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Verifying nonlinear stability of a laminar fluid flow against all perturbations is a central challenge
in fluid dynamics. Past results rely on monotonic decrease of a perturbation energy or a similar
quadratic generalized energy. None show stability for the many flows that seem to be stable despite
these energies growing transiently. Here a broadly applicable method to verify global stability of
such flows is presented. It uses polynomial optimization computations to construct non-quadratic
Lyapunov functions that decrease monotonically. The method is used to verify global stability of
2D plane Couette flow at Reynolds numbers above the energy stability threshold found by Orr in
1907. This is the first global stability result for any flow that surpasses the energy method.

A central approach to understanding fluid dynamics
has been to study a handful of canonical systems in de-
tail. Despite many discoveries over the last century, one
of the simplest-seeming questions remains open for some
of the most-studied systems: at given parameter values,
will the flow return to its simplest (laminar) state no
matter how it is perturbed? Laboratory experiments and
simulations of the Navier–Stokes equations are unable to
give a complete answer for all perturbations. Theoretical
methods are needed to guarantee global stability.

For a steady laminar velocity field U(x) solving the
incompressible Navier–Stokes equations, the velocity,
u(x, t), and pressure, p(x, t), of perturbations around the
laminar state evolve according to

∂
∂tu + u · ∇u = −∇p+ 1

Re∆u +A(u), (1)

∇ · u = 0, (2)

where A(u) = −U · ∇u − u · ∇U and ∆ is the Lapla-
cian operator [1]. Quantities in (1)–(2) are dimensionless,
having been scaled using a length scale h, velocity scale
U , and kinematic viscosity ν. Choices of h and U depend
on the particular system. The dimensionless Reynolds
number is Re = Uh/ν.

There is a critical threshold ReG > 0 such that the
laminar state U is globally asymptotically stable (mean-
ing all perturbations u eventually converge to zero) if and
only if Re < ReG [1]. Loss of global stability is not suf-
ficient for turbulence, but it is necessary, and often it is
more informative than linear stability. Linear stability of
the laminar state does not preclude turbulence whose on-
set is subcritical [2–6], nor does it ensure that the laminar
state is physically realizable because the basin of attrac-
tion can be minuscule [7–9]. The value of ReG, however,
can be very hard to determine.

An upper bound on ReG is provided by any Re at
which a sustained non-laminar flow is found. A lower
bound on ReG requires finding a Re threshold below
which the laminar state is globally stable. Thus far the

only method applicable to all systems governed by (1)–
(2) has been the energy method pioneered by Reynolds
and Orr [10, 11], where one finds the threshold ReE such
that the kinetic energy, E = 1

2

∫
|u|2dx, of every pertur-

bation decreases monotonically toward zero if and only if
Re < ReE . Often the lower bound on ReG provided by
ReE is very conservative. In systems where turbulence is
driven by parallel shear, such as pressure-driven flow in
a pipe or boundary-driven flow in a layer, the energy sta-
bility thresholds ReE [12–15] are much smaller than the
minimum Re at which sustained non-laminar states have
been found [4, 16–18]. In other words, there is a large
gap between these lower and upper bounds on ReG.

Global stability at Re values above ReE has been
shown only in special cases where the energy method
can be slightly generalized. Each such result has relied
on monotonic decrease of a quadratic integral that is an
inviscid invariant, meaning the nonlinear term in (1) does
not contribute to the expression for the integral’s evolu-
tion. For symmetric perturbations where individual com-
ponents of E are conserved, for instance, one can consider
various linear combinations of these components [15, 19–
21]. Lacking an artificial symmetry on u, however, E
is the only nonnegative quadratic integral that can be
shown to decrease globally. In this general situation there
has been no method for verifying global stability above
ReE , aside from the one presented here.

The standard way to show that a solution of a dynam-
ical system is globally asymptotically stable is to con-
struct a Lyapunov function. Here this is a functional V
that maps each spatial function u(·, t) to a real number
and satisfies V (0) = 0. Let LV denote the Lie deriva-
tive of V along PDE solutions of (1)–(2), meaning LV
is the functional such that LV (u(·, t)) = d

dtV (u(·, t)) for
all u(x, t) solving (1)–(2). The u = 0 state is globally
attracting if V (u) > 0 and LV (u) < 0 for all nonzero
u admitted by the boundary conditions [22]. The en-
ergy method uses V = E or, when symmetries allow it,
weighted combinations of the components of E.
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Our method constructs Lyapunov functionals V with
polynomial dependence on u, in particular with

V (u) = V (a, q) = Ed + P (a, q), (3)

where a(u) ∈ Rm, q(u) ∈ R, d is an integer, and P is a
polynomial whose degree is at most 2d − 1. By defini-
tion, the components of a are projections of u onto an
orthogonal set of spatial modes, {u1(x), . . . ,um(x)}, and
1
2q

2 is the energy of the unprojected remainder of u. For
reasons explained shortly, we choose the ui to be eigen-
functions of the energy stability operator. Constructing
P and verifying that V is a valid Lyapunov functional
presents major challenges beyond the quadratic case. A
general way to surmount these challenges is presented
below, but first we summarize stability results found by
applying our method to a classic fluid flow.

To show that Lyapunov functionals of the form (3) can
surpass existing methods we consider 2D plane Couette
flow, which is driven by parallel relative motion of the
boundaries. We have verified global stability of this flow
beyond the energy stability threshold given by Orr in
1907 [11]. The reason for considering a 2D flow, aside
from Orr’s result being especially longstanding, is to re-
duce the computational cost of testing our method. The
same approach is applicable to arbitrary 3D perturba-
tions, but this is left for future work. The flow is pe-
riodic in the streamwise direction, x ∈ (0, L), and con-
fined in the wall-normal direction, y ∈ (− 1

2 ,
1
2 ). Pertur-

bations about the laminar flow U = (y, 0) obey (1)–(2)
and satisfy no-slip conditions u(x,± 1

2 ) = 0 at the walls.
With this nondimensionalization, Re is defined using the
full velocity difference and height difference between the
shearing planes. Some authors use half these differences,
so their Reynolds number is 1/4 of the Re shown here.

The true value of ReG in 2D plane Couette flow is un-
known. Several computational efforts have failed to find
sustained non-laminar states [23–25], and the laminar
state is linearly stable for all Re [3], so ReG has no known
upper bound and may be infinite. For each stream-
wise period L, the energy method gives a lower bound
ReE(L) ≤ ReG(L). As found by Orr [11], its minimum
ReE ≈ 177.2 occurs at integer multiples of LE ≈ 1.659.
(In 3D, ReG is bounded below by ReE ≈ 82.6 [12, 14] and
above by 511, the smallest Re at which traveling waves
solutions have been computed numerically [17, 18].)

Here we have constructed many V of the form (3), all
having quartic degree (d = 2) and depending explicitly on
the projections ai of u onto various ui modes. Results are
reported for four different mode sets (defined later) whose
number of modes (m) are 6, 8, 12, and 13. Figure 1 shows
Re values at which stability has been verified using each
set of modes, along with the energy stability threshold
ReE(L). At each plotted point, a different Lyapunov
functional was constructed to show global stability for
perturbations of period L at the Re indicated. Raising
the number of modes on which V depends increases the

Figure 1. Reynolds numbers (Re) at which laminar plane
Couette flow is globally asymptotically stable against 2D per-
turbations of period L. Each symbol indicates values (Re, L)
where we verified stability using a quartic Lyapunov func-
tional. Each functional depends explicitly on the flow’s pro-
jection onto 6, 8, 12, or 13 energy eigenmodes, and on the
unprojected energy. Lines connect symbols to guide the eye.
Orr’s energy stability threshold ReE(L) is also shown.

Re at which stability can be verified, but it also increases
the computational cost of constructing V by the method
explained below, which limited us to 13 modes.

Over the full range of periods L for which computations
were performed, results surpass the energy method. For
instance, at the most energy-unstable period LE where
the energy method gives stability up to ReE ≈ 177.2,
our best V verified stability at Re = 252.4. Beyond the
implications for Couette flow, the greater significance of
these results is the proof of concept for a broadly appli-
cable new method—the first generalization of the energy
method that is applicable to any 2D or 3D flow.

To recall the workings of the energy method, note
that positivity of E is clear, so implementing the energy
method amounts to determining the Re at which LE < 0
for all admissible perturbations. In systems where u is
periodic and/or vanishes at all boundaries,

LE =

∫ (
− 1

Re |∇u|2 − u · D · u
)

dx, (4)

where D = 1
2 (∇U +∇TU) is the laminar strain-rate ten-

sor [1]. Variational arguments imply that LE < 0 for all
divergence-free nonzero u if and only if all eigenvalues λ
are negative for the energy eigenproblem [15, 26, 27](

1
Re∆− D

)
w −∇ζ = λw, ∇ ·w = 0, (5)

where ζ is the Lagrange multiplier enforcing incompress-
ibility of w. The largest Re at which λ ≤ 0 defines
the energy stability threshold ReE . Only because LE
is quadratic can its negativity be verified from a linear
Euler–Lagrange equation (5). Going beyond quadratic
V requires another way to enforce V > 0 and LV < 0.

To construct new non-quadratic V , we follow the ideas
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in [28] and consider a partial Galerkin expansion of u,

u(x, t) =

m∑
i=1

ai(t)ui(x) + v(x, t) , (6)

where the ui are selected modes of the energy eigenprob-
lem (5), and ai =

∫
u ·ui dx is the orthogonal projection

of u onto ui. Let q = (
∫
|v|2dx)1/2, so the perturbation

energy is E = 1
2 (|a|2 + q2). Lyapunov functionals V will

be functions of the m+ 1 scalars (a, q), each of which is
a functional of u.

To derive the functional LV that coincides with d
dtV

along solutions of (1)–(2), we let only even powers of

q appear in V , in which case d
dtV = ∂V

∂a ·
da
dt + ∂V

∂q2
dq2

dt .
Projecting the Navier–Stokes equations gives expressions

of the form da
dt = f + Θ and dq2

dt = −2a · Θ + 2Γ [29].
These constitute an “uncertain system” for the evolution
of (a, q) since Θ and Γ (given below) depend on the tail
v in a way that is not uniquely determined by its energy
1
2q

2. The resulting expression for LV is [29]

LV (a, q,v) = G(a, q,v) + M(a, q) ·Θ(a,v), with

G(a, q,v) =
∂V

∂a
· f(a) + 2

∂V

∂q2
Γ(v),

M(a, q) =
∂V

∂a
− 2

∂V

∂q2
a,

Θ(a,v) = ΘAB(a,v) + ΘC(v),

fi(a) = Lijaj +Nijkajak,

Lij = 1
Re 〈ui ,∆uj〉+ 〈ui , A(uj)〉,

Nijk = −〈ui ,uj · ∇uk〉,
ΘABi(a,v) = 〈v ,hi0〉+ 〈v ,hij〉aj ,

hi0 = 1
Re∆ui + U · ∇ui − ui · ∇TU,

hij = uj · ∇ui − ui · ∇Tuj ,

ΘCi(v) = 〈v ,v · ∇ui〉,
Γ(v) = 1

Re 〈v ,∆v〉 − 〈v ,Dv〉,

(7)

and 〈u ,v〉 =
∫

u · v dx.
Positivity of V is enforced by regarding V (a, q) as a

polynomial on Rm+1, rather than a functional of u. Re-
quiring positivity of this polynomial away from the origin
constrains P . Negativity of LV is enforced in a similar
way, but since LV depends on the full tail v, it first
must be bounded above by a polynomial depending only
on (a, q). The reason we choose the ui to be modes of the
energy eigenproblem is so that Γ(v) ≤ κq2 [28], where κ
is the largest eigenvalue from (5) not associated with any
of the m modes in the sum of (6). Enough modes are
included so that κ < 0, and we impose ∂V

∂q2 ≥ 0 so that

G(a, q,v) ≤ G̃(a, q) =
∂V

∂a
· f(a) + 2

∂V

∂q2
κq2. (8)

A procedure described in the Supplement introduces a
polynomial Ξ(a, q) with auxiliary constraints that ensure

M(a, q) ·Θ(a,v) ≤ Ξ(a, q). (9)

By (7)–(9), if G̃ + Ξ < 0 for all (a, q), then LV < 0
for all u. Therefore, if polynomials P (a, q) and Ξ(a, q)
are found such that V > 0, G̃ + Ξ < 0, and ∂V

∂q2 ≥ 0

for all nonzero (a, q), and such that the inequalities in
the Supplement guaranteeing (9) hold, then V is a valid
Lyapunov functional. Each of these constraints amounts
to nonnegativity of a polynomial expression.

Verifying that a polynomial is nonnegative is com-
putationally intractable (NP-hard) in general [30]. A
tractable sufficient condition is that the polynomial can
be written as a sum of squares of other polynomials.
Computational techniques for enforcing sum-of-squares
(SOS) constraints, introduced two decades ago [31–33],
let us search for P and Ξ in a chosen bounded-degree
set of polynomials subject to SOS constraints that im-
ply all of the inequalities described above. If such P and
Ξ are found, then V defined by (3) is a valid Lyapunov
functional. The tunable coefficients of P and Ξ appear
linearly in the expressions that must be SOS, and the
problem of choosing these coefficients subject to the SOS
constraints can be reformulated [34, 35] as a semidefinite
program—a type of conic optimization problem that can
be solved numerically using specialized software. When
Re < ReE , a solution always exists with P = Ξ = 0.

The approach to fluid stability described above was
proposed but not implemented in [28]. As a preliminary
test, the idea was applied in [29] to an example con-
trived to have simple energy eigenmodes. Quartic and
sextic Lyapunov functionals were successfully computed
in [29], but they had no chance to improve upon the
energy method; a weighted energy (which can be used
due to symmetries) already gives ReG exactly for that
flow. The present work adds three contributions. First,
we show that the approach of [28] can surpass quadratic
Lyapunov functionals in practice. Second, we do this
in a realistic context where the energy eigenproblem (5)
must be solved computationally. Third, we make a cru-
cial technical change to the way Ξ is defined and con-
strained in [28], as described in the Supplement, and this
improves our results dramatically.

The ansatz (3) for V is not an arbitrary polynomial
since some structure can be deduced a priori. Both V
and LV must be sign-definite, so their highest-degree
terms must be of even degree. This is possible only if
the nonlinearity in (1) does not contribute to the evolu-
tion of the highest-degree term in V , in which case both
expressions can have the same maximum degree. This is
why the leading term in (3) takes the form Ed. Further,
P can have no terms of degree less than two since V must
have a unique minimum when u = 0. When d = 1 these
constraints require V to be the energy E in general, re-
flecting the lack of freedom in the quadratic case. When
d ≥ 2 there is significant freedom in the choice of P .

Constructing a polynomial Ξ that is guaranteed to sat-
isfy (9) requires computing all tensors in (7). To do so
one must first compute energy eigenmodes of (5) for the
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chosen values of (Re, L) and then select the set of modes
{u1, . . . ,um}, where V will depend explicitly on projec-
tions of u onto these modes. It is necessary to include
all modes with positive eigenvalues at the given (Re, L),
so that κ < 0 in (8), and to include enough stable modes
that trajectories of the truncated system da

dt = f are
bounded. Beyond this, there is freedom in the number
and choice of modes. For a fixed number of modes, ex-
perimentation may be needed to determine which mode
set gives the strongest stability results.

To apply our method to 2D plane Couette flow, we
first solve the energy eigenproblem (5) as detailed in the
Supplement. The eigenproblem must be solved anew for
each L and Re considered, giving eigenfunctions whose
streamwise wavenumbers α are multiples of 2π

L . As an ex-
ample, Fig. 2 shows eigenvalues and corresponding eigen-
modes for (Re, L) = (240, 2), a point in the parameter
regime where energy can grow transiently yet our com-
putations verify stability.

The four nested sets of eigenmodes {u1, . . . ,um} that
were used to compute the stability results of Fig. 1 are
defined in the Fig. 2 caption. For each (Re, L) and set
of modes, all tensors in (7) were computed numerically.
We then formulated the SOS computations described
above, searching for polynomials P and Ξ such that V
was verified to be a Lyapunov functional. The parser
YALMIP [36, 37] was used to reformulate all SOS con-
straints as semidefinite programs, which were then solved
using MOSEK [38]. The resulting P and Ξ have many
terms, so we do not report them here.

For each L and set of modes, the symbol plotted in
Fig. 1 is the largest Re for which our SOS computations
found a valid quartic V . We expect the stability thresh-
olds in Fig. 1 will continue to improve with an increase
to the number of eigenmodes (m) on which V explicitly
depends in (3). However, our computations for 13 modes
are already expensive. This prevents us from considering
very large L since the number of modes that would be
needed grows at least linearly with L. Thus the present
version of our method cannot apply to arbitrary-L per-
turbations in very long domains, although it surpasses
the energy method for perturbations up to whatever pe-
riod is computationally tractable. Aside from adding
modes, stability thresholds could be improved by rais-
ing the polynomial degree of V , but sextic V demand
much larger computational cost and memory footprint.

As an independent check that the V constructed by our
SOS computations decrease monotonically in time, we
numerically integrated (1)–(2) for 2D Couette flow using
the code Dedalus [39], starting from 104 random initial
conditions (cf. the Supplement) in the energy-unstable
case (Re, L) = (240, 2). In all simulations our V de-
pending on 13 modes decreased monotonically, whereas
E increased transiently in 7 simulations.

In summary, we have presented a general method for
constructing polynomial Lyapunov functionals to show

Figure 2. Energy stability eigenmodes for (Re, L) = (240, 2).
The top panel shows eigenvalues as a function of stream-
wise wavenumber α. Shading indicates the minimum singu-
lar value of a boundary constraint matrix B (cf. the Supple-
ment); black curves are zeros of this minimum, corresponding
to eigenvalues. Eigenmodes consistent with L = 2 occur at
multiples of 2π

L
, marked by black dots. The mode with the

jth largest eigenvalue among eigenmodes with wavenumber
α = 2πi

L
is labeled (i, j). Bottom panels show streamlines for

selected modes. When i 6= 0 we include two modes, shifted
by a quarter-period in x, to span the relevant eigenspace.
The 6-mode set consists of the (0, 0), (0, 1), (1, 1), and (1, 2)
eigenmodes. The 8-mode set adds (2, 1), the 12-mode set adds
(2, 2) and (3, 1), and the 13-mode set adds (0, 2).

global stability of fluid flows. It may be used to surpass
the many conservative results derived using energy (or
other quadratic integrals) to which past studies of fluid
stability have been confined. Our approach is more tech-
nical than the energy method but can be implemented
using modern computational tools of polynomial opti-
mization. We have verified stability for 2D plane Cou-
ette in a regime where energy grows transiently. This
improves on a century-old stability criterion of Orr, at
least for perturbations whose streamwise periods are not
too large. As far as we know, this is the first global sta-
bility result for any flow that is stronger than what can
be shown using the energy method or its generalizations
to other quadratic integrals. The natural next step is
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to apply the same approach to 3D perturbations of plane
Couette flow or another 3D flow where the energy method
is overly conservative, such as pipe flow. The procedure
will be the same as in the present 2D example, only with
greater technicality and computational cost.
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