oscillation experi-
ments [6]. But an independent unknown mechanism must then
be invoked [5] for the lack of observation of the additional
Fermi surfaces, closed or open which are inevitably predicted.

Suppose the period of the envisaged variation of the loop-
current order is 2P × 2P, and P $ 1. The gap due to the
periodic variations of loop-current order will be shown to
be tied to the erstwhile Fermi-surface pF to the accuracy
better than (1/2P)pF . The geometry of the currents at the
domain boundaries is such that the gap also has the angular
dependence of the observed pseudogap which vanishes in
the clean limit in the (π ,π ) directions, and has an angular
width (the Fermi arc) related to the linewidth. Additional
features, O(P2) in number, besides the principal feature with

FIG. 1. Left: Representation of loop-current order in cuprates.
Right: The simplified current pattern of loop-current order with the
same symmetries as on the left.

the pseudogap and the Fermi arc on which we concentrate in
this paper, occur but the spectral weight in any of them on the
average is proportional to φ/P2. These aspects are all shown
and explained by calculations below.

II. PERIODIC VARIATION OF LOOP-CURRENT ORDER

The vector potential (or current in bonds) representing
the previously proposed loop-current order [7] is sketched
in Fig. 1 (left). In a unit cell this has the same symmetry
as the simpler representation [29] in Fig. 1 (right), which is
adopted for the calculations. The order parameter !, shown
as an arrow in the figure, is odd under time reversal and under
inversion and so has the symmetry of a current or a vector
potential. The flux integrated over a unit cell is zero.

There are four directions in which ! can lie. A modifica-
tion of the translation preserving order is considered whereby
the four possible domains of order are arranged in a periodic
pattern of period 2Pa in both x and y directions, as in Fig. 2.

A. Hamiltonian

The loop-current order was shown to be a possible ground
state of the three-orbital model for cuprates [7] by express-
ing the electron interaction operator between sites in terms
of the product of current operator on bonds. A mean-field
theory with the expectation value of the current operators
organized in specific symmetries on the bonds as the order
parameter was shown to have a stationary point. Such a
calculation is not repeated here. We will assume the same
many-body Hamiltonian and assume that a local minima with
translational symmetry preserved arises as a starting point. We
then consider the reorganization of the four possible domains
of the loop-current order in a periodic manner with period
2P × 2P and calculate the one-particle spectra. We assume
the magnitude of the current in the bonds is similar to what
was obtained earlier or deduced from the magnitude of the
moment discovered by polarized neutron scattering.

Let us represent the lattice points by (ix, nx; iy, ny). (ix, iy)
denotes the points on the supercell and in each supercell
(nx, ny) = (−P, . . . , P)a denote the lattice points of the origi-
nal unit cells in the supercell. The Hamiltonian has two parts
H0 and H1. We take H0 just to be the one-particle kinetic
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Figure 2: The four Possible “classical” domains of the loop ordered state are shown. In the classical ordered phase, one of these
configurations is found in every unit-cell.

higher energy branch of excitations which has not yet
been discovered. A brief report of this work has already
been published20.

The observed broken symmetry is consistent with
spontaneous moments due to a pair of orbital current
loops within each unit-cell preserving overall transla-
tional symmetry. It breaks both time-reversal and inver-
sion symmetry, preserving their product. The “classical”
order parameter21 may be characterized by the anapole
vector22 L

L =

∫

cell

d2r(M(r) × r̂) ≈
∑

µ

Mµ × rµ (1)

where the moment distribution M(r) is formed due to
the currents on the four O-Cu-O triangles per unit-cell
as shown in Fig. (2). This figure also shows the four
possible “classical” domains of the loop current ordered
state. In the classical ground state, ordering occurs in
one of the domains shown.

Quantum-mechanics allows local fluctuations among
the four configurations in Fig (2). This leads, as shown
in this paper to a ground state in which each unit-cell has
a finite admixture of all the four configurations. It also
leads to three branches of collective modes of the order
parameter at finite energies at all momenta q for T < T ∗.
The finite energy follows from the fact that the ground
state has symmetry consistent with that of a generalized
(transverse-field) Ising model. In this paper these modes
will be derived. One can argue that there should be three
because each of the four configurations can make transi-
tions to the other three as pictorially shown in Fig. (3).

This paper is organized as follows: In the next sec-
tion, we introduce the classical AT model for the loop
current order and generalize it to the quantum model in
the SU(4) representation rather than the SU(2)×SU(2)
of the classical AT model. The quantum terms are cho-
sen from considerations of the internal and lattice sym-
metries of the classical model. In the following section,
the ground state of the quantum model is evaluated in
mean-field and the dispersion is calculated using the gen-
eralization of the Holstein-Primakoff transformation. We

Figure 3: The schematic figure shows that there are only 3
collective modes.

compare with the results from experiments. We conclude
by discussing the significance of the experimental discov-
ery of the collective modes and the further possible effects
which arise from the calculations here. In four Appen-
dices, we discuss the necessity for casting the problem in
the SU(4) representation, some technical details, and the
theory for inelastic neutron scattering from the collective
modes.

II. MODEL FOR QUANTUM-STATISTICAL
MECHANICS OF LOOP-CURRENTS

The order parameter L and an effective Hamiltonian
for this collective variable has been derived11,12,23 start-
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FIG. 1. (Color online) Schematic figure of loop currents connect-
ing the A sub-lattice and the B sub-lattice within the unit-cells of a
hexagonal lattice which preserves inversion about the center of the
hexagonal cell. A state which such loop currents has an anomalous
hall effect.

and doing a mean-field calculation, one finds an additional
kinetic-energy term,

H ′
int = ircxcyp

†
x,kpy,k + H.c. (6)

If r "= 0 is a stable state, it describes loop currents flowing
clockwise (or counterclockwise) around the oxygens in each
unit cell as shown in Fig. 2. This is one of the five possible loop-
current states with nonoverlapping loops in the Cu-O lattice,
all of which preserve translational symmetry.18 In Eq. (2),
the flux has one sign in the square formed by the nearest-
neighbor oxygens which surround a Cu and another sign in
the square formed by the nearest-neighbor oxygens which do
not surround a Cu. As pointed out by Fradkin and Sun,13

such a time-reversal violating state, which does not change
translational symmetry or break inversion symmetry, satisfies
all the conditions of a Haldane state for the Cu-O lattice. The
other four loop-current states do not. One of those is just the
photon on a lattice and cannot order. The other three can order
and indeed order consistent with the symmetry of two of them
(in different domains) is observed in underdoped cuprates. So,
our consideration of states such as those in Fig. 2 is only a
specific example to illustrate the nature of anomalous Hall
(AH) states in three-orbital models.

We will consider the Haldane state (quantized anomalous
Hall effect) of the Cu-O model and therefore the singularities
of the model with the Hamiltonian H = HKE + H ′

int. Before
we do that, let us consider the simpler case of two orbitals per
unit cell.

III. TWO-BAND MODELS

A general Hamiltonian in the space of two orbitals per unit
cell may be written as, ignoring an overall shift of the energy
that does not affect the Berry phase and assuming that there is
no basis of the Bravais lattice,

H = R(k) · σ =
(

R3 R1 − iR2

R1 + iR2 −R3

)
. (7)

Here Ri for i = 1,2,3 are some smooth functions of kx and
ky with period 2π . For now, we do not need the detailed
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FIG. 2. (Color online) Schematic figure of a loop current state in
the Cu-O lattice, which has an anomalous Hall effect. This is not the
state which is realized in the Cuprates but is discussed in this paper
for its interest as a simple model for possible anomalous Hall effect
in a three band model.

form of these functions. It is easy to diagonalize the above
Hamiltonian to find that there are two bands, E = ±R, with
R =

√
R2

1 + R2
2 + R2

3 .
Consider the lower band, E = −R(k). The eigenstate can

be written in two ways corresponding to two different choices
of gauge (the point of studying apparent consequences of the
choice of gauge will be clear in a later section of the paper):

|ψA〉 = 1√
2R(R − R3)

(
R3 − R

R1 + iR2

)
, (8)

|ψB〉 = 1√
2R(R + R3)

(
R1 − iR2

−R − R3

)
. (9)

They are connected by a U (1) gauge transformation

|ψB〉 = eiφ|ψA〉,

with eφ = −R1 + iR2√
R2

1 + R2
2

, φ = − arctan
(

R2

R1

)
. (10)

Then the Berry phase, Aµ, is also gauge dependent, given for
the two choices respectively by

AA
µ ≡ −i〈ψA|∇µ|ψA〉

= − 1
2R(R − R3)

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
, (11)

AB
µ ≡ −i〈ψB |∇µ|ψB〉

= 1
2R(R + R3)

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
. (12)

Aµ’s are also connected by a U (1) gauge transformation:

AB
µ = AA

µ + ∇µφ,

∇µφ = 1
R2 − R2

3

(
R2

∂R1

∂kµ

− R1
∂R2

∂kµ

)
. (13)

The Berry curvature is gauge invariant and given by

Fxy = ∂Ay

∂kx

− ∂Ax

∂ky

= 1
2R3

εabcRa

∂Rb

∂kx

∂Rc

∂ky

= 1
2
εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

. (14)

155106-2

hole scattering [36].

Figure 11. Adiabatic deformation of the periodic domains of Fig. (2) by weak disorder preserving

the essential topology of the domain boundaries. This is a variant of the four-color problem in

which two pairs of four colors meet only at points while the other two have non-zero boundaries.

Then, it appears that filling of any arbitrarily large area with these rules enforces vortex structure

at the points of intersection of the domains.

A test of the approximations used is shown in the top in Fig. (10). The partial spectral

weight in the eigenvector of the principal mBZ and the four nearby mBZs is shown at

the anti-nodal point. The latter is systematically O(�) of the total spectral weight. At

the bottom of the same figure, the spectral function at the erstwhile Fermi-momentum at

di↵erent angles is shown at ! = µ and for two di↵erent small damping coe�cients �. The

spectral weight is increasingly concentrated along the diagonal direction as the damping is

decreased so that in the pure limit only a Fermi-point remains.
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weight in the eigenvector of the principal mBZ and the four nearby mBZs is shown at

the anti-nodal point. The latter is systematically O(�) of the total spectral weight. At

the bottom of the same figure, the spectral function at the erstwhile Fermi-momentum at

di↵erent angles is shown at ! = µ and for two di↵erent small damping coe�cients �. The

spectral weight is increasingly concentrated along the diagonal direction as the damping is

decreased so that in the pure limit only a Fermi-point remains.
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0

P

P-P

-P

Figure 3. Currents at Boundaries of the periodic structure in Fig. (2) chosen so that they form

closed periodic loops. The figure illustrates the case of P = 5 or 10 ⇥ 10 unit-cells in a super-cell.

The restriction in the sum in H1(A) specifies � in the bonds at the boundaries. The restric-

tions that two of the bonds at the boundaries be removed to remove the over-counting can

be put in two ways:

(1) The bonds in the y� direction are removed from the sum in (4) at nx = 0 for 0 6 ny 6 P ,

and in the x� direction are removed at ny = 0 for 0 6 nx 6 P . The other two boundaries

are left un-changed. Together with the restrictions on the adjoining domains, the currents

along the boundaries are then as shown in Fig. (3).

(2) The bonds in the x� direction are removed from the sum in (4) at nx = 0 for 0 6 ny 6 P ,

and in the y� direction are removed at ny = 0 for 0 6 nx 6 P . The other two boundaries

are left un-changed. For good reason, (1) and (2) have identical e↵ects as will be seen below.

The currents along the boundaries are then as shown in Fig. (4)
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µB`z

C

Figure 1. Representation of the current distribution in the cu-o unit cell of the current distributions

for, A: the vector field Ω which has one of four possible angles θi in the unit-cell i, B: the angular

momentum `z which is a generator of rotations of Ω and has a magnetization at its core. C:

Represents a fluctuation of Ω over regions of many cells. A current represented by the green arrows

runs at the boundary between any two orientations of Ω. At all corners of the variations in Ω a

vortex or `z, represented by the black dot, is required to exist. At H = 0, the vortices are of equally

up and down orientations. But an applied finite H leads to a net orbital angular momentum due

to unequal density of vortices of different orientation.

holographic models [35] and of other models [36], [3, 37, 38]. The magnetic field couples to

the angular momentum as −µB
∑

i H · Liz(τ). In the quantum-critical regime Hz induces a

static macroscopic < Lz > given by

µB < Lz >= χ′LLHz, χ′LL(T ) =
µ2
B`

2
z

ωc
log
( ωc
πT

)
. (3)

From the experimental observations [25] that the ordered staggered moment per-cell is about

0.1µB , and ωc ≈ 2000K [2, 32], χ′LL is estimated to be about 10−5µ2
B/(Kelvin− cell). So a

magnetic field of 50 Tesla can be estimated to produce a static magnetization ≈ 5×10−4µB’s,

not including the numerical factor due to the logarithmic temperature dependence in χLL.

An important question in the present context is how such a moment would be distributed.

To think of this, it is useful to know the physical description of `z, the quasi-quantized unit

of orbital angular momentum in the present problem. A loop-current carrying the lattice

representation of angular momentum is shown in Fig. (1 - B) [39]. It has been shown

[32, 40, 41] to be the generator of rotations of the magneto-electric vector Ω in the plane,
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from one of its four orientations to the clockwise or anti-clockwise orientation:

ei(π/4)`z |Ω̂ >= |Ω̂ + π/4 > . (4)

The pictorial representation in Fig. (1 - c) of Lz corresponds to a vortex in the vector field

Ω with quantized angle but a magnetic moment given by the area and the current carried

by the core cell around which the four-orientations of Ω meet. Over long wave-lengths, one

may ignore the granularity of the lattice so that Lz is similar to the vortex in more familiar

U(1) fields such as superconductors in a magnetic field or superfluids in rotation. Instead of

quantization of the magnetic moment in terms of fundamental constants, it is non-universal

and given by the magnitude of the vectors Ω which have very weak temperature dependence.

From the estimates given above, the density of the moments nL is about 5× 10−3/unit-cell

for a field of 50 Tesla so that their separation is about 50 unit-cells. In an ordered state

of Ω, such moments would crystallize at low enough temperature due to their long-range

mutual interactions. But we are considering the region in which they live in a bath of Ω’s

quantum-fluctuating in time and space. Therefore such moments would remain disordered

at the temperatures of interest and diffuse at a very slow rate because of their enormous

effective mass. If the motion of < Lz > is very slow compared to the motion of fermions

with which they scatter, the scattering should be considered elastic.

Figure 2. (a) Elastic scattering of fermions by vortices of angular momentum < Lz >, (b) Inelastic

scattering of fermions by fluctuations χ”(ω, T,q).
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The s-wave scattering rate 1/τL of such local magnetic field generated by density nL of

the defects can be easily estimated, See Fig. (2-a).

1/τL = 2π nL(g0µB`z)
2 N(0), nL =

χ′LLHz

µB`z
≈ `z

µBHz

ωc
ln(ωc/πT ). (5)

N(0) is the density of states of fermions at the chemical potential and g0 is the coupling

energy [32] of the fermions to a vortex with orbital moment µB`z. This is to be compared

with the inelastic scattering of fermions by the fluctuations χ”(ω, T ), See Fig. (2-b). This

is calculated from the analytic continuation of the imaginary part of the self-energy at zero-

frequency which has been often derived, [33, 42, 43]

1/τ(T ) = 2UImΣ”(0, T ), Σ(iωn) = g20
∑

ωm,k

G(k, iωm)χ(iωn − iωm), (6)

U is a dimensionless Umklapp factor, which is necessary for finite resistivity. Recently, in an

asymptotically exact theory for resistivity due to fluctuations of the QXY-CF model, it has

been shown that U is temperature independent [44]. A way to estimate U is to compare the

transport scattering rate with the imaginary part of the self-energy in the direction on the

Fermi-surface of maximum velocity. This gives U of O(1) [2] for the cuprates where both

have been measured. Eq. (6) gives

1/τ(T ) ≈ πU (g0µB`z)
2 N(0)kBT

ωc
. (7)

1/τL and 1/τ(T ) are of similar magnitude at µBH/kBT of O(1) for ln(ωc/πT ) ≈ 1. They

are similar because the inelastic scattering rate comes from the imaginary part of the same

fluctuations whose real part gives nL to give the elastic scattering rate and the coupling

energy to fermions is identical. Specifically the ratio of the scattering rates is

(1/τL)÷ (1/τ(T )) ≈ 2`z
U

µBH

kBT
ln(ωc/πT ). (8)

The result (8) is subject to a cut-off at low temperatures if one is not at critical parameters,

(the critical point is also expected to shift in a magnetic field if the usual magnetic suscep-

tibility of the system is different on the two sides of critical point) and a high temperature

cut-off on the scale of the upper cut-off ωc.

We can compare the result in Eq. (8) quantitatively with experiments. The data for

the resistivity in the most extensively investigated case, for a cuprate near criticality, is

represented in Ref. [16] by ρ(T,H) = αkBT + β(T )µBH. We can write using Eqs. (7) and
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Figure 3. The temperature dependence of the linear in H resistivity in La2−xSrxCuO4, for x = 0.19.

The data shown as red dots is taken from Fig. 1 b of Ref. ([16]). β(T ) is obtained from the fit to

the resistivity (after subtracting a small residual value) ρ(T,H)− ρ0 = α T + β(T ) H at H = 70

Tesla. A(T ) = 0.14 ln
∣∣ ωc
πT

∣∣, with ωc ≈ 1600K.

(8) that β(T ) = α 2`z
U

ln(ωc/πT ). β(T ) from low T to the highest available temperature,

180K, and a logarithmic fit to it by 0.14 ln(1500/πT ) are given in Fig. (3). The coefficient

0.14 should be compared with 0.19 that is estimated from parameters above and the value of

α ≈ 1.1 deduced in the experiment [16]. A logarithmic fit appears reasonable for T & 30K

below which the data saturates. The parameter ωc is about 1600K, which may be compared

with the O(3000)K deduced [2] from the fit to the logarithmic Cv/T measured [47] between

0.3K and 10K. The peril of deducing a number from a logarithm in a range far above the

data should be kept in mind. The data in Fig. 1a in [16] shows systematic rounding towards

zero below about 30 K even in a field of 70 Tesla. One may be tempted to ascribe it to

not being very close to criticality, but a closer look at all the data at various fields suggests

a more mundane reason. The data shows a large region of rounding from the zero-field

transition temperature (≈ 41K) towards zero resistivity at low temperatures even in large

fields. This is generally the rule in 2d strongly type superconductors or superconducting

films due to an enhanced region of phase fluctuations in a field.

An independent way to test the prediction made here is to see if a direct measurement

of magnetization in the range in which the resistivity satisfies Eqn. (8) shows the same
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logarithmic enhancement.

I now briefly discuss the other compounds, to begin with those for which the quantum-

criticality is that of antiferromagnetism. Significantly, the important critical fluctuations

for planar and incommensurate Ising ferromagnets or anti-ferromagnets (or charge density

waves) are of the phase variable given by the xy model [22, 48]. It is very interesting to

note that the measured spectral functions for the quantum-critical fluctuations for planar

antiferromagnetism in BaFe1.85Co0.15As2 [49] or incommensurate anti-ferromagnetism in

the heavy fermion CeCu6 [50, 51] are consistent with the product form in momentum and

energy [52] as in Eq. (1) for the QXY-SF model.

The data [15] in BaFe2(As1−xPx)2 with Tc ≈ 30K, is available only to 60 K with fields

up to 59 Tesla has a severe rounding of resistivity towards zero at low temperatures for

fields less than 50 Tesla so that linearity of H above this field is observed only in a narrow

range of temperatures. We therefore cannot usefully compare the data in BaFe2(As1−xPx)2.

The fit of the resistivity data made as ∝
√

(µBH)2 + (kBT )2 made earlier [15] is not good

under closer examination of the detailed data kindly received from the authors (I. Hayes

- private communication - Dec. 2021). That fit also does not work for the cuprate or for

the twisted bi-layer graphene [17], as stated by the authors. However, an H2 dependence of

magneto-resistance at low fields is conventional and well understood and there is no reason

why it should be completely absent in the metals under discussion.

The relevant order parameter for Twisted bi-layer (TB)-graphene and TB-WSe2 is not

known yet from experiments, although there are theoretical calculations suggestive of loop-

current ordered states [53, 54] in TB-graphene. TB-WSe2 is similar except for the large

spin-orbit coupling. Their structure has a triangular motif and it is expected that the nearest

neighbor repulsion is comparable to the kinetic energy. In this situation, loop-current order

is a likely instability [55–57]. It should be ascertained if only the component of the magnetic

field perpendicular to the plane is responsible for the resistance linear in the field. If this

holds, more experiments to test the time-reversal, inversion and possible chirality given by

loop-currents are suggested to decipher their long-range order. The data on WSe2 is not

yet detailed enough to compare with theory for β(T ), but it is for TB-graphene [17]. This

is plotted in (4). The logarithmic fit is found with a coefficient 0.7 and an upper cut-off

ωc ≈ 150K, obtained from the quantity πT where the logarithm extrapolates to 0. There

are no independent numbers from other experiments to compare. But the scale of the
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Figure 4. The temperature dependence of the linear in H resistivity in twisted bi-layer graphene.

The data is from Ref. ([17]) and replotted by the authors. AB,1 ≡ β(T ) is obtained just as for

the cuprate compound in Ref. (3). The fit to experiments is given at various dopings; the critical

dopings in the experiment are not definitely known because only at ν = 2.8, the resistivity is

available down to very low temperatures.

fluctuation energies an order of magnitude smaller than the cuprates appears reasonable.

The saturation at the lowest point at 40mK is almost certainly due to rounding of resistivity

due to impending superconductivity, while at the highest temperature πT is essentially the

upper-cutoff and so a saturation is inevitable.

The experiments in a magnetic field test an important aspect of the theory of quantum-

fluctuations of the xy-model because magnetic field couples to the generator of rotations of

the vector characterizing in-plane order. It is already understood that d-wave superconduc-

tivity is not possible if the self-energy of the fermions is angle-independent as it is in cuprates

without the fermions coupling to the fluctuations of angular momentum [2, 32][58]. To con-

clude, one might also add that the mechanism of superconductivity in all these systems is

inevitably related to the fluctuations which give resistivity linear in T and in H.
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